Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress of room temperature magnetic refrigeration technology

Li Zhen-Xing Li Ke Shen Jun Dai Wei Gao Xin-Qiang Guo Xiao-Hui Gong Mao-Qiong

Progress of room temperature magnetic refrigeration technology

Li Zhen-Xing, Li Ke, Shen Jun, Dai Wei, Gao Xin-Qiang, Guo Xiao-Hui, Gong Mao-Qiong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • refrigeration technology. It has been considered as one of promising alternatives to traditional vapor compression refrigeration technology. Magnetic refrigeration, in which solid magnetic materials instead of gaseous refrigerants are used, is based on the magnetocaloric effect. When magnetocaloric material moves in or out of magnetic field, it releases heat due to magnetization or absorbs heat due to demagnetization, respectively. In this paper, magnetocaloric effects (MCEs) and basic thermodynamic cycles are briefly described at first. Some typical magnetic refrigeration cycles are introduced from the viewpoint of thermodynamics, which include hybrid cycle, cycle based on the active magnetic regenerator and cycle based on the active magnetic regenerator coupled with gas regenerative refrigeration. Specifically, magnetic refrigeration cycle based on the active magnetic regenerator (AMR) coupled with gas regenerative refrigeration is a novel idea that combines the magnetocaloric effect with the regenerative gas expansion refrigeration. And it has been under the way to try to achieve greater refrigeration performance of the coupled refrigerator in the research institutions. Thereafter, the paper reviews the existing different numerical models of AMR refrigerator. Analyzing and optimizing an AMR magnetic refrigerator are typical complicated multi-physics problems, which include heat transfer, fluid dynamics and magnetics. The majority of models published are based on one-dimensional simplification, which requires shorter computation time and lower computation resources. Because a one-dimensional model idealizes many factors important for the system performance, two- or three- dimensional numerical models have been setup. Besides, some key items for the model are described in detail, such as magnetocaloric effect, thermal conduction, thermal losses, demagnetizing effect and magnetic hysteresis. Considering the accuracy, convergence and computation time, it is quite vital for numerical models to choose some influential factors reasonably. Then, the recent typical room magnetic refrigeration systems are listed and grouped into four types, i.e., reciprocating-magnet type, reciprocating-regenerator type, rotary-magnet type, and rotaryregenerators type. Different characteristics of these four types are compared. Reciprocating magnetic refrigerators have the advantages of simple construction and max magnetic field intensity difference. Rotary magnetic refrigerator due to compact construction, higher operational frequency and better performance is deemed as a more promising type, in the progress of magnetic refrigeration technology. Meanwhile there are still some key challenges in the practical implementation of magnetic refrigeration technology, such as the development and preparation technologies of high-performance MCE materials, powerful magnetic circuit system and flowing condition. Finally, possible applications are discussed and the tendency of future development is given.
      Corresponding author: Shen Jun, jshen@mail.ipc.ac.cn;cryodw@mail.ipc.ac.cn ; Dai Wei, jshen@mail.ipc.ac.cn;cryodw@mail.ipc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51322605, 51676198).
    [1]

    Brown J S, Domanski P A 2014 Appl. Therm. Eng. 64 252

    [2]

    Sari O, Balli M 2013 Int. J. Refrig. 37 8

    [3]

    Qian S, Alabdulkarem A, Ling J, Muehlbauer J, Hwang Y, Radermacher R, Takeuchib I 2015 Int. J. Refrig. 57 62

    [4]

    Kitanovski A, Tušek J, Tomc U, Plaznik U, Ožbolt M, Poredoš A 2015 Magnetocaloric Energy Conversion (vol. preface) (Switzerland: Springer International Publishing Switzerland) pviii

    [5]

    Aprea C, Greco A, Maiorino A, Masselli C 2015 J. Phys.: Conf. Ser. 655 012026

    [6]

    Yu B, Liu M, Egolf P W, Kitanovski A 2010 Int. J. Refrig. 33 1029

    [7]

    Warburg E 1881 Ann. Phys. 13 141

    [8]

    Giauque W F 1927 J. Am. Cher. Soc. 49 1864

    [9]

    Brown G V 1976 J. Appl. Phys. 47 3673

    [10]

    Steyert W A 1978 J. Appl. Phys. 49 1216

    [11]

    Barclay J A, Steyert W A U.S. Patent 4 332 135 [1982-06-01]

    [12]

    You Y, Guo Y, Xiao S, Yu S, Ji H, Luo X 2016 J. Magn. Magn. Mater. 405 231

    [13]

    Trevizoli P V, Lozano J A, Peixer G F, Barbosa J R 2015 J. Magn. Magn. Mater. 395 109

    [14]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [15]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675

    [16]

    Brck E, Tegus O, Li X W, de Boer F R, Buschow K H J 2003 Physica B 327 431

    [17]

    Lei T, Nielsen K K, Engelbrecht K, Bahl C R H, Bez H N, Veje C T 2015 J. Appl. Phys. 118 014903

    [18]

    Monfared B, Palm B 2015 Int. J. Refrig. 57 103

    [19]

    Scarpa F, Tagliafico G, Tagliafico L A 2012 Int. J. Refrig. 35 453

    [20]

    Scarpa F, Tagliafico G, Tagliafico L A 2015 Renew. Sust. Energ. Rev. 50 497

    [21]

    Bisio G, Rubatto G, Schiapparelli P 1999 Energ. Convers. Manage. 40 1267

    [22]

    Pecharsky V K, Gschneeidner Jr K A 1999 J. Magn. Magn. Mater. 200 44

    [23]

    Lin G, Tegus O, Zhang L, Brck E 2004 Physica B 344 147

    [24]

