Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Anisotropy study on thermionic emission and magnetoresistivity of single crystal CeB6

Bao Li-Hong Tao Ru-Yu O. Tegus Huang Ying-Kai Leng Hua-Qian Anne de Visser

Anisotropy study on thermionic emission and magnetoresistivity of single crystal CeB6

Bao Li-Hong, Tao Ru-Yu, O. Tegus, Huang Ying-Kai, Leng Hua-Qian, Anne de Visser
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Cerium hexaboride (CeB6) as a heavy fermion compound displays a number of interesting low-temperature physical properties such as dense Kondo behavior and a complex magnetic phase diagram due to the interaction between itinerant and local electrons. Recently, the electron emission property of CeB6 has received much attention because it has potential applications in replacing the commercial LaB6 cathode and serving as new-generation thermal cathodes. In addition, by comparison with other metal cathodes, it also possesses some advantages, such as a low work function, low volatility, high brightness, thermal stability and high mechanical strength. However, so far the thermionic emission properties of CeB6 single crystal surfaces except for the (100) surfaces have been rarely reported. Whether the different crystal surfaces of CeB6 contribute to the various interesting emission properties is main research purpose of the present work. In this paper, the (110), (111), (210) and (310) crystal surfaces of single crystal CeB6 are determined by the X-ray Laue diffraction method, and their thermionic emission current densities are measured at different temperatures and applied voltages. As a result, the maximum emission current densities of the (110), (111), (210) and (310) crystal surfaces at 1873 K are 38.4, 11.54, 50.4 and 20.8 A/cm2, respectively. When their cathode temperatures are all 1773 K, their maximum emission current densities are 15.2, 5.43, 28.0 and 11.44 A/cm2. In addition, when the cathode temperature decreases to 1673 K, their maximum emission current densities are 4.24, 0.9, 6.2 and 2.43 A/cm2. It means that the thermionic emissions are strongly anisotropic for the different crystal surfaces. In general, the maximum emission current density of (100) crystal surface of LaB6 single crystal is about 10 A/cm2 at 1700 K. By comparing the emission current density of CeB6 single crystal at 1773 K with that of LaB6 at 1700 K, it is found that the emission properties of (210) crystal surface are maybe close to those of LaB6. The work function values of the (110), (111), (210) crystal surfaces calculated by the Richardson-Dushman formula are 2.64, 2.71 and 2.40 eV, respectively. Among these, the (210) crystal surface possesses the smallest value of the work function, which is hopeful for being used as an electron source of scanning electron microscopy. Zero-field magnetoresistivity measurments confirm the transition temperatures of TQ=3.3 K and TN=2.4 K. Field-angle dependent magnetoresistivity measurments show that the electrical resistivity varies between 69 μupΩ·cm and 73 μupΩ·cm when the crystal rotates from the[001] to the[011] direction. This indicates that the electrical resistivity in a magnetic field is also anisotropic.
      Corresponding author: Bao Li-Hong, baolihong@imnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51662034) and the Program for Young Talents of Science and Technology in Universities of Inner Mongolia, China (Grant No. NJYT-14-B03).
    [1]

    Mignot J M, AndréG, Robert J, Sera M, Iga F 2008 Phys. Rev. B 78 014415

    [2]

    Tanaka Y, Staub U, Narumi Y, Katsumata K, Scagnoli V, Shimomura S, Tabata Y, Onuki Y 2004 Physica B 345 78

    [3]

    Feyerherm R, Amato A, Gygax F N, Schenck A, Onuki Y, Sato N 1995 J. Magn. Magn. Mater. 140-144 1175

    [4]

    Alistair S C, Gerd F, Dmytro S I 2016 Rep. Prog. Phys. 79 066502

    [5]

    Mignot J M, Andre G, Sera M, Iga F 2007 J. Magn. Magn. Mater. 310 738

    [6]

    Zhao Y M, Ouyang L S, Zou C Y, Xu J Q, Dong Y Z, Fan Q H 2010 J. Rare Earth. 28 424

