Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of polarization on irradiating LiF crystal by femtosecond laser

Wang Cheng-Wei Zhao Quan-Zhong Zhang Yang Wang Guan-De Qian Jing Bao Zong-Jie Li Yang-Bo Bai Feng Fan Wen-Zhong

Influence of polarization on irradiating LiF crystal by femtosecond laser

Wang Cheng-Wei, Zhao Quan-Zhong, Zhang Yang, Wang Guan-De, Qian Jing, Bao Zong-Jie, Li Yang-Bo, Bai Feng, Fan Wen-Zhong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The processing morphology of cubic crystal LiF irradiated by femtosecond laser varies with the polarization direction. When the polarization direction is parallel to the crystal orientation 110, the distance between the starting point and the surface is 1.08 times that along 100 polarization, and the distance between the end point and the surface is 1.01 times. While the cubic crystal is irradiated by a femtosecond laser, self-focusing and inverse bremsstrahlung are two probable mechanisms dependent on polarization. In order to investigate the relation between the self-focusing and polarization, in this paper we report the nonlinear refractive index n2 of LiF crystal which is linear with respect to selffocusing coefficient. The Z-scan technique is used to measure the nonlinear refractive indexes at different polarizations. As the polarization direction is rotated from 110 to 100, the nonlinear refractive index decreases, and the self-focusing effect becomes weaker. If self-focusing leads to the dependence of morphology on polarization, the distance between the starting point and the surface for 100 polarization should be longer than that for 110 polarization. However, the experiment exhibits an opposite result that the distance between starting point and the surface for 100 polarization is shorter than that for 110 polarization. Therefore, the processing morphology which changes with polarization is not a consequence of the self-focusing. So in order to understand why the processing morphology varies with polarization, in this paper we present a model which combines inverse bremsstrahlung, avalanche ionization and radiationless transition. We believe that the recombination due to radiationless transition has a great effect on laser machining. The inverse bremsstrahlung coefficient of 110 polarization is less than that of 100 polarization, as a result, the density of free electrons which are produced by inverse bremsstrahlung and avalanche ionization at 110 polarization is less than that at 100 polarization. At first, the laser energy is transferred to the free electrons by inverse bremsstrahlung and avalanche ionization, which is described by the paraxial nonlinear Schrodinger equation and evolution equation of electron density. The density of free electrons is obtained by solving the equations. Then free electrons transfer the energy to the crystal lattice in the process of recombination through radiationless transition, which is depicted by energy conservation and gives the distribution of lattice temperature along the propagation direction. Finally, the area in LiF crystal of which the lattice temperature climbs up to above the melting point is processed. According to the simulation, the distance between the starting point and the surface at 110 polarization is 1.03 times that at 100 polarization, and the distance between the end point and the surface at 110 polarization is 0.981 times that at 100 polarization. These are consistent with the experimental results. Simulation and experimental results demonstrate that the inverse bremsstrahlung, which is dependent on polarization, is the main reason for morphology changing with the polarization of femtosecond laser. These research results may contribute to inducing microstructure in transparent dielectrics through femtosecond laser.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB808103) and the National Natural Science Foundation of China (Grant Nos. 61178024, 11374316).
    [1]

    Beresna M, Gecevičius M, Kazansky P G 2011 Opt. Mater. Express 1 10117

    [2]

    Dong M M, Wang C W, Wu Z X, Zhang Y, Pan H H, Zhao Q Z 2013 Opt. Express 21 15522

    [3]

    Shimotsuma Y, Hirao K, Kazansky P G, Qiu J 2005 Jpn. J. Appl. Phys. 44 4735

    [4]

    Song J, Wang X, Hu X, Dai Y, Qiu J, Cheng Y, Xu Z 2008 Appl. Phys. Lett. 92 092904

    [5]

    Qiu J, Jiang X, Zhu C, Shirai M, Si J, Jiang N, Hirao K 2004 Angew. Chem. Int. Ed. Engl. 43 2230

    [6]

    Shimotsuma Y, Kazansky P G, Qiu J, Hirao K 2003 Phys. Rev. Lett. 91 247405

    [7]

    Balling P, Schou J 2013 Rep. Prog. Phys. 76 036502

    [8]

