Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of water on the tensile properties of amorphous silica:a reactive molecular dynamics simulation

Zhang Yun-An Tao Jun-Yong Chen Xun Liu Bin

Influence of water on the tensile properties of amorphous silica:a reactive molecular dynamics simulation

Zhang Yun-An, Tao Jun-Yong, Chen Xun, Liu Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Humidity has an important influence on the strength of the silica (SiO2). We examine the influence of liquid water on the tensile properties of amorphous silica (a-SiO2) using reactive molecular dynamics simulation. The results of the quasi-static tension show that liquid water reduces the tensile strength of a-SiO2 significantly. The tensile strength of dry a-SiO2 is 9.4 GPa while the tensile strength of a-SiO2 in the presence of liquid water is only 4.7 GPa. The strain-stress curve of dry a-SiO2 indicates that the stiffness of the a-SiO2 structure becomes stable with the increase of strain. On the other hand, the stiffness of the a-SiO2 with liquid water is gradually reduced with the increase of tensile strain. Moreover, the strain-stress curve of a-SiO2 in a strain range of 16% to 20% in the presence of liquid water is similar to the yielding phenomenon of plastic metal. The snapshots of the a-SiO2 in the presence of liquid water during the tension show that no plastic deformation is observed. We propose that the stress-enhanced hydrolysis releases part of the stress for the rupture of the Si–O bonds, so that the stiffness of the a-SiO2 in the presence of liquid water decreases with the increase of strain.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51175503).
    [1]

    Ning D, Dong X Y, Li Y G, Dong X Y, Huang B C, Sun J J, L K C, L F Y 2001 Acta Opt. Sin. 21 1417 (in Chinese) [宁鼎, 董孝义, 李乙钢, 董新永, 黄榜才, 孙建军, 吕可诚, 吕福云 2001 光学学报 21 1417]

    [2]

    Wu G M, Wang J, Shen J, Yang T H, Zhang Q Y, Zhou B, Deng Z S, Fan B, Zhou D P, Zhang F S 2001 Acta Phys. Sin. 50 175 (in Chinese) [吴广明, 王珏, 沈军, 杨天河, 张勤远, 周斌, 邓忠生, 范滨, 周东平, 张凤山 2001 物理学报 50 175]

    [3]

    Yu H H, Wu H B, Li X P, Zhu Y Z, Jiang D S 2001 Acta Phys. Chim. Sin. 17 1057 (in Chinese) [余海湖, 伍宏标, 李小甫, 朱云洲, 姜德生 2001 物理化学学报 17 1057]

    [4]

    Ciccotti M 2009 J. Phys. D 42 214006

    [5]

    Freiman S W, Wiederhorn S M, Mecholsky J J 2009 J. Am. Ceram. Soc. 92 1371

    [6]

    Wiederhorn S M 1967 J. Am. Ceram. Soc. 50 407

    [7]

    Michalske T A, Freiman S W 1982 Nature 295 511

    [8]

    Michalske T A, Freiman S W 1983 J. Am. Ceram. Soc. 66 284

    [9]

    Lindsay C G, White G S, Freiman S W, Wong-Ng W 1994 J. Am. Ceram. Soc. 77 2179

    [10]

    Del Bene J E, Runge K, Bartlett R 2003 J. Comput. Mater. Sci. 27 102

    [11]

    Taylor D E, Runge K, Bartlett R 2005 J. Mol. Phys. 103 2019

    [12]

    Cao C, He Y, Torras J, Deumens E, Trickey S B, Cheng H P 2007 J. Chem. Phys. 126 211101

    [13]

    de Leeuw N H, Du Z M, Li J, Yip S, Zhu T 2003 Nano Lett. 3 1347

    [14]

    Gy R 2003 J. Non-Cryst. Solids 316 1

    [15]

    Hirao K, Tomozawa M 1987 J. Am. Ceram. Soc. 70 43

    [16]

    Silva E, Li J, Liao D, Subramanian S, Zhu T, Yip S 2006 J. Comput. Aided Mater. Des. 13 135