    Sasso C P, Basso V, Lobue M, Bertotti G 2006 Physica B 372 9

    [25]

    Xu Z, Guo J, Lin G, Chen J 2016 J. Magn. Magn. Mater. 409 71

    [26]

    Plaznik U, Tušek J, Kitanovski A, Poredoš A 2013 Appl. Therm. Eng. 59 52

    [27]

    Kitanovski A, Plaznik U, Tušek J, Poredoš A 2014 Int. J. Refrig. 37 28

    [28]

    Kirol L D, Dacus M W 1988 Rotary Recuperative Magnetic Heat Pump (Vol. 33) (New York: Springer US) p757

    [29]

    Kitanovski A, Egolf P W 2006 Int. J. Refrig. 29 3

    [30]

    Gómez J R, Garcia R F, Catoira A D M, Gómez M R 2013 Renew. Sust. Energ. Rev. 17 74

    [31]

    Wu J F, Shen J, Dai W, Gong M Q, Shen B G 2013 China Patent ZL 201010622884.6 [2010-12-29]

    [32]

    Zhang H, Shen J, Gong M Q, Wu J F 2010 J. Appl. Phys. 107 09A937

    [33]

    He X N, Gong M Q, Zhang H, Dai W, Shen J, Wu J F 2013 Int. J. Refrig. 36 1465

    [34]

    He X N, Gong M Q, Zhang H, Dai W, Shen J, Wu J F 2013 The 5th International Conference on Cyogenics and Refrigeration Hangzhou, China, April 6-9, 2013

    [35]

    Nielsen K K, Tusek J, Engelbrecht K, Schopfer S, Kitanovski A, Bahl C R H, Smith A, Pryds N, Poredos A 2011 Int. J. Refrig. 34 603

    [36]

    Trevizoli P V, Nakashima A T, Barbosa J R 2016 Int. J. Refrig. 72 206

    [37]

    Nielsen K K, Engelbrecht K 2012 J. Phys. D: Appl. Phys. 45 145001

    [38]

    Roudaut J, Kedous-Lebouc A, Yonnet J P, Muller C 2011 Int. J. Refrig. 34 1797

    [39]

    Engelbrecht K, Tušek J, Nielsen K K, Kitanovski A, Bahl C R H, Poredoš A 2013 J. Phys. D: Appl. Phys. 46 255002

    [40]

    Vuarnoz D, Kawanmi T 2012 Fifth ⅡF-ⅡR International Conference on Magnetic Refrigeration at Room Temperature, Thermag V Grenoble, France, September 17-20, 2012 p493

    [41]

    Tagliafico G, Scarpa F, Tagliafico L A 2012 Stroj. Vestnj. Mech. E 58 9

    [42]

    Dikeos J, Rowe A 2013 Int. J. Refrig. 36 921

    [43]

    Lei T, Nielsen K K, Engelbrecht K 2014 12th Biennial Conference on Engineering Systems Design and Analysis AMES, US, June 25-27, 2014 pV003T12A007

    [44]

    Yu B F, Gao Q, Zhang B, Meng X Z, Chen Z 2003 Int. J. Refrig. 26 622

    [45]

    Gschneidner Jr K A, Pecharsky V K 2008 Int. J. Refrig. 31 945

    [46]

    Gómez J R, Garcia R F, Carril J C, Gómez M 2013 Renew. Sust. Energ. Rev. 2 1

    [47]

    Yayama H, Hatta Y, Makimoto Y, Tomokiyo A 2000 Jpn. J. Appl. Phys. 39 4220

    [48]

    Nellis G F 1997 Ph. D. Dissipation (Massachusetts: Massachusetts Institute of Technology)

    [49]

    Kim Y, Park I, Jeong S 2013 Cryogenics 57 113

    [50]

    Zhang H, Gong M Q, Sun Z H, Wu J F 2009 Cryog. 2 1 (in Chinese) [张弘, 公茂琼, 孙兆虎, 吴剑峰 2009 低温工程 2 1]

    [51]

    He X N, Gong M Q, Zhang H, Shen J, Dai W, Wu J F 2013 J. Eng. Therm. 34 1997 (in Chinese) [和晓楠, 公茂琼, 张弘, 沈俊, 戴巍, 吴剑锋 2013 工程热物理学报 34 1997]

    [52]

    He X N, Gong M Q, Zhang H, Shen J, Dai W, Wu J F 2013 Cryog. Supercond. 41 13 (in Chinese) [和晓楠, 公茂琼, 张弘, 沈俊, 吴剑锋 2013 低温与超导 41 13]

    [53]

    Nielsen K K, Smith A, Bahl C R H, Olsen U L 2012 J. Appl. Phys. 112 094905

    [54]

    Jaka T, Kitanovski A, Alojz P 2013 Int. J. Refrig. 36 1456

    [55]

    Jaka T, Andrej K, Ivan P, Alojz P 2011 Int. J. Refrig. 34 1507

    [56]

    Vuarnoz D, Kawanami T 2012 Appl. Therm. Eng. 37 388

    [57]

    Kim Y, Jeong S 2011 Int. J. Refrig. 34 204

    [58]

    Oliveira P A, Trevizoli P V, Barbosa J R, Prata A T 2012 Int. J. Refrig. 35 98

    [59]

    Plaznik U, Tušek J, Kitanoski A, Poredoš A 2013 Appl. Therm. Eng. 59 52

    [60]

    Lozano J A, Engelbrecht K, Bahl C R H, Nielsen K K, Eriksen D, Olsen U L, Barbosa Jr J R, Smith A, Prata T, Pryds N 2013 . Appl. Energ. 111 669

    [61]

    Aprea C, Greco A, Maiorino A, Aprea C 2013 Energ. Convers. Manage. 70 40

    [62]