    Dharmadhikari A, Alti K, Dharmadhikari J, Mathur D 2007 Phys. Rev. A 76 033811

    [9]

    Kaiser A, Rethfeld B, Vicanek M, Simon G 2000 Phys. Rev. B 61 11437

    [10]

    Stoian R, Ashkenasi D, Rosenfeld A, Campbell E E B 2000 Phys. Rev. B: Condens. Matter Mater. Phys. 62 13167

    [11]

    Ter-Mikirtychev V V 1995 Opt. Commun. 119 109

    [12]

    Li S X, Bai Z C, Huang Z, Zhang X, Qin S J, Mao W X 2012 Acta Phys. Sin. 61 115201 (in Chinese) [李世熊, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪 2012 物理学报 61 115201]

    [13]

    Liu T H, Hao Z Q, Gao X, Liu Z H, Lin J Q 2014 Chin. Phys. B 23 085203

    [14]

    Vailionis A, Gamaly E G, Mizeikis V, Yang W, Rode A V, Juodkazis S 2011 Nat. Commun. 2 445

    [15]

    Mermillod-Blondin A, Burakov I, Meshcheryakov Y, Bulgakova N, Audouard E, Rosenfeld A, Husakou A, Hertel I, Stoian R 2008 Phys. Rev. B 77 104205

    [16]

    de Salvo R, Said A A, Hagan D J, van Stryland E W, Sheik-Bahae M 1996 IEEE J. Quantum Electron. 32 1324

    [17]

    Bombach R, Hemmerling B 1992 Appl. Opt. 31 367

    [18]

    Maker P, Terhune R 1964 Phys. Rev. 137 801

    [19]

    Milam D, Weber M J, Glass A J 1977 Appl. Phys. Lett. 31 822

    [20]

    Liu F, Xing Q R, Hu M L, Li Y F, Wang C L, Chai L, Wang Q Y 2011 Acta Phys. Sin. 60 017806 (in Chinese) [刘丰, 邢岐荣, 胡明列, 栗岩锋, 王昌雷, 柴路, 王清月 2011 物理学报 60 017806]

    [21]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 441 47

    [22]

    Wu S, Wu D, Xu J, Hanada Y, Suganuma R, Wang H, Makimura T, Sugioka K, Midorikawa K 2012 Opt. Express 20 28893

    [23]

    Sirdeshmukh D B, Rao K K 1988 J. Mater. Sci. Lett. 7 567

    [24]

    Brookes C A, O'Neill J B, Redfern B A W 1971 Proc. R. Soc. A: Math. Phys. Eng. Sci. 322 73

    [25]

    Zhao Q Z, Qiu J R, Yang L Y, Jiang X W, Zhao C J, Zhu C S 2003 Chin. Phys. Lett. 20 1858

    [26]

    Yin Q, Wu J, Qian G, Ma X H 2008 Opt. Optoelectron. Technol. 6 25

    [27]

    Kogelnik H 1969 Bell Syst. Tech. J. 48 2909

    [28]

    Nolte S, Momma C, Kamlage G, Ostendorf A, Fallnich C, von Alvensleben F, Welling H 1999 Appl. Phys. A 68 563

    [29]

    Collins A, Rostohar D, Prieto C, Chan Y K, Oconnor G M 2014 Opt. Lasers Eng. 60 18

    [30]

    de Salvo R, Sheik-Bahae M, Said A A, Hagan D J, van Stryland E W 1993 Opt. Lett. 18 194

    [31]

    Shang C, Hsu H 1987 IEEE J. Quantum Electron. 23 177

    [32]

    van Stryland E W, Hagan D J 2009 Self-focusing: Past, Present (Berlin: Springer) p573

    [33]

    Tolk N H, Albridge R G, Barnes A V, Haglund R F, Hudson L T, Mendenhall M H, Russell D P, Sarnthein J, Savundararaj P M, Wang P W 1987 Desorption Induced by Electronic Transitions DIET III, Springer Series in Surface Sciences (Berlin, Heidelberg: Springer Berlin Heidelberg) p284

    [34]

    Burakov I M, Bulgakova N M, Stoian R, Mermillod-Blondin A, Audouard E, Rosenfeld A, Husakou A, Hertel I V 2007 J. Appl. Phys. 101 043506

