Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HIGHER DIMENSIONAL PAINLEVé INTEGRABLE MODELSWITH REAL PHYSICAL SIGNIFICATION

Ruan Hang-Yu Chen Yi-Xin

HIGHER DIMENSIONAL PAINLEVé INTEGRABLE MODELSWITH REAL PHYSICAL SIGNIFICATION

Ruan Hang-Yu, Chen Yi-Xin
PDF
Get Citation
Metrics
  • Abstract views:  2583
  • PDF Downloads:  563
  • Cited By: 0
Publishing process
  • Received Date:  02 February 2000
  • Accepted Date:  04 August 2000
  • Published Online:  20 April 2001

HIGHER DIMENSIONAL PAINLEVé INTEGRABLE MODELSWITH REAL PHYSICAL SIGNIFICATION

  • 1. (1)宁波大学物理系,宁波315211;浙江大学近代物理中心,杭州310027; (2)浙江大学近代物理中心,杭州310027

Abstract: A “M?bius” invariant asymptotic expansion approach to solve any nonlinear integrable and nonintegrable models with any dimension is proposed. Many new Painlevé integrable models with the same dimension can be obtained at the same time. Taking the (2+1)-dimensional KdV-Burgers(KdVB) equation, (3+1)-dimensional Kudomtsev-Petviashvili (KP) equation as concrete examples, we obtain some new higher dimensional “M?bius” invariant models with Painlevé property and the approximate solutions of these models. In some special case, some approximate solutions become exact.

Catalog

    /

    返回文章
    返回