    Tagliafico G, Scarpa F, Tagliafico L A 2013 Int. J. Refrig 36 941

    [63]

    Burdyny T, Ruebsaat-Trott A, Rowe A. 2014 Int. J. Refrig. 37 51

    [64]

    Vuarnoz D, Kawanami T 2014 13th International Conference on Sustainable Energy Technologies Geneva, August 25-28, 2014 40075

    [65]

    Nikkola P, Mahmed C, Balli M, Sari O 2014 Int. J. Refrig. 37 43

    [66]

    Brey W, Nellis G, Klein S 2014 Int. J. Refrig. 47 85

    [67]

    Lionte S, Vasile C, Siroux M 2015 Appl. Therm. Eng. 75 871

    [68]

    Gao X Q, Shen J, He X N, Tang C C, Dai W, Li K, Gong M Q, Wu J F 2015 Acta Phys. Sin. 64 210201 (in Chinese) [高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑锋 2015 物理学报 64 210201]

    [69]

    Aprea C, Cardillo G, Greco A, Maiorino A, Masselli C 2015 Appl. Therm. Eng. 90 376

    [70]

    Torregrosa-Jaime B, Corberán J M, Payá J, Engelbrecht K 2015 Int. J. Refrig. 58 121

    [71]

    You Y, Yu S, Tian Y, Luo X, Huang S 2016 Int. J. Refrig. 65 238

    [72]

    Niknia I, Campbell O, Christiaanse T V, Govindappa P, Teyber R, Trevizoli P V, Rowe A 2016 Appl. Therm. Eng. 106 601

    [73]

    Kamran M S, Sun J, Tang Y B, Chen Y G, Wu J H, Wang H S 2016 Appl. Therm. Eng. 102 1126

    [74]

    Sarlah A, Poredos A 2005 First International Conference on Magnetic Refrigeration at Room Temperature Montreux, Switzerland, September 28-30, 2005 p283

    [75]

    Petersen T F, Engelbrecht K, Bahl C R H, Elmegaard B, Pryds N, Smith A. 2008 J. Phys. D: Appl. Phys. 41 105002

    [76]

    Bouchard J, Nesreddine H, Galanis N 2009 Int. J. Heat Mass Tran. 52 1223

    [77]

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese) [郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 2016 物理学报 65 217502]

    [78]

    Shir F, Torre E D, Bennett L H, Mavriplis C 2004 IEEE T. Magn. 40 2098

    [79]

    Tušek J, Zupan S, Šarlah A, Prebil I, Poredoš A 2010 Int. J. Refrig. 33 294

    [80]

    Peksoy O, Rowe A 2004 J. Magn. Magn. Mater. 288 424

    [81]

    Brown T D, Bruno N M, Chen J H, Karaman I, Ross J H, Shamberger P J 2015 JOM 67 2123

    [82]

    Basso V, Sasso C P, Bertotti G, Lobue M 2006 Int. J. Refrig. 29 1358

    [83]

    Moos L V, Nielsen K K, Engelbrecht K, Bahl C R H 2014 Int. J. Refrig. 37 303

    [84]

    Moos L V, Bahl C R H, Nielsen K K, Engelbrecht K, Kpferling M, Basso V 2014 Physica B 435 144

    [85]

    Chen Y F, Chen Y G, Teng B H, Tang Y B, Fu H, Tang D X, Tu M J 2001 Cryogenics 2 57 (in Chinese) [陈远富, 陈云贵, 滕保华, 唐永柏, 付浩, 唐定骧, 涂铭旌 2001 低温工程 2 57]

    [86]

    Bjørk R, Nielsen K K, Bahl C R H, Smith A, Wulff A C 2016 Aip. Adv. 6 056205

    [87]

    Yao G H, Gong M Q, Wu J F 2006 Int. J. Refrig. 29 1267

    [88]

    Okamura T, Yamada K, Hirano N, Nagaya S 2006 Int. J. Refrig. 29 1327

    [89]

    Huang J H, Liu J R, Jin P Y, Yan H W, Qiu J F, Xu L Z, Zhang J X 2006 Rare Metals 25 641

    [90]

    Zimm C, Boeder A, Chell J, Sternberg A, Fujita A, Fujieda S, Fukamichi K 2006 Int. J. Refrig. 29 1302

    [91]

    Gao Q, Yu B F, Wang C F, Zhang B, Yang D X, Zhang Y 2006 Int. J. Refrig. 29 1274

    [92]

    Kim Y, Jeong S 2010 AIP Conference Proceedings 1218 87

    [93]

    Trevizoli P V, Barbosa J R, Ferreira R T S 2011 Int. J. Refrig. 34 1518

    [94]

    Tura A, Rowe A 2011 Int. J. Refrig. 34 628

    [95]

    Balli M, Sari O, Mahmed C, Bonhote P, Duc D, Forchelet J 2012 Appl. Ener. 98 556

    [96]

    Zhang H, He X N, Shen J, Gong M Q, Wu J F 2013 J. Eng. Therm. 1 58 (in Chinese) [张弘, 和晓楠, 沈俊, 公茂琼, 吴剑峰 2013 工程热物理学报 1 58]

    [97]

    Park I, Kim Y, Jeong S 2013 Int. J. Refrig. 36 1741

    [98]

    Gómez J R, Garcia R F, Carril J C, Gómez M R 2013 Int. J. Refrig. 36 1388

    [99]

    Tagliafico L A, Scarpa F, Valsuani F, Tagliafico G 2013 Appl. Therm. Eng. 52 492

    [100]

    Gatti J M, Muller C, Vasile C, Brμmpter G, Haegel P, Lorkin T 2014 Int. J. Refrig. 37 165