    [35]

    Keldysh L 1965 Sov. Phys. JETP 20 1307

    [36]

    Chaney R, Lafon E, Lin C 1971 Phys. Rev. B 4 2734

    [37]

    Hamrin K, Johansson G, Gelius U, Nordling C, Siegbahn K 1970 Phys. Scr. 1 277

    [38]

    Li H H 1976 J. Phys. Chem. Ref. Data 5 329

    [39]

    Chichkov B, Momma C, Nolte S, Alvensleben F, Tunnermann A 1996 Appl. Phys. A 63 109

    [40]

    Stuart B, Feit M, Herman S, Rubenchik A, Shore B, Perry M 1996 Phys. Rev. B: Condens. Matter 53 1749

    [41]

    Petite G, Daguzan P, Guizard S, Martin P 1996 Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 107 97

    [42]

    Luque A, Martí A, Antolín E, Tablero C 2006 Phys. B: Condens. Matter 382 320

    [43]

    Eaton S M, Zhang H B, Herman P R, Yoshino F 2005 Opt. Express 13 4708

    [44]

    Douglas T B, Dever J L 1954 J. Am. Chem. Soc. 76 4826

  • [1]

    Beresna M, Gecevičius M, Kazansky P G 2011 Opt. Mater. Express 1 10117

    [2]

    Dong M M, Wang C W, Wu Z X, Zhang Y, Pan H H, Zhao Q Z 2013 Opt. Express 21 15522

    [3]

    Shimotsuma Y, Hirao K, Kazansky P G, Qiu J 2005 Jpn. J. Appl. Phys. 44 4735

    [4]

    Song J, Wang X, Hu X, Dai Y, Qiu J, Cheng Y, Xu Z 2008 Appl. Phys. Lett. 92 092904

    [5]

    Qiu J, Jiang X, Zhu C, Shirai M, Si J, Jiang N, Hirao K 2004 Angew. Chem. Int. Ed. Engl. 43 2230

    [6]

    Shimotsuma Y, Kazansky P G, Qiu J, Hirao K 2003 Phys. Rev. Lett. 91 247405

    [7]

    Balling P, Schou J 2013 Rep. Prog. Phys. 76 036502

    [8]

    Dharmadhikari A, Alti K, Dharmadhikari J, Mathur D 2007 Phys. Rev. A 76 033811

    [9]

    Kaiser A, Rethfeld B, Vicanek M, Simon G 2000 Phys. Rev. B 61 11437

    [10]

    Stoian R, Ashkenasi D, Rosenfeld A, Campbell E E B 2000 Phys. Rev. B: Condens. Matter Mater. Phys. 62 13167

    [11]

    Ter-Mikirtychev V V 1995 Opt. Commun. 119 109

    [12]

    Li S X, Bai Z C, Huang Z, Zhang X, Qin S J, Mao W X 2012 Acta Phys. Sin. 61 115201 (in Chinese) [李世熊, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪 2012 物理学报 61 115201]

    [13]

    Liu T H, Hao Z Q, Gao X, Liu Z H, Lin J Q 2014 Chin. Phys. B 23 085203

    [14]

    Vailionis A, Gamaly E G, Mizeikis V, Yang W, Rode A V, Juodkazis S 2011 Nat. Commun. 2 445

    [15]

    Mermillod-Blondin A, Burakov I, Meshcheryakov Y, Bulgakova N, Audouard E, Rosenfeld A, Husakou A, Hertel I, Stoian R 2008 Phys. Rev. B 77 104205

    [16]

    de Salvo R, Said A A, Hagan D J, van Stryland E W, Sheik-Bahae M 1996 IEEE J. Quantum Electron. 32 1324

    [17]

    Bombach R, Hemmerling B 1992 Appl. Opt. 31 367

    [18]

    Maker P, Terhune R 1964 Phys. Rev. 137 801

    [19]

    Milam D, Weber M J, Glass A J 1977 Appl. Phys. Lett. 31 822

    [20]

    Liu F, Xing Q R, Hu M L, Li Y F, Wang C L, Chai L, Wang Q Y 2011 Acta Phys. Sin. 60 017806 (in Chinese) [刘丰, 邢岐荣, 胡明列, 栗岩锋, 王昌雷, 柴路, 王清月 2011 物理学报 60 017806]