    [17]

    van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396

    [18]

    van Duin A C T, Strachan A, Stewman S, Zhang Q, Xu X, Goddard W A 2003 J. Phys. Chem. A 107 3803

    [19]

    Zhou T T, Shi Y D, Huang F L 2012 Acta Phys. Chim. Sin. 28 2605 (in Chinese) [周婷婷, 石一丁, 黄风雷 2012 物理化学学报 28 2605]

    [20]

    Quenneville J, Taylor R S, van Duin A C T 2010 J. Phys. Chem. C 114 18894

    [21]

    Fogarty J C, Aktulga H M, Grama A Y, van Duin A C T, Pandit S A 2010 J. Chem. Phys. 132 174704

    [22]

    Pedone A, Malavasi G, Menziani M C, Segre U, Cormack A N 2008 Chem. Mater. 20 4356

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [24]

    Aktulga H M, Fogarty J C, Pandit S A, Grama A Y 2012 Parallel Comput. 38 245

    [25]

    Verlet L 1967 Phys. Rev. 159 98

    [26]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [27]

    Rappé A K, Goddard W A 1991 J. Chem. Phys. 95 3358

    [28]

    Vashishta P, Kalia R K, Rino J P, Ebbsjö I 1990 Phys. Rev. B 41 12197

    [29]

    Vollmayr K, Kob W, Binder K 1996 Phys. Rev. B 54 15808

    [30]

    Mozzi R L, Warren B E 1969 J. Appl. Crystallogr. 2 164

    [31]

    Da Silva J R G, Pinatti D G, Anderson C E, Rudee M L 1975 Philos. Mag. 31 713

    [32]

    Sprik M, Hutter J, Parrinello M 1996 J. Chem. Phys. 105 1142

    [33]

    Clough S A, Beers Y, Klein G P, Rothman L S 1973 J. Chem. Phys. 59 2254

    [34]

    Soper A K 1994 J. Chem. Phys. 101 6888

    [35]

    Brambilla G, Payne D N 2009 Nano Lett. 9 831

    [36]

    Frenkel J Z 1926 Physica 37 572

    [37]

    Hatty V, Kahn H, Heuer A H 2008 J. Microelectromech. Syst. 17 943

    [38]

    Tsuchiya T, Inoue A, Sakata J 2000 Sens. Actuators. A 82 286

    [39]

    Sadananda K, Vasudevan A K 2011 Metall. Mater. Trans. A 42A 279

    [40]

    Zhu T, Li J, Lin X, Yip S 2005 J. Mech. Phys. Solids 53 1597

    [41]

    Tang J Y, Chen L L, Song J 2009 Nanotech. Precis. Eng. 7 173 (in Chinese) [唐洁影, 陈龙龙, 宋竞 2009 纳米技术与精密工程 7 173]

    [42]

    Muhlstein C L, Ritchie R O 2003 Int. J. Fract. 120 449

    [43]

    Guo Y Q, Huang R, Song J, Wang X, Song C, Zhang Y X 2012 Chin. Phys. B 21 066106

    [44]

    Huang C L, Feng Y H, Zhang X X, Li W, Yang M, Li J 2012 Acta Phys. Sin. 61 154402 (in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静2012 物理学报 61 154402]

    [45]

    Elwenspoek M, Jansen H V 2004 Silicon Micromaching (Cambridge: Cambridge University Press) p55

  • [1]

    Ning D, Dong X Y, Li Y G, Dong X Y, Huang B C, Sun J J, L K C, L F Y 2001 Acta Opt. Sin. 21 1417 (in Chinese) [宁鼎, 董孝义, 李乙钢, 董新永, 黄榜才, 孙建军, 吕可诚, 吕福云 2001 光学学报 21 1417]

    [2]

    Wu G M, Wang J, Shen J, Yang T H, Zhang Q Y, Zhou B, Deng Z S, Fan B, Zhou D P, Zhang F S 2001 Acta Phys. Sin. 50 175 (in Chinese) [吴广明, 王珏, 沈军, 杨天河, 张勤远, 周斌, 邓忠生, 范滨, 周东平, 张凤山 2001 物理学报 50 175]