    [101]

    Bahl C R H, Engelbrecht K, Eriksen D, Lozano J A, Bjørk R, Geyti J, Nielsen K K, Smitha A, Prydsa N 2014 Int. J. Refrig. 37 78

    [102]

    Tušek J, Kitanovski A, Zupan S, Prebil I, Poredoš A 2013 Appl. Therm. Eng. 53 57

    [103]

    Jacobs S, Auringer J, Boeder A, Komorowski L, Leonard J 2014 Int. J. Refrig. 37 84

    [104]

    Arnold D S, Tura A, Ruebsaat-Trott A, Rowe A 2014 Int. J. Refrig. 37 99

    [105]

    Legait U, Guillou F, Kedous-Lebouc A, Hardy V, Almanza M 2014 Int. J. Refrig. 37 147

    [106]

    Czernuszewicz A, Kaleta J, Królewicz M, Lewandowski D, Mech R, Wiewiórski P 2014 Int. J. Refrig. 37 72

    [107]

    Aprea C, Greco A, Maiorino A, Mastrullo R, Tura A 2014 Int. J. Refrig. 43 111

    [108]

    Eriksen D, Engelbrecht K, Bahl C R H, Bjørk R, Nielsen K K, Insinga A R 2015 Int. J. Refrig. 58 14

    [109]

    Lee J S 2015 J. Mech. Sci. Technol. 29 2237

    [110]

    Jawad M A M, Mohammad W S, Mortada T K 2015 Int. J. Appl. Innov. Eng. Manag. 4 6

    [111]

    Gao X Q, Shen J, He X N, Tang C C, Li K, Dai W, Li Z X, Jia J C, Gong M Q, Wu J F 2016 Int. J. Refrig. 67 330

    [112]

    Velázquez D, Estepa C, Palacios E, Burriel R 2015 Int. J. Refrig. 63 14

    [113]

    Lozano J A, Capovilla M S, Trevizoli P V, Engelbrecht K, Bahl C R H, Barbosa J R 2016 Int. J. Refrig. 68 187

    [114]

    Ghahremani M, Aslani A, Siddique A, Bennett L H, Torre E D 2016 Aip. Adv. 6 075221

    [115]

    Aprea C, Greco A, Maiorino A, Masselli C 2015 Int. J. Refrig. 6 1

    [116]

    Saito A T, Kobayashi T, Kaji S, Li J, Nakagome H 2016 Int. J. Environ. Sci. De 7 316

    [117]

    Chen Y G, Tang Y B, Wang B M, Xue Q X, Tu M J 2007 Second International Conference on Magnetic Refrigeration at Room Temperature Portorz, Solovenia, April 11-13, 2007 p309

    [118]

    Moore J, Klemm D, Lindackers D, Grasemann S, Träger R, Eckert J, Löber L, Scudino S, Katter M, Barcza A 2013 J. Appl. Phys. 114 043907

    [119]

    Zhou B 2014 M. S. Thesis (Beijing: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) (in Chinese) [周贝 2014 硕士学位论文(北京: 中国科学院理化技术研究所)]

    [120]

    Zhang H, Sun Y J, Niu E, Hu F X, Sun J R, Shen B G 2014 Appl. Phys. Lett. 104 062407

    [121]

    Jia J C 2016 M. S. Thesis (Beijing: University of Science & Technology Beijing) (in Chinese) [贾际琛 2016 硕士学位论文(北京: 北京科技大学)]

  • [1]

    Brown J S, Domanski P A 2014 Appl. Therm. Eng. 64 252

    [2]

    Sari O, Balli M 2013 Int. J. Refrig. 37 8

    [3]

    Qian S, Alabdulkarem A, Ling J, Muehlbauer J, Hwang Y, Radermacher R, Takeuchib I 2015 Int. J. Refrig. 57 62

    [4]

    Kitanovski A, Tušek J, Tomc U, Plaznik U, Ožbolt M, Poredoš A 2015 Magnetocaloric Energy Conversion (vol. preface) (Switzerland: Springer International Publishing Switzerland) pviii

    [5]

    Aprea C, Greco A, Maiorino A, Masselli C 2015 J. Phys.: Conf. Ser. 655 012026

    [6]

    Yu B, Liu M, Egolf P W, Kitanovski A 2010 Int. J. Refrig. 33 1029

    [7]

    Warburg E 1881 Ann. Phys. 13 141

    [8]

    Giauque W F 1927 J. Am. Cher. Soc. 49 1864

    [9]

    Brown G V 1976 J. Appl. Phys. 47 3673

    [10]

    Steyert W A 1978 J. Appl. Phys. 49 1216

    [11]

    Barclay J A, Steyert W A U.S. Patent 4 332 135 [1982-06-01]

    [12]

    You Y, Guo Y, Xiao S, Yu S, Ji H, Luo X 2016 J. Magn. Magn. Mater. 405 231

    [13]

    Trevizoli P V, Lozano J A, Peixer G F, Barbosa J R 2015 J. Magn. Magn. Mater. 395 109

    [14]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [15]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675

    [16]

    Brck E, Tegus O, Li X W, de Boer F R, Buschow K H J 2003 Physica B 327 431

    [17]

    Lei T, Nielsen K K, Engelbrecht K, Bahl C R H, Bez H N, Veje C T 2015 J. Appl. Phys. 118 014903

    [18]

    Monfared B, Palm B 2015 Int. J. Refrig. 57 103

    [19]

    Scarpa F, Tagliafico G, Tagliafico L A 2012 Int. J. Refrig. 35 453

    [20]

    Scarpa F, Tagliafico G, Tagliafico L A 2015 Renew. Sust. Energ. Rev. 50 497

    [21]