    [21]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 441 47

    [22]

    Wu S, Wu D, Xu J, Hanada Y, Suganuma R, Wang H, Makimura T, Sugioka K, Midorikawa K 2012 Opt. Express 20 28893

    [23]

    Sirdeshmukh D B, Rao K K 1988 J. Mater. Sci. Lett. 7 567

    [24]

    Brookes C A, O'Neill J B, Redfern B A W 1971 Proc. R. Soc. A: Math. Phys. Eng. Sci. 322 73

    [25]

    Zhao Q Z, Qiu J R, Yang L Y, Jiang X W, Zhao C J, Zhu C S 2003 Chin. Phys. Lett. 20 1858

    [26]

    Yin Q, Wu J, Qian G, Ma X H 2008 Opt. Optoelectron. Technol. 6 25

    [27]

    Kogelnik H 1969 Bell Syst. Tech. J. 48 2909

    [28]

    Nolte S, Momma C, Kamlage G, Ostendorf A, Fallnich C, von Alvensleben F, Welling H 1999 Appl. Phys. A 68 563

    [29]

    Collins A, Rostohar D, Prieto C, Chan Y K, Oconnor G M 2014 Opt. Lasers Eng. 60 18

    [30]

    de Salvo R, Sheik-Bahae M, Said A A, Hagan D J, van Stryland E W 1993 Opt. Lett. 18 194

    [31]

    Shang C, Hsu H 1987 IEEE J. Quantum Electron. 23 177

    [32]

    van Stryland E W, Hagan D J 2009 Self-focusing: Past, Present (Berlin: Springer) p573

    [33]

    Tolk N H, Albridge R G, Barnes A V, Haglund R F, Hudson L T, Mendenhall M H, Russell D P, Sarnthein J, Savundararaj P M, Wang P W 1987 Desorption Induced by Electronic Transitions DIET III, Springer Series in Surface Sciences (Berlin, Heidelberg: Springer Berlin Heidelberg) p284

    [34]

    Burakov I M, Bulgakova N M, Stoian R, Mermillod-Blondin A, Audouard E, Rosenfeld A, Husakou A, Hertel I V 2007 J. Appl. Phys. 101 043506

    [35]

    Keldysh L 1965 Sov. Phys. JETP 20 1307

    [36]

    Chaney R, Lafon E, Lin C 1971 Phys. Rev. B 4 2734

    [37]

    Hamrin K, Johansson G, Gelius U, Nordling C, Siegbahn K 1970 Phys. Scr. 1 277

    [38]

    Li H H 1976 J. Phys. Chem. Ref. Data 5 329

    [39]

    Chichkov B, Momma C, Nolte S, Alvensleben F, Tunnermann A 1996 Appl. Phys. A 63 109

    [40]

    Stuart B, Feit M, Herman S, Rubenchik A, Shore B, Perry M 1996 Phys. Rev. B: Condens. Matter 53 1749

    [41]

    Petite G, Daguzan P, Guizard S, Martin P 1996 Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 107 97

    [42]

    Luque A, Martí A, Antolín E, Tablero C 2006 Phys. B: Condens. Matter 382 320

    [43]

    Eaton S M, Zhang H B, Herman P R, Yoshino F 2005 Opt. Express 13 4708

    [44]

