偏振成像技术提高成像清晰度、成像距离的定量研究

曹念文 刘文清 张玉钧

(中国科学院安徽光学精密机械研究所,合肥 230031) (1999年1月23日收到;1999年4月6日收到修改稿)

阐述了水下成像清晰度和成像距离的增大与偏振成像技术的关系,推导了偏振成像系统图像清晰度与成像距 离的关系式,并通过实验获得实测数据,根据推导的关系式分析并计算得到的结果与实测数据相符合,定量地说明 了偏振技术提高了图像清晰度和成像距离.

PACC: 4230

1 引 言

国内外对水下成像的研究已进行多年并报道了 许多有实际应用价值的结果:1)导致水下目标成像 模糊的原因是水体对光的吸收和散射,描述水下光 传输、散射的理论主要有 Mie 散射和 Monte Carlo 理论^[1],不同尺寸大小的粒子对光的散射不同导致 成像清晰度不一样.2)除去粒子散射光对成像效果 的影响主要有时间选通法、偏振技术.由于时间选通 光电开关的选通门很窄,只有几个 ns 到 10 ns 左右, 对开关电源的要求很高,在制作上尚存一定难度,因 而国内时间选通法实验成功率不是很高.偏振成像 主要是线偏振和圆偏振方法,不同角度的线偏振方 法对图像清晰度的影响不一样^{2]}.当水体较清时用 圆偏振方法比线偏振方法成像效果好,随着水体衰 减常数的逐渐增大,线偏振方法较圆偏振方法优越, 可以取代圆偏振成像^{3]}.

关于图像清晰度与成像距离关系,以及偏振技术如何提高成像清晰度和成像距离的定量研究未见报道.本文对图像清晰度、成像距离、偏振技术的关系展开定量研究,从理论计算和实验结果两个不同的角度来讨论这一问题,从宏观与定量的角度来阐述偏振技术是如何提高成像效果的.

2 散射光产生、偏振技术的理论机制

2.1 前向散射

由于光在水中传输难免与水粒子发生碰撞,因 而出现两种光;没有与水粒子发生碰撞传输方向不 变的子弹光;与水粒子发生碰撞传输方向发生改变 的蛇形光,即散射光.子弹光是相干光,携带的光信息不变,而散射光的偏振状态发生变化,是非相干光也就是导致图像不清晰的光子噪声^{4]}.

2.2 后向散射

激光光源发出的线偏振光照射水下目标要与水 粒子发生碰撞 因而光的偏振状态发生变化 水粒子 的后向散射光和目标的反射光都进入 CCD 成像系 统 ,由于水粒子后向散射光的存在导致图像模糊,线 偏振成像的理论根据是水粒子后向散射光的解偏度 小于目标反射光的解偏度.一般来说,后向散射光和 目标反射光都是非完全偏振光.目标反射光的偏振 度小于粒子散射光的偏振度,目标反射光的偏振度 取决于目标的表面光学特性,目标表面越粗糙目标 反射光的解偏度越大,偏振度越小(越接近于0,即 越接近于自然光),水粒子的后向散射光的偏振度与 水粒子的尺寸大小、发生碰撞的概率(粒子的浓度) 有关,一般来说水越清,散射光的解偏度越小,偏振 度越大(越接近于1).图1能说明两种光解偏度的 差异^[5].从图1可以看出:入射的水平线偏振光经过 水粒子散射和目标反射后都变成非完全偏振光。在 垂直方向上粒子散射光和目标反射光的强度相差最 大,在水平方向上两光强度相差最小,因而利用偏振 技术可以改变目标反射光和散射光强度之间的相对 大小 从而提高降低背景噪声以达到提高图像清晰 度的目的.

对于圆偏振成像来说,入射激光经过右旋圆偏振器后,变成右旋圆偏振光.入射的右旋圆偏振光子 与水粒子碰撞一次,右旋偏振变成左旋偏振,再碰撞 一次偏振状态又变成右旋,即入射右旋光子与水粒 子碰撞奇数次,偏振状态发生改变,碰撞偶数次偏振 状态不发生改变;入射右旋光子与水粒子碰撞后绝

图 1 散射光和目标反射光的解偏度的差异

大部分偏振状态改变,右旋变成左旋.而入射右旋光 子与水下目标发生碰撞,由于目标表面特性的影响, 只有部分入射光子偏振状态发生改变,即目标的反 射光有左旋圆偏振光和右旋圆偏振光,如图 2.目标 反射光的左旋圆偏振光和左旋粒子散射光被 CCD 探测器前的右旋圆偏振器滤去,通过探测器的只有 目标的右旋圆偏振反射光,水粒子的散射光被完全 除去,因而所成图像很清晰.

图 2 用圆偏振法减少水粒子散射光

3 偏振技术和成像清晰度、成像距离的关系。

如图 3 所示,入射光源为 532 nm 激光,入射激 光照射水下目标,反射光经水粒子散射后进入 CCD 探测器(图 3(a)),为了提高成像清晰度可在 CCD 探测器前加一偏振系统,这时实验系统便成为成像 系统(图 3(b),图 3(c)).在成像距离 r_0 处,无偏振 器成像系统所成图像清晰度为 c_0 ,在同样的成像距 离处,偏振成像系统清晰度为 c_1 ,为无偏振成像系统所成图像清晰度 c_0 的 k倍,常数 k表示偏振成 像系统较无偏振成像系统成像效果好,成像清晰度 提高的倍数.对偏振成像系统来说,图像清晰度为

$$c_{1} = kc_{0} = \frac{R(r_{0}) - R(r_{0})}{R(r_{0})}, \quad (1)$$

 $R_{1}(r_{0})$ 是在 r_{0} 处的背景亮度 $R_{1}(r_{0})$ 是 r_{0} 处的目标亮度 ,变换上述公式 ,得

$$R_{\rm b} = \frac{R(r_0)}{c_1 + 1}.$$
 (2)