    Bisio G, Rubatto G, Schiapparelli P 1999 Energ. Convers. Manage. 40 1267

    [22]

    Pecharsky V K, Gschneeidner Jr K A 1999 J. Magn. Magn. Mater. 200 44

    [23]

    Lin G, Tegus O, Zhang L, Brck E 2004 Physica B 344 147

    [24]

    Sasso C P, Basso V, Lobue M, Bertotti G 2006 Physica B 372 9

    [25]

    Xu Z, Guo J, Lin G, Chen J 2016 J. Magn. Magn. Mater. 409 71

    [26]

    Plaznik U, Tušek J, Kitanovski A, Poredoš A 2013 Appl. Therm. Eng. 59 52

    [27]

    Kitanovski A, Plaznik U, Tušek J, Poredoš A 2014 Int. J. Refrig. 37 28

    [28]

    Kirol L D, Dacus M W 1988 Rotary Recuperative Magnetic Heat Pump (Vol. 33) (New York: Springer US) p757

    [29]

    Kitanovski A, Egolf P W 2006 Int. J. Refrig. 29 3

    [30]

    Gómez J R, Garcia R F, Catoira A D M, Gómez M R 2013 Renew. Sust. Energ. Rev. 17 74

    [31]

    Wu J F, Shen J, Dai W, Gong M Q, Shen B G 2013 China Patent ZL 201010622884.6 [2010-12-29]

    [32]

    Zhang H, Shen J, Gong M Q, Wu J F 2010 J. Appl. Phys. 107 09A937

    [33]

    He X N, Gong M Q, Zhang H, Dai W, Shen J, Wu J F 2013 Int. J. Refrig. 36 1465

    [34]

    He X N, Gong M Q, Zhang H, Dai W, Shen J, Wu J F 2013 The 5th International Conference on Cyogenics and Refrigeration Hangzhou, China, April 6-9, 2013

    [35]

    Nielsen K K, Tusek J, Engelbrecht K, Schopfer S, Kitanovski A, Bahl C R H, Smith A, Pryds N, Poredos A 2011 Int. J. Refrig. 34 603

    [36]

    Trevizoli P V, Nakashima A T, Barbosa J R 2016 Int. J. Refrig. 72 206

    [37]

    Nielsen K K, Engelbrecht K 2012 J. Phys. D: Appl. Phys. 45 145001

    [38]

    Roudaut J, Kedous-Lebouc A, Yonnet J P, Muller C 2011 Int. J. Refrig. 34 1797

    [39]

    Engelbrecht K, Tušek J, Nielsen K K, Kitanovski A, Bahl C R H, Poredoš A 2013 J. Phys. D: Appl. Phys. 46 255002

    [40]

    Vuarnoz D, Kawanmi T 2012 Fifth ⅡF-ⅡR International Conference on Magnetic Refrigeration at Room Temperature, Thermag V Grenoble, France, September 17-20, 2012 p493

    [41]

    Tagliafico G, Scarpa F, Tagliafico L A 2012 Stroj. Vestnj. Mech. E 58 9

    [42]

    Dikeos J, Rowe A 2013 Int. J. Refrig. 36 921

    [43]

    Lei T, Nielsen K K, Engelbrecht K 2014 12th Biennial Conference on Engineering Systems Design and Analysis AMES, US, June 25-27, 2014 pV003T12A007

    [44]

    Yu B F, Gao Q, Zhang B, Meng X Z, Chen Z 2003 Int. J. Refrig. 26 622

    [45]

    Gschneidner Jr K A, Pecharsky V K 2008 Int. J. Refrig. 31 945

    [46]

    Gómez J R, Garcia R F, Carril J C, Gómez M 2013 Renew. Sust. Energ. Rev. 2 1

    [47]

    Yayama H, Hatta Y, Makimoto Y, Tomokiyo A 2000 Jpn. J. Appl. Phys. 39 4220

    [48]

    Nellis G F 1997 Ph. D. Dissipation (Massachusetts: Massachusetts Institute of Technology)

    [49]

    Kim Y, Park I, Jeong S 2013 Cryogenics 57 113

    [50]

    Zhang H, Gong M Q, Sun Z H, Wu J F 2009 Cryog. 2 1 (in Chinese) [张弘, 公茂琼, 孙兆虎, 吴剑峰 2009 低温工程 2 1]

    [51]

    He X N, Gong M Q, Zhang H, Shen J, Dai W, Wu J F 2013 J. Eng. Therm. 34 1997 (in Chinese) [和晓楠, 公茂琼, 张弘, 沈俊, 戴巍, 吴剑锋 2013 工程热物理学报 34 1997]

    [52]

    He X N, Gong M Q, Zhang H, Shen J, Dai W, Wu J F 2013 Cryog. Supercond. 41 13 (in Chinese) [和晓楠, 公茂琼, 张弘, 沈俊, 吴剑锋 2013 低温与超导 41 13]

    [53]

    Nielsen K K, Smith A, Bahl C R H, Olsen U L 2012 J. Appl. Phys. 112 094905

    [54]

    Jaka T, Kitanovski A, Alojz P 2013 Int. J. Refrig. 36 1456

    [55]

    Jaka T, Andrej K, Ivan P, Alojz P 2011 Int. J. Refrig. 34 1507

    [56]

    Vuarnoz D, Kawanami T 2012 Appl. Therm. Eng. 37 388

    [57]

    Kim Y, Jeong S 2011 Int. J. Refrig. 34 204

    [58]

    Oliveira P A, Trevizoli P V, Barbosa J R, Prata A T 2012 Int. J. Refrig. 35 98

    [59]

    Plaznik U, Tušek J, Kitanoski A, Poredoš A 2013 Appl. Therm. Eng. 59 52

    [60]