    Douglas T B, Dever J L 1954 J. Am. Chem. Soc. 76 4826

  • [1] Wang Dong-Jie, Zhang Xiao-He, Xia Hai-Ping. Metalloporphyrin bonded SiO2 organic-inorganic materials and their strong nonlinear refractive index. Acta Physica Sinica, 2011, 60(2): 024210. doi: 10.7498/aps.60.024210
    [2] Liu Si-Min, Zhao Hong-E, Guo Ru, Wang Da-Yun, Gao Yuan-Mei, Huang Chun-Fu, Lu Yi.  A new method for measuring the dynamic behavior of the photorefractive nonlinear parameter. Acta Physica Sinica, 2004, 53(6): 1735-1741. doi: 10.7498/aps.53.1735
    [3] Lin Feng, Tan Chao, Zhou Yuan, Fu Xi-Quan. Nonlinear focusing of weak beam by another high power laser. Acta Physica Sinica, 2013, 62(14): 144208. doi: 10.7498/aps.62.144208
    [4] Li Shi-Xiong, Bai Zhong-Chen, Huang Zheng, Zhang Xin, Qin Shui-Jie, Mao Wen-Xue. Study on the machining mechanism of fabrication of micro channels in fused silica substrates by laser-induced plasma. Acta Physica Sinica, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [5] Lü Zhi-Wei, He Wei-Ming, Li Qiang, Ba De-Xin, Hasi Wu-Li-Ji. Influences of optical breakdown on stimulated Brillouin scattering. Acta Physica Sinica, 2005, 54(12): 5654-5658. doi: 10.7498/aps.54.5654
    [6] SHEN YONG-RONG, ZHANG HONG. RADIATIVE TRANSITION AND NONRADIATIVE PROCESS IN ZnS:Ho3+. Acta Physica Sinica, 1986, 35(12): 1574-1581. doi: 10.7498/aps.35.1574
    [7] Li Jie, Xie Lu-You, Dong Chen-Zhong. Effects of relaxation induced by excitation (or ionization) of inner subshell electrons on the wave functions and transition probabilities. Acta Physica Sinica, 2006, 55(2): 655-660. doi: 10.7498/aps.55.655
    [8] Peng Bo-Dong, Song Yan, Sheng Liang, Wang Pei-Wei, Hei Dong-Wei, Zhao Jun, Li Yang, Zhang Mei, Li Kui-Nian. Research on MeV pulsed radiation detection based on refractive index modulaiton. Acta Physica Sinica, 2016, 65(15): 157801. doi: 10.7498/aps.65.157801
    [9] Tan Wen-Jing, An Zhu, Zhu Jing-Jun, Zhao Jian-Ling, Liu Man-Tian. Bremsstrahlung spectra produced by 10-25 keV electron impact on thick W, Au targets. Acta Physica Sinica, 2016, 65(11): 113401. doi: 10.7498/aps.65.113401
    [10] Li Quan-Feng, Yan Hui-Yong, Wei Xi-Ye. Theoretical study on bremsstrahlung of high energy electrons. Acta Physica Sinica, 2009, 58(4): 2313-2319. doi: 10.7498/aps.58.2313
    [11] HE XIAN-TU. THE COLLECTIVE EFFECTS ON THE BREMSSTRAHLUNG IN PLASMA. Acta Physica Sinica, 1981, 30(11): 1415-1422. doi: 10.7498/aps.30.1415
    [12] Liu Shang-Zong, Xie Lu-You, Ding Xiao-Bin, Dong Chen-Zhong. The effect of relativity on the structures and transition properties of Li-like ions. Acta Physica Sinica, 2012, 61(9): 093106. doi: 10.7498/aps.61.093106
    [13] WANG JIAN-GUO, TONG XIAO-MIN, LI JIA-MING. RADIATIVE TRANSITION OF Rb ATOM BETWEEN INITIAL AND FINAL CHANNELS. Acta Physica Sinica, 1996, 45(1): 13-19. doi: 10.7498/aps.45.13
    [14] Liu Hua-Bing, Yuan Li, Li Qiu-Mei, Chen Xiao-Hong, Du Quan, Jin Rong, Chen Xue-Lian, Wang Lin. Theoretical study of the spectra and radiative transition properties of 6Li32S. Acta Physica Sinica, 2016, 65(3): 033101. doi: 10.7498/aps.65.033101
    [15] Qian Xin-Yu, Sun Yan, Liu Dong-Dong, Hu Feng, Fan Qiu-Bo, Gou Bing-Cong. Energy levels and radiative transitions of the core-excited high-spin states in boron atom (ion). Acta Physica Sinica, 2017, 66(12): 123101. doi: 10.7498/aps.66.123101
    [16] Xu Miao-Hua, Liang Tian-Jiao, Zhang Jie. Bremsstrahlung diagnostics of hot electrons in laser-plasma interactions. Acta Physica Sinica, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [17] Shen Xiao-Zhi, Li Ji-Guang, Dong Chen-Zhong, Xie Lu-You, Shi Ying-Long, Yuan Ping. Theoretical research on radiative transition probabilities of 2p4f—2p3d for NⅡ. Acta Physica Sinica, 2007, 56(10): 5715-5722. doi: 10.7498/aps.56.5715
    [18] Wang Jian-Guo, Li Bo-Wen, Jiang Jun, Dong Chen-Zhong, Ding Xiao-Bin. Influence of plasma effect on the energy levels and transition probabilities of hydrogen-like ions. Acta Physica Sinica, 2009, 58(8): 5274-5279. doi: 10.7498/aps.58.5274
    [19] Li Duo-Fang, Cao Tian-Guang, Geng Jin-Peng, Zhan Yong. Damage-repair model for mutagenic effects of plant induced by ionizing radiation. Acta Physica Sinica, 2015, 64(24): 248701. doi: 10.7498/aps.64.248701
    [20] ZHU SHI-YAO, FANG JUN-XIN. THE NONLINEAR AND THERMAL EFFECTS OF REFRACTIVE INDEX OF OPTICAL FIBRE MATERIAL. Acta Physica Sinica, 1986, 35(4): 451-458. doi: 10.7498/aps.35.451
  • Citation:
Metrics
  • Abstract views:  815
  • PDF Downloads:  198
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2015
  • Accepted Date:  27 May 2015
  • Published Online:  05 October 2015