    [7]

    Daniel V, Sergiy P, Varvara P, Volodymyr F 2009 IEEE Trans. Electron Dev. 56 812

    [8]

    Gu Z Z, Xi X L, Yang J C, Xu J J 2012 Fuel 95 648

    [9]

    Zhou S L, Zhang J X, Liu D M, Bao L H 2009 J. Inorg. Mater. 24 793(in Chinese)[周身林, 张久兴, 刘丹敏, 包黎红2009无机材料学报 24 793]

    [10]

    Bao L H, Zhang J X, Zhou S L, Zhang N, Xu H 2011 Chin. Phys. Lett. 28 088101

    [11]

    Mahmoud B, Masayuki K, Toshiteru K, Hideaki O 2016 IEEE Trans. Electron Dev. 63 1326

    [12]

    Nirpendra S, Sapan M S, Tashi N, Auluck S 2007 J. Phys.:Condens. Matter 19 346226

    [13]

    Zhou S L, Zhang J X, Bao L H, Yu X G, Hu Q L, Hu D Q 2014 J. Alloys Compd. 611 130

    [14]

    Lin Z L 1997 High Power Laser Part Beams. 9 591(in Chinese)[林祖伦1997强激光与粒子束 9 591]

    [15]

    Bao L H, Tegus O, Zhang J X, Zhang X, Huang Y K 2013 J. Alloys Compd. 558 39

    [16]

    Terzioglu C, Ozturk O, Kilic A, Goodrich R G, Fisk Z 2006 J. Magn. Magn. Mater. 298 33

    [17]

    Bogach A V, GlushkovV V, Demishev S V, Samarin N A, Paderno Y B, Dukhnenko A V, Shitsevalova N Y, Sluchanko N E 2006 J. Solid State Chem. 179 2819

    [18]

    Mizuno K, Magishi K I, Kawakami M, Saito T, Koyama K, Kunii S 2003 Physica B 329-333 597

    [19]

    Nakao H, Magishi K, Wakabayashi Y, Murakami Y, Koyama K, Hirota K, Endoh Y, Kunii S 2001 J. Phys. Soc. Jpn. 70 1857

    [20]

    Effantin J M, Mingod J R, Burlet P, Bartholin H, Kunii S, Kasuya T 1985 J. Magn. Magn. Mater. 47-48 145

    [21]

    Sera M, Ichikawa H, Yokoo T, Akimitsu J, Nishi M, Kakurai K, Kunii S 2001 Phys. Rev. Lett. 86 1578

  • [1]

    Mignot J M, AndréG, Robert J, Sera M, Iga F 2008 Phys. Rev. B 78 014415

    [2]

    Tanaka Y, Staub U, Narumi Y, Katsumata K, Scagnoli V, Shimomura S, Tabata Y, Onuki Y 2004 Physica B 345 78

    [3]

    Feyerherm R, Amato A, Gygax F N, Schenck A, Onuki Y, Sato N 1995 J. Magn. Magn. Mater. 140-144 1175

    [4]

    Alistair S C, Gerd F, Dmytro S I 2016 Rep. Prog. Phys. 79 066502

    [5]

    Mignot J M, Andre G, Sera M, Iga F 2007 J. Magn. Magn. Mater. 310 738

    [6]

    Zhao Y M, Ouyang L S, Zou C Y, Xu J Q, Dong Y Z, Fan Q H 2010 J. Rare Earth. 28 424

    [7]

    Daniel V, Sergiy P, Varvara P, Volodymyr F 2009 IEEE Trans. Electron Dev. 56 812

    [8]

    Gu Z Z, Xi X L, Yang J C, Xu J J 2012 Fuel 95 648

    [9]

    Zhou S L, Zhang J X, Liu D M, Bao L H 2009 J. Inorg. Mater. 24 793(in Chinese)[周身林, 张久兴, 刘丹敏, 包黎红2009无机材料学报 24 793]