    Lozano J A, Engelbrecht K, Bahl C R H, Nielsen K K, Eriksen D, Olsen U L, Barbosa Jr J R, Smith A, Prata T, Pryds N 2013 . Appl. Energ. 111 669

    [61]

    Aprea C, Greco A, Maiorino A, Aprea C 2013 Energ. Convers. Manage. 70 40

    [62]

    Tagliafico G, Scarpa F, Tagliafico L A 2013 Int. J. Refrig 36 941

    [63]

    Burdyny T, Ruebsaat-Trott A, Rowe A. 2014 Int. J. Refrig. 37 51

    [64]

    Vuarnoz D, Kawanami T 2014 13th International Conference on Sustainable Energy Technologies Geneva, August 25-28, 2014 40075

    [65]

    Nikkola P, Mahmed C, Balli M, Sari O 2014 Int. J. Refrig. 37 43

    [66]

    Brey W, Nellis G, Klein S 2014 Int. J. Refrig. 47 85

    [67]

    Lionte S, Vasile C, Siroux M 2015 Appl. Therm. Eng. 75 871

    [68]

    Gao X Q, Shen J, He X N, Tang C C, Dai W, Li K, Gong M Q, Wu J F 2015 Acta Phys. Sin. 64 210201 (in Chinese) [高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑锋 2015 物理学报 64 210201]

    [69]

    Aprea C, Cardillo G, Greco A, Maiorino A, Masselli C 2015 Appl. Therm. Eng. 90 376

    [70]

    Torregrosa-Jaime B, Corberán J M, Payá J, Engelbrecht K 2015 Int. J. Refrig. 58 121

    [71]

    You Y, Yu S, Tian Y, Luo X, Huang S 2016 Int. J. Refrig. 65 238

    [72]

    Niknia I, Campbell O, Christiaanse T V, Govindappa P, Teyber R, Trevizoli P V, Rowe A 2016 Appl. Therm. Eng. 106 601

    [73]

    Kamran M S, Sun J, Tang Y B, Chen Y G, Wu J H, Wang H S 2016 Appl. Therm. Eng. 102 1126

    [74]

    Sarlah A, Poredos A 2005 First International Conference on Magnetic Refrigeration at Room Temperature Montreux, Switzerland, September 28-30, 2005 p283

    [75]

    Petersen T F, Engelbrecht K, Bahl C R H, Elmegaard B, Pryds N, Smith A. 2008 J. Phys. D: Appl. Phys. 41 105002

    [76]

    Bouchard J, Nesreddine H, Galanis N 2009 Int. J. Heat Mass Tran. 52 1223

    [77]

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese) [郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 2016 物理学报 65 217502]

    [78]

    Shir F, Torre E D, Bennett L H, Mavriplis C 2004 IEEE T. Magn. 40 2098

    [79]

    Tušek J, Zupan S, Šarlah A, Prebil I, Poredoš A 2010 Int. J. Refrig. 33 294

    [80]

    Peksoy O, Rowe A 2004 J. Magn. Magn. Mater. 288 424

    [81]

    Brown T D, Bruno N M, Chen J H, Karaman I, Ross J H, Shamberger P J 2015 JOM 67 2123

    [82]

    Basso V, Sasso C P, Bertotti G, Lobue M 2006 Int. J. Refrig. 29 1358

    [83]

    Moos L V, Nielsen K K, Engelbrecht K, Bahl C R H 2014 Int. J. Refrig. 37 303

    [84]

    Moos L V, Bahl C R H, Nielsen K K, Engelbrecht K, Kpferling M, Basso V 2014 Physica B 435 144

    [85]

    Chen Y F, Chen Y G, Teng B H, Tang Y B, Fu H, Tang D X, Tu M J 2001 Cryogenics 2 57 (in Chinese) [陈远富, 陈云贵, 滕保华, 唐永柏, 付浩, 唐定骧, 涂铭旌 2001 低温工程 2 57]

    [86]

    Bjørk R, Nielsen K K, Bahl C R H, Smith A, Wulff A C 2016 Aip. Adv. 6 056205

    [87]

    Yao G H, Gong M Q, Wu J F 2006 Int. J. Refrig. 29 1267

    [88]

    Okamura T, Yamada K, Hirano N, Nagaya S 2006 Int. J. Refrig. 29 1327

    [89]

    Huang J H, Liu J R, Jin P Y, Yan H W, Qiu J F, Xu L Z, Zhang J X 2006 Rare Metals 25 641

    [90]

    Zimm C, Boeder A, Chell J, Sternberg A, Fujita A, Fujieda S, Fukamichi K 2006 Int. J. Refrig. 29 1302

    [91]

    Gao Q, Yu B F, Wang C F, Zhang B, Yang D X, Zhang Y 2006 Int. J. Refrig. 29 1274

    [92]

    Kim Y, Jeong S 2010 AIP Conference Proceedings 1218 87

    [93]

    Trevizoli P V, Barbosa J R, Ferreira R T S 2011 Int. J. Refrig. 34 1518

    [94]

    Tura A, Rowe A 2011 Int. J. Refrig. 34 628

    [95]

    Balli M, Sari O, Mahmed C, Bonhote P, Duc D, Forchelet J 2012 Appl. Ener. 98 556

    [96]

    Zhang H, He X N, Shen J, Gong M Q, Wu J F 2013 J. Eng. Therm. 1 58 (in Chinese) [张弘, 和晓楠, 沈俊, 公茂琼, 吴剑峰 2013 工程热物理学报 1 58]

    [97]

    Park I, Kim Y, Jeong S 2013 Int. J. Refrig. 36 1741

    [98]