    [3]

    Yu H H, Wu H B, Li X P, Zhu Y Z, Jiang D S 2001 Acta Phys. Chim. Sin. 17 1057 (in Chinese) [余海湖, 伍宏标, 李小甫, 朱云洲, 姜德生 2001 物理化学学报 17 1057]

    [4]

    Ciccotti M 2009 J. Phys. D 42 214006

    [5]

    Freiman S W, Wiederhorn S M, Mecholsky J J 2009 J. Am. Ceram. Soc. 92 1371

    [6]

    Wiederhorn S M 1967 J. Am. Ceram. Soc. 50 407

    [7]

    Michalske T A, Freiman S W 1982 Nature 295 511

    [8]

    Michalske T A, Freiman S W 1983 J. Am. Ceram. Soc. 66 284

    [9]

    Lindsay C G, White G S, Freiman S W, Wong-Ng W 1994 J. Am. Ceram. Soc. 77 2179

    [10]

    Del Bene J E, Runge K, Bartlett R 2003 J. Comput. Mater. Sci. 27 102

    [11]

    Taylor D E, Runge K, Bartlett R 2005 J. Mol. Phys. 103 2019

    [12]

    Cao C, He Y, Torras J, Deumens E, Trickey S B, Cheng H P 2007 J. Chem. Phys. 126 211101

    [13]

    de Leeuw N H, Du Z M, Li J, Yip S, Zhu T 2003 Nano Lett. 3 1347

    [14]

    Gy R 2003 J. Non-Cryst. Solids 316 1

    [15]

    Hirao K, Tomozawa M 1987 J. Am. Ceram. Soc. 70 43

    [16]

    Silva E, Li J, Liao D, Subramanian S, Zhu T, Yip S 2006 J. Comput. Aided Mater. Des. 13 135

    [17]

    van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396

    [18]

    van Duin A C T, Strachan A, Stewman S, Zhang Q, Xu X, Goddard W A 2003 J. Phys. Chem. A 107 3803

    [19]

    Zhou T T, Shi Y D, Huang F L 2012 Acta Phys. Chim. Sin. 28 2605 (in Chinese) [周婷婷, 石一丁, 黄风雷 2012 物理化学学报 28 2605]

    [20]

    Quenneville J, Taylor R S, van Duin A C T 2010 J. Phys. Chem. C 114 18894

    [21]

    Fogarty J C, Aktulga H M, Grama A Y, van Duin A C T, Pandit S A 2010 J. Chem. Phys. 132 174704

    [22]

    Pedone A, Malavasi G, Menziani M C, Segre U, Cormack A N 2008 Chem. Mater. 20 4356

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [24]

    Aktulga H M, Fogarty J C, Pandit S A, Grama A Y 2012 Parallel Comput. 38 245

    [25]

    Verlet L 1967 Phys. Rev. 159 98

    [26]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [27]

    Rappé A K, Goddard W A 1991 J. Chem. Phys. 95 3358

    [28]

    Vashishta P, Kalia R K, Rino J P, Ebbsjö I 1990 Phys. Rev. B 41 12197

    [29]

    Vollmayr K, Kob W, Binder K 1996 Phys. Rev. B 54 15808

    [30]

    Mozzi R L, Warren B E 1969 J. Appl. Crystallogr. 2 164

    [31]

    Da Silva J R G, Pinatti D G, Anderson C E, Rudee M L 1975 Philos. Mag. 31 713

    [32]

    Sprik M, Hutter J, Parrinello M 1996 J. Chem. Phys. 105 1142

    [33]

    Clough S A, Beers Y, Klein G P, Rothman L S 1973 J. Chem. Phys. 59 2254

    [34]

    Soper A K 1994 J. Chem. Phys. 101 6888

    [35]

    Brambilla G, Payne D N 2009 Nano Lett. 9 831

    [36]

    Frenkel J Z 1926 Physica 37 572

    [37]