    [10]

    Bao L H, Zhang J X, Zhou S L, Zhang N, Xu H 2011 Chin. Phys. Lett. 28 088101

    [11]

    Mahmoud B, Masayuki K, Toshiteru K, Hideaki O 2016 IEEE Trans. Electron Dev. 63 1326

    [12]

    Nirpendra S, Sapan M S, Tashi N, Auluck S 2007 J. Phys.:Condens. Matter 19 346226

    [13]

    Zhou S L, Zhang J X, Bao L H, Yu X G, Hu Q L, Hu D Q 2014 J. Alloys Compd. 611 130

    [14]

    Lin Z L 1997 High Power Laser Part Beams. 9 591(in Chinese)[林祖伦1997强激光与粒子束 9 591]

    [15]

    Bao L H, Tegus O, Zhang J X, Zhang X, Huang Y K 2013 J. Alloys Compd. 558 39

    [16]

    Terzioglu C, Ozturk O, Kilic A, Goodrich R G, Fisk Z 2006 J. Magn. Magn. Mater. 298 33

    [17]

    Bogach A V, GlushkovV V, Demishev S V, Samarin N A, Paderno Y B, Dukhnenko A V, Shitsevalova N Y, Sluchanko N E 2006 J. Solid State Chem. 179 2819

    [18]

    Mizuno K, Magishi K I, Kawakami M, Saito T, Koyama K, Kunii S 2003 Physica B 329-333 597

    [19]

    Nakao H, Magishi K, Wakabayashi Y, Murakami Y, Koyama K, Hirota K, Endoh Y, Kunii S 2001 J. Phys. Soc. Jpn. 70 1857

    [20]

    Effantin J M, Mingod J R, Burlet P, Bartholin H, Kunii S, Kasuya T 1985 J. Magn. Magn. Mater. 47-48 145

    [21]

    Sera M, Ichikawa H, Yokoo T, Akimitsu J, Nishi M, Kakurai K, Kunii S 2001 Phys. Rev. Lett. 86 1578