Influence of polarization on irradiating LiF crystal by femtosecond laser

  • 1. School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
  • 2. State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
  • 3. University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2011CB808103) and the National Natural Science Foundation of China (Grant Nos. 61178024, 11374316).

Abstract: The processing morphology of cubic crystal LiF irradiated by femtosecond laser varies with the polarization direction. When the polarization direction is parallel to the crystal orientation 110, the distance between the starting point and the surface is 1.08 times that along 100 polarization, and the distance between the end point and the surface is 1.01 times. While the cubic crystal is irradiated by a femtosecond laser, self-focusing and inverse bremsstrahlung are two probable mechanisms dependent on polarization. In order to investigate the relation between the self-focusing and polarization, in this paper we report the nonlinear refractive index n2 of LiF crystal which is linear with respect to selffocusing coefficient. The Z-scan technique is used to measure the nonlinear refractive indexes at different polarizations. As the polarization direction is rotated from 110 to 100, the nonlinear refractive index decreases, and the self-focusing effect becomes weaker. If self-focusing leads to the dependence of morphology on polarization, the distance between the starting point and the surface for 100 polarization should be longer than that for 110 polarization. However, the experiment exhibits an opposite result that the distance between starting point and the surface for 100 polarization is shorter than that for 110 polarization. Therefore, the processing morphology which changes with polarization is not a consequence of the self-focusing. So in order to understand why the processing morphology varies with polarization, in this paper we present a model which combines inverse bremsstrahlung, avalanche ionization and radiationless transition. We believe that the recombination due to radiationless transition has a great effect on laser machining. The inverse bremsstrahlung coefficient of 110 polarization is less than that of 100 polarization, as a result, the density of free electrons which are produced by inverse bremsstrahlung and avalanche ionization at 110 polarization is less than that at 100 polarization. At first, the laser energy is transferred to the free electrons by inverse bremsstrahlung and avalanche ionization, which is described by the paraxial nonlinear Schrodinger equation and evolution equation of electron density. The density of free electrons is obtained by solving the equations. Then free electrons transfer the energy to the crystal lattice in the process of recombination through radiationless transition, which is depicted by energy conservation and gives the distribution of lattice temperature along the propagation direction. Finally, the area in LiF crystal of which the lattice temperature climbs up to above the melting point is processed. According to the simulation, the distance between the starting point and the surface at 110 polarization is 1.03 times that at 100 polarization, and the distance between the end point and the surface at 110 polarization is 0.981 times that at 100 polarization. These are consistent with the experimental results. Simulation and experimental results demonstrate that the inverse bremsstrahlung, which is dependent on polarization, is the main reason for morphology changing with the polarization of femtosecond laser. These research results may contribute to inducing microstructure in transparent dielectrics through femtosecond laser.

Reference (44)

Catalog

    /

    返回文章
    返回