Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electromagnetic properties of zigzag graphene nanoribbons with single-row line defect

Zhang Hua-Lin Sun Lin Wang Ding

Electromagnetic properties of zigzag graphene nanoribbons with single-row line defect

Zhang Hua-Lin, Sun Lin, Wang Ding
PDF
Get Citation
  • In this paper, electromagnetic properties of the zigzag graphene nanoribbon (ZGNR) with a single-row line defect are studied by using the first-principles method based on the density functional theory. The energy band structures, transmission spectra, spin polarization charge densities, total energies, and Bloch states of the ZGNR are calculated when the line defect is located at different positions inside a ZGNR. It is shown that ZGNRs with and without a line defect at nonmagnetic and ferromagnetic states are metals, but the reasons for it to become different metals are different. At the antiferromagnetic state, the closer to the edge of ZGNR the line defect, the more obvious the influence on electromagnetic properties of ZGNR is. In the process of the defect moving from the symmetrical axis of ZGNR to the edge, the ZGNR has a phase transition from a semiconductor to a half metal, and then to a metal gradually. Although the ZGNR with a line defect close to the central line is a semiconductor, its band gap is smaller than the band gap of perfect ZGNR, owing to the new band introduced by the defects. When the line defect is located nearest to the boundary, the ZGNR is stablest. When the line defect is located next nearest to the boundary, the ZGNR is unstablest. When the line defect is located nearest or next nearest to boundary, the ground state of the ZGNR is a ferromagnetic state. However, if the line defect is located at the symmetric axis of ZGNR (M5) or nearest to the symmetric axis, the ground state would be an antiferromagnetic state. At the antiferromagnetic state, the phase transition of M5 from a semiconductor to a half metal can be achieved by applying an appropriate transverse electric field. Without a transverse electric field, M5 is a semiconductor, and the band structures of up-and down-spin states are both degenerate. With a transverse electric field, band structures of up-and down-spin states near the Fermi level are both split. When the electric field intensity is 2 V/nm, M5 is a half metal. These obtained results are of significance for developing electronic nanodevices based on graphene.
      Corresponding author: Zhang Hua-Lin, zhanghualin0703@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374002), the Aid Program for the Science and Technology Innovation Team in Colleges and Universities of Hunan Province, China, and the Construct Program of the Key Discipline in Hunan Province, China.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Zhang W X, Liu Y X, Tian H, Xu J W, Feng L 2015 Chin. Phys. B 24 076104

    [3]

    Li J, Zhang Z H, Zhang J J, Tian W, Fan Z Q, Deng X Q, Tang G P 2013 Org. Electron. 14 958

    [4]

    Li J, Zhang Z H, Wang D, Zhu Z, Fan Z Q, Tang G P, Deng X Q 2014 Carbon 69 142

    [5]

    Westervelt R M 2008 Science 320 324

    [6]

    Matulis A, Peeters F M 2008 Phys. Rev. B 77 115423

    [7]

    Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804

    [8]

    Xu H, Heinzel T, Zozoulenko I V 2009 Phys. Rev. B 80 045308

    [9]

    Sahu B, Min H, MacDonald A H, Banerjeel S K 2008 Phys. Rev. B 78 045404

    [10]

    Wimmer M, Adagideli I, Berber S, Tomanek D, Richter K 2008 Phys. Rev. Lett. 100 177207

    [11]

    Yao Y X, Wang C Z, Zhang G P, Ji M, Ho K M 2009 J. Phys.: Condens. Matter 21 235501

    [12]

    Son Y, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [13]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 物理学报 62 207101]

    [14]

    Ouyang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 物理学报 58 4132]

    [15]

    Wang Z Y, Hu H F, Gu L, Wang W, Jia J F 2011 Acta Phys. Sin. 60 017102 (in Chinese) [王志勇, 胡慧芳, 顾林, 王巍, 贾金凤 2011 物理学报 60 017102]

    [16]

    Zhang W X, He C, Li T, Gong S B 2015 RSC Adv. 5 33407

    [17]

    Kan M, Zhou J, Sun Q, Wang Q, Kawazoe Y, Jena P 2012 Phys. Rev. B 85 155450

    [18]

    Tang G P, Zhang Z H, Deng X Q, Fan Z Q, Zhu H L 2015 Phys. Chem. Chem. Phys. 17 638

    [19]

    Tang G P, Zhou J C, Zhang Z H, Deng X Q, Fan Z Q 2013 Carbon 60 94

    [20]

    Dai Q Q, Zhu Y F, Jiang Q 2013 J. Phys. Chem. C 117 4791

    [21]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanatechnol. 5 326

    [22]

    Zeng M G, Shen L, Cai Y Q, Sha Z D, Feng Y P 2010 Appl. Phys. Lett. 96 042104

    [23]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765

    [24]

    Zhang Z H, Deng X Q, Tan X Q, Qiu M, Pan J B 2010 Appl. Phys. Lett. 97 183105

    [25]

    Pan J B, Zhang Z H, Deng X Q, Qiu M, Guo C 2011 Appl. Phys. Lett. 98 013503

    [26]