  • [1] Xu Xiao-Yong, Qian Li-Jie, Hu Jing-Guo. Magnetoresistance induced by the stress fieldin ferromagnetic multilayer. Acta Physica Sinica, 2009, 58(3): 2023-2029. doi: 10.7498/aps.58.2023
    [2] Wang Wei, Zhou Wen-Zheng, Wei Shang-Jiang, Li Xiao-Juan, Chang Zhi-Gang, Lin Tie, Shang Li-Yan, Han Kui, Duan Jun-Xi, Tang Ning, Shen Bo, Chu Jun-Hao. Magneto-resistance for two-dimensional electron gas in GaN/AlxGa1-xN heterostructure. Acta Physica Sinica, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [3] Qin Wei, Zhang Yu-Bin, Xie Shi-Jie. Study on the temperature effect of magnetoresistance in organic device Co/Alq3/La1-xSrxMnO3(LSMO). Acta Physica Sinica, 2010, 59(5): 3494-3498. doi: 10.7498/aps.59.3494
    [4] Ren Jun-Feng, Wang Yu-Mei, Yuan Xiao-Bo, Hu Gui-Chao. Magnetoresistance effect in an organic spin valve. Acta Physica Sinica, 2010, 59(9): 6580-6584. doi: 10.7498/aps.59.6580
    [5] Jiang Kuo. Mechanism of magnetoresistance impacted by Co doped in La0.8Sr0.2MnO3 ferromagnetic metallic. Acta Physica Sinica, 2010, 59(4): 2801-2807. doi: 10.7498/aps.59.2801
    [6] Qi Shi-Kai, Wang Xiao-Xia, Luo Ji-Run, Zhao Qing-Lan, Li Yun. A novel Y2O3-Gd2O3-HfO2 impregnated W base direct-heated cathode in magnetron tube. Acta Physica Sinica, 2016, 65(5): 057901. doi: 10.7498/aps.65.057901
    [7] SUN JIAN-PING, ZHANG ZHAO-XIANG, HOU SHI-MIN, ZHAO XING-YU, SHI ZU-JIN, GU ZHEN-NAN, LIU WEI-MIN, XUE ZENG-QUAN. A STUDY OF FIELD EMISSION OF SINGLE-WALLED CARBONNANOTUBES USING FIELD EMISSION MICROSCOPY. Acta Physica Sinica, 2001, 50(9): 1805-1809. doi: 10.7498/aps.50.1805
    [8] Jiang Kuo, Li He-Fei, Ma Wen, Gong Sheng-Kai. Dependence of magnetoelectric properties of La0.8Ba0.2MnO3 on Mn valence of oxide precursors. Acta Physica Sinica, 2005, 54(9): 4374-4378. doi: 10.7498/aps.54.4374
    [9] Peng Xian-De, Zhu Tao, Wang Fang-Wei. High temperature annealing treatment on Co doped ZnO bulks. Acta Physica Sinica, 2009, 58(5): 3274-3279. doi: 10.7498/aps.58.3274
    [10] He Li-Min, Ji Yu, Lu Yi, Wu Hong-Ye, Zhang Xue-Feng, Zhao Jian-Jun. Magnetic and transport properties of layered perovskite manganites (La1-xEu x)4/3Sr5/3Mn2O7(x=0, 0.15). Acta Physica Sinica, 2014, 63(14): 147503. doi: 10.7498/aps.63.147503
    [11] Liu En-Hua, Chen Zhao, Wen Xiao-Li, Chen Chang-Le. Influence of paramagnetic La2/3Sr1/3MnO3 layer on the multiferroic property of Bi0.8Ba0.2FeO3 film. Acta Physica Sinica, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [12] Xiao Chun-Tao, Han Li-An, Xue De-Sheng, Zhao Jun-Hui, H.Kunkel, G.Williams. Magnetic and transport properties of perovskite La067Pb033MnO3. Acta Physica Sinica, 2003, 52(5): 1245-1249. doi: 10.7498/aps.52.1245
    [13] Cheng Da-Wei, Bao Li-Hong, Zhang Hong-Yan, Pan Xiao-Jian, Zhao Feng-Qi, O. Tegus, Chao Luo-Meng. Nanocrystalline CeB6 and SmB6 powder prepared by evaporative condensation method and their visible light transparency. Acta Physica Sinica, 2019, 68(24): 246101. doi: 10.7498/aps.68.20191312
    [14] Wang Xian-Jie, Sui Yu, Qian Zheng-Nan, Cheng Jin-Guang, Liu Zhi-Guo, Li Yan, Su Wen-Hui, Ong C. K.. Large intragranular low field magnetoresistance in polycrystalline Sr2Fe1-xAlxMoO6 compounds. Acta Physica Sinica, 2005, 54(2): 907-911. doi: 10.7498/aps.54.907
    [15] YANG DE-QING, CHEN ER-GANG. A NEW METHOD OF MEASURING THE WORK FUNCTION OF MATERIALS. Acta Physica Sinica, 1988, 37(12): 2017-2022. doi: 10.7498/aps.37.2017
    [16] TIAN MING-LIANG, SHI JING, LI SHI-YAN, CAO QIANG, YUE SONG, ZHANG YU-HENG. MAGNETORESISTANCE PROPERTIES IN QUASI-TWO DIMENSIONAL CHARGE-DENSITY WAVE COMPOU ND (PO2)4(WO3)2m(m=6). Acta Physica Sinica, 2000, 49(9): 1892-1896. doi: 10.7498/aps.49.1892
    [17] Du You-Wei, Wang Zhi-Ming, Ni Gang, Xing Ding-Yu, Xu Qing-Yu. Huge magnetoresistance effect of highly oriented pyrolytic graphite. Acta Physica Sinica, 2004, 53(4): 1191-1194. doi: 10.7498/aps.53.1191
    [18] Jiang Hong-Wei, Wang Ai-Ling, Zheng Wu. Anisotropic magnetoresistance effect in spin valve multilayers. Acta Physica Sinica, 2005, 54(5): 2338-2341. doi: 10.7498/aps.54.2338
    [19] The infinite magnetoresistance of EuS/Ta heterostructure. Acta Physica Sinica, 2020, (0): . doi: 10.7498/aps.70.20201213
    [20] RUAN YONG-HONG, WANG JING-SONG, XU ZHU-AN, JIAO ZHENG-KUAN, ZHANG QI-RUI. GIANT MAGNETORESISTANCE EFFECT OF THE La1-xCaxMnO3 SYSTEM. Acta Physica Sinica, 1997, 46(7): 1415-1419. doi: 10.7498/aps.46.1415
  • Citation:
Metrics
  • Abstract views:  991
  • PDF Downloads:  98
  • Cited By: 0
Publishing process
  • Received Date:  14 April 2017
  • Accepted Date:  25 June 2017
  • Published Online:  05 September 2017