    Hatty V, Kahn H, Heuer A H 2008 J. Microelectromech. Syst. 17 943

    [38]

    Tsuchiya T, Inoue A, Sakata J 2000 Sens. Actuators. A 82 286

    [39]

    Sadananda K, Vasudevan A K 2011 Metall. Mater. Trans. A 42A 279

    [40]

    Zhu T, Li J, Lin X, Yip S 2005 J. Mech. Phys. Solids 53 1597

    [41]

    Tang J Y, Chen L L, Song J 2009 Nanotech. Precis. Eng. 7 173 (in Chinese) [唐洁影, 陈龙龙, 宋竞 2009 纳米技术与精密工程 7 173]

    [42]

    Muhlstein C L, Ritchie R O 2003 Int. J. Fract. 120 449

    [43]

    Guo Y Q, Huang R, Song J, Wang X, Song C, Zhang Y X 2012 Chin. Phys. B 21 066106

    [44]

    Huang C L, Feng Y H, Zhang X X, Li W, Yang M, Li J 2012 Acta Phys. Sin. 61 154402 (in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静2012 物理学报 61 154402]

    [45]

    Elwenspoek M, Jansen H V 2004 Silicon Micromaching (Cambridge: Cambridge University Press) p55

  • [1] Shi Chao, Lin Chen-Sen, Chen Shuo, Zhu Jun. Molecular dynamics simulation of characteristic water molecular arrangement on graphene surface and wetting transparency of graphene. Acta Physica Sinica, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [2] Zhang Chuan-Guo, Yang Yong, Hao Ting, Zhang Ming. Molecular dynamics simulations on the growth of thin amorphous hydrogenated carbon films on diamond surface. Acta Physica Sinica, 2015, 64(1): 018102. doi: 10.7498/aps.64.018102
    [3] Yang Hong, Chen Min. A molecular dynamics simulation of thermodynamic properties of undercooled liquid Ni2TiAl alloy. Acta Physica Sinica, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [4] Zhang Zhong-Qiang, Li Chong, Liu Han-Lun, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure. Acta Physica Sinica, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [5] Lin Jia-Qi, Li Xiao-Kang, Yang Wen-Long, Sun Hong-Guo, Xie Zhi-Bin, Xiu Han-jiang, Lei Qing-Quan. Molecular dynamics simulation study on the structure and mechanical properties of polyimide/KTa0.5Nb0.5O3 nanoparticle composites. Acta Physica Sinica, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [6] Yan Ke-Feng, Li Xiao-Sen, Chen Zhao-Yang, Xu Chun-Gang. Molecular dynamics simulation of CO2 separation from integrated gasification combined cycle syngas via the hydrate formation. Acta Physica Sinica, 2010, 59(6): 4313-4321. doi: 10.7498/aps.59.4313
    [7] Sun Chuan-Qin, Huang Hai-Shen, Bi Qing-Ling, Lü Yong-Jun. Wetting kinetics of water droplets on the metallic glass. Acta Physica Sinica, 2017, 66(17): 176101. doi: 10.7498/aps.66.176101
    [8] Wang Jun-Guo, Liu Fu-Sheng, Li Yong-Hong, Zhang Ming-Jian, Zhang Ning-Chao, Xue Xue-Dong. The structural transition of water at quartz/water interfaces under shock compression in phase region of liquid. Acta Physica Sinica, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [9] Wang Wen-Peng, Liu Fu-Sheng, Zhang Ning-Chao. Structural transformation of liquid water under shock compression condition. Acta Physica Sinica, 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [10] Wang Xi, Li Ming, Ye Fang-Fu, Zhou Xin. Modelling and simulation of DNA hydrogel with a coarse-grained model. Acta Physica Sinica, 2017, 66(15): 150201. doi: 10.7498/aps.66.150201
    [11] Zhang Chun-Mei, Bian Xin-Chao, Chen Qiang, Fu Ya-Bo, Zhang Yue-Fei. Effect and mechanism of water on carbon nanotubes growth. Acta Physica Sinica, 2008, 57(7): 4602-4606. doi: 10.7498/aps.57.4602
    [12] Chen Ying, Qiu Xi-Jun. Collective radiation of water in cytoskeletal microtubule. Acta Physica Sinica, 2003, 52(6): 1554-1560. doi: 10.7498/aps.52.1554
    [13] Li Yong-Hong, Liu Fu-Sheng, Cheng Xiao-Li, Zhang Ming-Jian, Xue Xue-Dong. Crystallization of water induced by fused quartz under shock compression. Acta Physica Sinica, 2011, 60(12): 126202. doi: 10.7498/aps.60.126202
    [14] Ouyang Yu, Fang Yan. The effects of H2O on the synthesis of SWCNTs by decomposing CH4 in Ar at 800℃. Acta Physica Sinica, 2005, 54(2): 578-581. doi: 10.7498/aps.54.578
    [15] Yuan Si-Wei, Feng Yan-Hui, Wang Xin, Zhang Xin-Xin. Molecular dynamics simulation of thermal conductivity of mesoporous α-Al2O3. Acta Physica Sinica, 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [16] He Yu-Chen, Liu Xiang-Jun. Simulation studies on the transport properties of Cu-H2O nanofluids based on water continuum assumption. Acta Physica Sinica, 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [17] Wang Jun, Zhang Bao-Ling, Zhou Yu-Lu, Hou Qing. Molecular dynamics simulation of helium behavior in tungsten matrix. Acta Physica Sinica, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [18] Wang Qi-Dong, Peng Zeng-Hui, Liu Yong-Gang, Yao Li-Shuang, Ren Gan, Xuan Li. Rotational viscosity comparison of liquid crystals based on the molecular dynamics of mixtures. Acta Physica Sinica, 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [19] Li Hong-Xuan, Ji Li, Zhao Fei, Du Wen, Zhou Hui-Di, Chen Jian-Min, Quan Wei-Long. Molecular dynamical simulation on the mechanical property of hydrogenated diamond-like carbon films. Acta Physica Sinica, 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [20] Xie Fang, Zhang Lin, Zhu Ya-Bo, Zhang Zhao-Hui. Molecular dynamics simulation of multi-wall carbon nanotube oscillators. Acta Physica Sinica, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
  • Citation:
Metrics
  • Abstract views:  878
  • PDF Downloads:  432
  • Cited By: 0
Publishing process
  • Received Date:  21 June 2013
  • Accepted Date:  21 September 2013
  • Published Online:  05 December 2013