    Pan J B, Zhang Z H, Deng X Q, Qiu M, Guo C 2011 Appl. Phys. Lett. 98 092102

    [27]

    Zhang Z, Zhang J, Kwong G, Li J, Fan Z, Deng X, Tang G 2013 Sci. Rep. 3 2575

    [28]

    Young W S, Marvin L C, Steven G L 2006 Nature 444 347

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Zhang W X, Liu Y X, Tian H, Xu J W, Feng L 2015 Chin. Phys. B 24 076104

    [3]

    Li J, Zhang Z H, Zhang J J, Tian W, Fan Z Q, Deng X Q, Tang G P 2013 Org. Electron. 14 958

    [4]

    Li J, Zhang Z H, Wang D, Zhu Z, Fan Z Q, Tang G P, Deng X Q 2014 Carbon 69 142

    [5]

    Westervelt R M 2008 Science 320 324

    [6]

    Matulis A, Peeters F M 2008 Phys. Rev. B 77 115423

    [7]

    Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804

    [8]

    Xu H, Heinzel T, Zozoulenko I V 2009 Phys. Rev. B 80 045308

    [9]

    Sahu B, Min H, MacDonald A H, Banerjeel S K 2008 Phys. Rev. B 78 045404

    [10]

    Wimmer M, Adagideli I, Berber S, Tomanek D, Richter K 2008 Phys. Rev. Lett. 100 177207

    [11]

    Yao Y X, Wang C Z, Zhang G P, Ji M, Ho K M 2009 J. Phys.: Condens. Matter 21 235501

    [12]

    Son Y, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [13]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 物理学报 62 207101]

    [14]

    Ouyang F P, Xu H, Lin F 2009 Acta Phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 物理学报 58 4132]

    [15]

    Wang Z Y, Hu H F, Gu L, Wang W, Jia J F 2011 Acta Phys. Sin. 60 017102 (in Chinese) [王志勇, 胡慧芳, 顾林, 王巍, 贾金凤 2011 物理学报 60 017102]

    [16]

    Zhang W X, He C, Li T, Gong S B 2015 RSC Adv. 5 33407

    [17]

    Kan M, Zhou J, Sun Q, Wang Q, Kawazoe Y, Jena P 2012 Phys. Rev. B 85 155450

    [18]

    Tang G P, Zhang Z H, Deng X Q, Fan Z Q, Zhu H L 2015 Phys. Chem. Chem. Phys. 17 638

    [19]

    Tang G P, Zhou J C, Zhang Z H, Deng X Q, Fan Z Q 2013 Carbon 60 94

    [20]

    Dai Q Q, Zhu Y F, Jiang Q 2013 J. Phys. Chem. C 117 4791

    [21]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanatechnol. 5 326

    [22]

    Zeng M G, Shen L, Cai Y Q, Sha Z D, Feng Y P 2010 Appl. Phys. Lett. 96 042104

    [23]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765

    [24]

    Zhang Z H, Deng X Q, Tan X Q, Qiu M, Pan J B 2010 Appl. Phys. Lett. 97 183105

    [25]

    Pan J B, Zhang Z H, Deng X Q, Qiu M, Guo C 2011 Appl. Phys. Lett. 98 013503

    [26]

    Pan J B, Zhang Z H, Deng X Q, Qiu M, Guo C 2011 Appl. Phys. Lett. 98 092102

    [27]

    Zhang Z, Zhang J, Kwong G, Li J, Fan Z, Deng X, Tang G 2013 Sci. Rep. 3 2575

    [28]