    Gómez J R, Garcia R F, Carril J C, Gómez M R 2013 Int. J. Refrig. 36 1388

    [99]

    Tagliafico L A, Scarpa F, Valsuani F, Tagliafico G 2013 Appl. Therm. Eng. 52 492

    [100]

    Gatti J M, Muller C, Vasile C, Brμmpter G, Haegel P, Lorkin T 2014 Int. J. Refrig. 37 165

    [101]

    Bahl C R H, Engelbrecht K, Eriksen D, Lozano J A, Bjørk R, Geyti J, Nielsen K K, Smitha A, Prydsa N 2014 Int. J. Refrig. 37 78

    [102]

    Tušek J, Kitanovski A, Zupan S, Prebil I, Poredoš A 2013 Appl. Therm. Eng. 53 57

    [103]

    Jacobs S, Auringer J, Boeder A, Komorowski L, Leonard J 2014 Int. J. Refrig. 37 84

    [104]

    Arnold D S, Tura A, Ruebsaat-Trott A, Rowe A 2014 Int. J. Refrig. 37 99

    [105]

    Legait U, Guillou F, Kedous-Lebouc A, Hardy V, Almanza M 2014 Int. J. Refrig. 37 147

    [106]

    Czernuszewicz A, Kaleta J, Królewicz M, Lewandowski D, Mech R, Wiewiórski P 2014 Int. J. Refrig. 37 72

    [107]

    Aprea C, Greco A, Maiorino A, Mastrullo R, Tura A 2014 Int. J. Refrig. 43 111

    [108]

    Eriksen D, Engelbrecht K, Bahl C R H, Bjørk R, Nielsen K K, Insinga A R 2015 Int. J. Refrig. 58 14

    [109]

    Lee J S 2015 J. Mech. Sci. Technol. 29 2237

    [110]

    Jawad M A M, Mohammad W S, Mortada T K 2015 Int. J. Appl. Innov. Eng. Manag. 4 6

    [111]

    Gao X Q, Shen J, He X N, Tang C C, Li K, Dai W, Li Z X, Jia J C, Gong M Q, Wu J F 2016 Int. J. Refrig. 67 330

    [112]

    Velázquez D, Estepa C, Palacios E, Burriel R 2015 Int. J. Refrig. 63 14

    [113]

    Lozano J A, Capovilla M S, Trevizoli P V, Engelbrecht K, Bahl C R H, Barbosa J R 2016 Int. J. Refrig. 68 187

    [114]

    Ghahremani M, Aslani A, Siddique A, Bennett L H, Torre E D 2016 Aip. Adv. 6 075221

    [115]

    Aprea C, Greco A, Maiorino A, Masselli C 2015 Int. J. Refrig. 6 1

    [116]

    Saito A T, Kobayashi T, Kaji S, Li J, Nakagome H 2016 Int. J. Environ. Sci. De 7 316

    [117]

    Chen Y G, Tang Y B, Wang B M, Xue Q X, Tu M J 2007 Second International Conference on Magnetic Refrigeration at Room Temperature Portorz, Solovenia, April 11-13, 2007 p309

    [118]

    Moore J, Klemm D, Lindackers D, Grasemann S, Träger R, Eckert J, Löber L, Scudino S, Katter M, Barcza A 2013 J. Appl. Phys. 114 043907

    [119]

    Zhou B 2014 M. S. Thesis (Beijing: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) (in Chinese) [周贝 2014 硕士学位论文(北京: 中国科学院理化技术研究所)]

    [120]

    Zhang H, Sun Y J, Niu E, Hu F X, Sun J R, Shen B G 2014 Appl. Phys. Lett. 104 062407

    [121]

    Jia J C 2016 M. S. Thesis (Beijing: University of Science & Technology Beijing) (in Chinese) [贾际琛 2016 硕士学位论文(北京: 北京科技大学)]