Anisotropy study on thermionic emission and magnetoresistivity of single crystal CeB6

    Corresponding author: Bao Li-Hong, baolihong@imnu.edu.cn
  • 1. Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022, China;
  • 2. Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 51662034) and the Program for Young Talents of Science and Technology in Universities of Inner Mongolia, China (Grant No. NJYT-14-B03).

Abstract: Cerium hexaboride (CeB6) as a heavy fermion compound displays a number of interesting low-temperature physical properties such as dense Kondo behavior and a complex magnetic phase diagram due to the interaction between itinerant and local electrons. Recently, the electron emission property of CeB6 has received much attention because it has potential applications in replacing the commercial LaB6 cathode and serving as new-generation thermal cathodes. In addition, by comparison with other metal cathodes, it also possesses some advantages, such as a low work function, low volatility, high brightness, thermal stability and high mechanical strength. However, so far the thermionic emission properties of CeB6 single crystal surfaces except for the (100) surfaces have been rarely reported. Whether the different crystal surfaces of CeB6 contribute to the various interesting emission properties is main research purpose of the present work. In this paper, the (110), (111), (210) and (310) crystal surfaces of single crystal CeB6 are determined by the X-ray Laue diffraction method, and their thermionic emission current densities are measured at different temperatures and applied voltages. As a result, the maximum emission current densities of the (110), (111), (210) and (310) crystal surfaces at 1873 K are 38.4, 11.54, 50.4 and 20.8 A/cm2, respectively. When their cathode temperatures are all 1773 K, their maximum emission current densities are 15.2, 5.43, 28.0 and 11.44 A/cm2. In addition, when the cathode temperature decreases to 1673 K, their maximum emission current densities are 4.24, 0.9, 6.2 and 2.43 A/cm2. It means that the thermionic emissions are strongly anisotropic for the different crystal surfaces. In general, the maximum emission current density of (100) crystal surface of LaB6 single crystal is about 10 A/cm2 at 1700 K. By comparing the emission current density of CeB6 single crystal at 1773 K with that of LaB6 at 1700 K, it is found that the emission properties of (210) crystal surface are maybe close to those of LaB6. The work function values of the (110), (111), (210) crystal surfaces calculated by the Richardson-Dushman formula are 2.64, 2.71 and 2.40 eV, respectively. Among these, the (210) crystal surface possesses the smallest value of the work function, which is hopeful for being used as an electron source of scanning electron microscopy. Zero-field magnetoresistivity measurments confirm the transition temperatures of TQ=3.3 K and TN=2.4 K. Field-angle dependent magnetoresistivity measurments show that the electrical resistivity varies between 69 μupΩ·cm and 73 μupΩ·cm when the crystal rotates from the[001] to the[011] direction. This indicates that the electrical resistivity in a magnetic field is also anisotropic.

Reference (21)

Catalog

    /

    返回文章
    返回