    Young W S, Marvin L C, Steven G L 2006 Nature 444 347

  • [1] Wang Ding, Zhang Zhen-Hua, Deng Xiao-Qing, Fan Zhi-Qiang. Electrical and magnetic properties of graphene nanoribbons with BN-chain doping. Acta Physica Sinica, 2013, 62(20): 207101. doi: 10.7498/aps.62.207101
    [2] Zhang Hua-Lin, Sun Lin, Han Jia-Ning. Magneto-electronic properties of zigzag graphene nanoribbons doped with triangular boron nitride segment. Acta Physica Sinica, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [3] Hu Hui-Fang, Gu Lin, Wang Wei, Jia Jin-Feng, Wang Zhi-Yong. Electronic and optical properties of zigzag graphene nanoribbon with Stone-Wales defect. Acta Physica Sinica, 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [4] Deng Xiao-Qing, Sun Lin, Li Chun-Xian. Spin transport properties for iron-doped zigzag-graphene nanoribbons interface. Acta Physica Sinica, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [5] Hou Hai-Yan, Yao Hui, Li Zhi-Jian, Nie Yi-Hang. Valley and spin polarization manipulated by electric field in magnetic silicene superlattice. Acta Physica Sinica, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [6] Chen Wei, Chen Run-Feng, Li Yong-Tao, Yu Zhi-Zhou, Xu Ning, Bian Bao-An, Li Xing-Ao, Wang Lian-Hui. Spin-dependent transport properties of a Co-Salophene molecule between graphene nanoribbon electrodes. Acta Physica Sinica, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [7] Li Xiao-Chun, Yi Xiu-Ying, Xiao Qing-Wu, Liang Hong-Yu. Defect states in three-component phononic crystal. Acta Physica Sinica, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
    [8] Tan Chang-Ling, Tan Zhen-Bing, Ma Li, Chen Jun, Yang Fan, Qu Fan-Ming, Liu Guang-Tong, Yang Hai-Fang, Yang Chang-Li, Lü Li. Quantum chaos in graphene nanoribbon quantum dot. Acta Physica Sinica, 2009, 58(8): 5726-5729. doi: 10.7498/aps.58.5726
    [9] Zeng Yong-Chang, Tian Wen, Zhang Zhen-Hua. Electronic properties of graphene nanoribbons with periodical nanoholes passivated by oxygen. Acta Physica Sinica, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [10] Zhang Jia-Hong, Gu Fang, Gu Bin, Yang Li-Juan. Molecular dynamics simulation of resonance properties of strain graphene nanoribbons. Acta Physica Sinica, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [11] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [12] Yang Ping, Wang Xiao-Liang, Li Pei, Wang Huang, Zhang Li-Qiang, Xie Fang-Wei. The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics. Acta Physica Sinica, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [13] Liu Yuan, Yao Jie, Chen Chi, Miao Ling, Jiang Jian-Jun. First-principles study on the piezoelectric properties of hydrogen modified graphene nanoribbons. Acta Physica Sinica, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [14] Jin Feng, Zhang Zhen-Hua, Wang Cheng-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Twisting effects on energy band structures and transmission behaviors of graphene nanoribbons. Acta Physica Sinica, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [15] Li Jun, Zhang Zhen-Hua, Wang Chen-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Rolling effects on electronic characteristics for graphene nanoribbons. Acta Physica Sinica, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [16] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [17] Chen Ling-Xiu, Wang Hui-Shan, Jiang Cheng-Xin, Chen Chen, Wang Hao-Min. Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride. Acta Physica Sinica, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [18] Hu Xiao-Ying, Tao Qiang, Zhu Pin-Wen. Electronic structure of zigzag graphene nanoribbin terminated by hydroxyl. Acta Physica Sinica, 2011, 60(9): 097301. doi: 10.7498/aps.60.097301
    [19] Han Jia-Ning, Fan Zhi-Qiang, Zhang Zhen-Hua. Structure stability, magneto-electronic properties, and modulation effects of Fe3GeTe2 nanoribbons. Acta Physica Sinica, 2019, 68(20): 208502. doi: 10.7498/aps.68.20191103
    [20] Cao Yong-Jun, Jiang Xin. Characteristics and applications of line defect modes in two-dimensional magnonic crystals. Acta Physica Sinica, 2013, 62(8): 087501. doi: 10.7498/aps.62.087501
  • Citation:
Metrics
  • Abstract views:  369
  • PDF Downloads:  225
  • Cited By: 0
Publishing process
  • Received Date:  08 August 2015
  • Accepted Date:  17 September 2015
  • Published Online:  05 January 2016

Electromagnetic properties of zigzag graphene nanoribbons with single-row line defect

    Corresponding author: Zhang Hua-Lin, zhanghualin0703@126.com
  • 1. School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11374002), the Aid Program for the Science and Technology Innovation Team in Colleges and Universities of Hunan Province, China, and the Construct Program of the Key Discipline in Hunan Province, China.

Abstract: In this paper, electromagnetic properties of the zigzag graphene nanoribbon (ZGNR) with a single-row line defect are studied by using the first-principles method based on the density functional theory. The energy band structures, transmission spectra, spin polarization charge densities, total energies, and Bloch states of the ZGNR are calculated when the line defect is located at different positions inside a ZGNR. It is shown that ZGNRs with and without a line defect at nonmagnetic and ferromagnetic states are metals, but the reasons for it to become different metals are different. At the antiferromagnetic state, the closer to the edge of ZGNR the line defect, the more obvious the influence on electromagnetic properties of ZGNR is. In the process of the defect moving from the symmetrical axis of ZGNR to the edge, the ZGNR has a phase transition from a semiconductor to a half metal, and then to a metal gradually. Although the ZGNR with a line defect close to the central line is a semiconductor, its band gap is smaller than the band gap of perfect ZGNR, owing to the new band introduced by the defects. When the line defect is located nearest to the boundary, the ZGNR is stablest. When the line defect is located next nearest to the boundary, the ZGNR is unstablest. When the line defect is located nearest or next nearest to boundary, the ground state of the ZGNR is a ferromagnetic state. However, if the line defect is located at the symmetric axis of ZGNR (M5) or nearest to the symmetric axis, the ground state would be an antiferromagnetic state. At the antiferromagnetic state, the phase transition of M5 from a semiconductor to a half metal can be achieved by applying an appropriate transverse electric field. Without a transverse electric field, M5 is a semiconductor, and the band structures of up-and down-spin states are both degenerate. With a transverse electric field, band structures of up-and down-spin states near the Fermi level are both split. When the electric field intensity is 2 V/nm, M5 is a half metal. These obtained results are of significance for developing electronic nanodevices based on graphene.

Reference (28)

Catalog

    /

    返回文章
    返回