Influence of water on the tensile properties of amorphous silica:a reactive molecular dynamics simulation

  • 1. Science and Technology on Integrated Logistics Support Laboratory, College of Mechatonics Engineering and Automation, National University of Defense Technology, National University of Defense Technology, Changsha 410073, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 51175503).

Abstract: Humidity has an important influence on the strength of the silica (SiO2). We examine the influence of liquid water on the tensile properties of amorphous silica (a-SiO2) using reactive molecular dynamics simulation. The results of the quasi-static tension show that liquid water reduces the tensile strength of a-SiO2 significantly. The tensile strength of dry a-SiO2 is 9.4 GPa while the tensile strength of a-SiO2 in the presence of liquid water is only 4.7 GPa. The strain-stress curve of dry a-SiO2 indicates that the stiffness of the a-SiO2 structure becomes stable with the increase of strain. On the other hand, the stiffness of the a-SiO2 with liquid water is gradually reduced with the increase of tensile strain. Moreover, the strain-stress curve of a-SiO2 in a strain range of 16% to 20% in the presence of liquid water is similar to the yielding phenomenon of plastic metal. The snapshots of the a-SiO2 in the presence of liquid water during the tension show that no plastic deformation is observed. We propose that the stress-enhanced hydrolysis releases part of the stress for the rupture of the Si–O bonds, so that the stiffness of the a-SiO2 in the presence of liquid water decreases with the increase of strain.

Reference (45)

Catalog

    /

    返回文章
    返回