  • [1] Sun Di-Hua, Tian Chuan. A traffic flow lattice model with the consideration of driver anticipation effect and its numerical simulation. Acta Physica Sinica, 2011, 60(6): 068901. doi: 10.7498/aps.60.068901
    [2] Qiu Liu-Chao. Numerical simulation of deformation process of viscous liquid drop based on the incompressible smoothed particle hydrodynamics. Acta Physica Sinica, 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [3] Zheng Xin-Qi, Shen Jun, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen. Research progress in magnetocaloric effect materials. Acta Physica Sinica, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [4] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [5] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [6] Yang Jing-Jie, Zhao Jin-Liang, Xu Lei, Zhang Hong-Guo, Yue Ming, Liu Dan-Min, Jiang Yi-Jian. Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound. Acta Physica Sinica, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [7] Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang. Magnetocaloric effects and magnetic regenerator performances in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [8] Ma Wu-Ying, Yao Zhi-Bin, He Bao-Ping, Wang Zu-Jun, Liu Min-Bo, Liu Jing, Sheng Jiang-Kun, Dong Guan-Tao, Xue Yuan-Yuan. Radiation effect and degradation mechanism in 65 nm CMOS transistor. Acta Physica Sinica, 2018, 67(14): 146103. doi: 10.7498/aps.67.20172542
    [9] Bi Jin-Shun, Liu Gang, Luo Jia-Jun, Han Zheng-Sheng. Numerical simulation of single-event-transient effects on ultra-thin-body fully-depleted silicon-on-insulator transistor based on 22 nm process node. Acta Physica Sinica, 2013, 62(20): 208501. doi: 10.7498/aps.62.208501
    [10] Wang Fang, Yuan Feng-Ying, Wang Jin-Zhi. Magnetic properties and magnetocaloric effect in Mn42Al50-xFe8+x alloys. Acta Physica Sinica, 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [11] PAN CHENG, CHANG HONG, ZHONG WEI, DU YOU-WEI, CHEN WEI. CURIE TEMPERATURE AND MAGNETOCALORIC EFFECT OF POLYCRYSTALLINE La0.8-xCa0.2MnO3. Acta Physica Sinica, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
    [12] Hao Zhi-Hong,  Wang Hai-Ying,  Zhang Quan,  Mo Zhao-Jun. Magnetic and magnetocaloric effects of Eu0.9M0.1TiO3 (M=Ca, Sr, Ba, La, Ce, Sm) compounds. Acta Physica Sinica, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [13] Xie Zi-Jian, Hu Zuo-Qi, Wang Yu-Hui, Zhao Xu. Numerical simulation of RESET operation for multilevel storage in phase change memory cell. Acta Physica Sinica, 2012, 61(10): 100201. doi: 10.7498/aps.61.100201
    [14] Wang Chang-Hong, Lin Tao, Zeng Zhi-Huan. Analysis and simulation of semiconductor thermoelectric power generation process. Acta Physica Sinica, 2014, 63(19): 197201. doi: 10.7498/aps.63.197201
    [15] Zhang Hu, Xing Cheng-Fen, Long Ke-Wen, Xiao Ya-Ning, Tao Kun, Wang Li-Chen, Long Yi. Linear dependence of magnetocaloric effect on magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 and Ni50Mn34Co2Sn14 with first-order magnetostructural transformation. Acta Physica Sinica, 2018, 67(20): 207501. doi: 10.7498/aps.67.20180927
    [16] Tian He, Zhang Yun-Dong, Wang Hao, Qiu Wei, Wang Nan, Yuan Ping. The numerical emulation of linear characteristics of optical pulse propagation in microring coupled-resonator optical waveguides. Acta Physica Sinica, 2008, 57(11): 7012-7016. doi: 10.7498/aps.57.7012
    [17] Zhang Hua, Wu Jian-Jun, Zhang Dai-Xian, Zhang Rui, He Zhen. A modified electromechanical model with one-dimensional abalation model for numerical analysis of the pulsed plasma thruster. Acta Physica Sinica, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [18] Cheng Qiu-Hu, Wang Shi-Yu, Guo Zhen, Cai De-Fang, Li Bing-Bin. Simulation model of super Gaussian beam pumped Q-switched solid-state laser. Acta Physica Sinica, 2017, 66(18): 180204. doi: 10.7498/aps.66.180204
    [19] Wang Fa-Qiang, Ma Xi-Kui. Fractional order modeling and simulation analysis of Boost converter in continuous conduction mode operation. Acta Physica Sinica, 2011, 60(7): 070506. doi: 10.7498/aps.60.070506
    [20] Chen Hui, Zhang Guo-Ying, Yang Dan, Gao Jiao. A method of determining the highest temperature attained by magnetic material in the adiabatic magnetization. Acta Physica Sinica, 2012, 61(9): 097501. doi: 10.7498/aps.61.097501
  • Citation:
Metrics
  • Abstract views:  1821
  • PDF Downloads:  642
  • Cited By: 0
Publishing process
  • Received Date:  20 January 2017
  • Accepted Date:  05 April 2017
  • Published Online:  05 June 2017

Progress of room temperature magnetic refrigeration technology

Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 51322605, 51676198).

Abstract: refrigeration technology. It has been considered as one of promising alternatives to traditional vapor compression refrigeration technology. Magnetic refrigeration, in which solid magnetic materials instead of gaseous refrigerants are used, is based on the magnetocaloric effect. When magnetocaloric material moves in or out of magnetic field, it releases heat due to magnetization or absorbs heat due to demagnetization, respectively. In this paper, magnetocaloric effects (MCEs) and basic thermodynamic cycles are briefly described at first. Some typical magnetic refrigeration cycles are introduced from the viewpoint of thermodynamics, which include hybrid cycle, cycle based on the active magnetic regenerator and cycle based on the active magnetic regenerator coupled with gas regenerative refrigeration. Specifically, magnetic refrigeration cycle based on the active magnetic regenerator (AMR) coupled with gas regenerative refrigeration is a novel idea that combines the magnetocaloric effect with the regenerative gas expansion refrigeration. And it has been under the way to try to achieve greater refrigeration performance of the coupled refrigerator in the research institutions. Thereafter, the paper reviews the existing different numerical models of AMR refrigerator. Analyzing and optimizing an AMR magnetic refrigerator are typical complicated multi-physics problems, which include heat transfer, fluid dynamics and magnetics. The majority of models published are based on one-dimensional simplification, which requires shorter computation time and lower computation resources. Because a one-dimensional model idealizes many factors important for the system performance, two- or three- dimensional numerical models have been setup. Besides, some key items for the model are described in detail, such as magnetocaloric effect, thermal conduction, thermal losses, demagnetizing effect and magnetic hysteresis. Considering the accuracy, convergence and computation time, it is quite vital for numerical models to choose some influential factors reasonably. Then, the recent typical room magnetic refrigeration systems are listed and grouped into four types, i.e., reciprocating-magnet type, reciprocating-regenerator type, rotary-magnet type, and rotaryregenerators type. Different characteristics of these four types are compared. Reciprocating magnetic refrigerators have the advantages of simple construction and max magnetic field intensity difference. Rotary magnetic refrigerator due to compact construction, higher operational frequency and better performance is deemed as a more promising type, in the progress of magnetic refrigeration technology. Meanwhile there are still some key challenges in the practical implementation of magnetic refrigeration technology, such as the development and preparation technologies of high-performance MCE materials, powerful magnetic circuit system and flowing condition. Finally, possible applications are discussed and the tendency of future development is given.

Reference (121)

Catalog

    /

    返回文章
    返回