假设目标为理想的 Lamber 体 ,目标离探测器距离 为 r ,则目标反射光在探测器处的照度为^{6]}

$$R_{t}(r) = \frac{k\rho A_{t}}{\pi} I_{0} \frac{\exp(-2\alpha r)}{r^{4}}, \qquad (3)$$

ho 为目标的反射率 , $A_{
m t}$ 为目标的表面积 , I_0 为光源 发光强度 ,lpha 为衰减常数 ,k 为成像系统加偏振器后

(c)偏振成像系统在 r₁处成像清晰度为 c₁ 图 3

所成图像清晰度提高的倍数.背景亮度是由于粒子 散射引起的,是由于激光光源所照亮的区域和探测 器所能接受光的区域决定的.对于小角度散射成像 系统来说,可以认为背景亮度为一常数,与成像距离 无关, $R_{1}(r) = R_{1}(r_{0})$.移动水下目标使成像距离 增大,这时成像清晰度下降,当距离移至 r_{1} 时,成像 清晰度降为 c_{0} ,而无偏振器成像系统在 r_{0} 处成像 清晰度也为 c_{0} :

$$c_0 = \frac{R_{\rm b}(r_0) - R_{\rm b}}{R_{\rm b}}.$$
 (4)

把(2)式代入(4)式经过变换,得

$$R_{t}(r_{1}) = R_{t}(r_{0})\frac{c_{1}+1}{c_{0}+1}.$$
 (5)

把(3) 武代入(5) 式, 两边取对数,得

$$4\ln r_1 + 2\alpha r_1 = 2\alpha r_0 + 4\ln r_0 + \ln \frac{c_0 + 1}{c_1 + 1}.$$
 (6)

4 实 验

实验装置如图 4 所示.Nd:YAG 倍频激光(532 nm)经过望远镜扩束后作成像光源,照射水下目标, 目标反射光进入 CCD 成像系统,CCD 成像系统由 照相机镜头和 CCD 组成.整个实验装置由计算机控 制,计算机发出电脉冲外触发激光器.计算机每发一 个触发信号,激光器发出一个光脉冲,CCD 便采集 一幅图像.为了排除水粒子散射光对成像的干扰,通 常在入射光路上和 CCD 成像系统前加偏振器.水的 衰减常数通常用小型固体钒酸钇激光器和光电探测 器测得,小型固体钒酸钇激光器发出 533 nm 连续激 光 经水体衰减后用光电二极管接受并通过示波器 可测出电压信号的衰减.在实验过程中,每改变一次 成像距离都要用高功率白炽灯经距离照射目标,并

图 4 水下成像实验装置图

调整照相机镜头的焦距使计算机屏幕上的图像清晰,这说明目标的反射光经过照相机镜头正好成像在 CCD 焦平面上. 然后关掉白炽灯用 532 nm 激光 作光源进行成像实验,实验前在水槽上标好刻度值, 每改变一次距离都计下水槽上的刻度,以便和所成 图像相对应. 用软件算出所测图像的对比度,实验数 据如表1.

实测数据经软件平均处理后所作曲线如图 5 所 示.从图 5 可以看出,虚线表示无偏振成像系统实测 图像清晰度与成像距离的关系:图像清晰度随成像 距离的增大而减小,距离越远图像越模糊.实线表示 线偏振成像系统实测图像清晰度与成像距离的关 系,图像清晰度也随成像距离的增大而减小,距离越 远图像越模糊.这是由于成像距离越远,进入 CCD 探测器的目标反射光强度越小,而散射光背景噪声 与成像距离无关,这样随成像距离的增大目标反射 光和背景噪声散射光的强度相差越大,导致不论是 无偏振成像系统还是偏振成像系统,图像清晰度都

表1 偏振成像及无偏振成像系统的成像清晰度实测值

成像距离/cm	139	138	137	136	135	134	133	132	131
无偏振成像系统清晰度	0.773	1.058	1.328	1.014	1.695	1.607	1.552	1.782	1.409
垂直线偏振成像系统清晰度	1.072	1.141	1.415	2.182	2.524	1.636	1.603	1.918	1.944
成像距离/cm	130	129	128	127	126	125	124	123	122
无偏振成像系统清晰度	2.38	2.395	3.1	3.2	3.649	3.5	4.0	3.9	3.085
垂直线偏振成像系统清晰度	2.625	2.8	3.378	5.355	4.906	4.711	4.07	5.735	2.968
成像距离/cm	121	120	119	118	117	116	115	114	113
无偏振成像系统清晰度	3.352	2.478	2.224	2.1	3.608	3.588	3.76	2.636	2.1
垂直线偏振成像系统清晰度	4.085	4.042	5.077	5.211	4.846	4.311	5.026	2.794	3.033

图 5 偏振成像及无偏振成像系统的成像清晰度实测曲线

随着成像距离的增大而减小.

从图 5 还可以看出,在成像距离较近时,不论是 无偏振成像系统还是偏振成像系统,图像清晰度并 非随着成像距离的增大而减小,当成像距离越近时, 图像清晰度反而越小,这可能是由于 CCD 探测器在 近距离区域成像时,目标反射光和背景噪声散射光 强度都很大,导致探测器接近饱和或者达到饱和.

4.1 相同的成像距离不同的图像清晰度

从图 5 还可看出,实线曲线比虚线曲线坐标位 置要高,这是因为实线是线偏振成像系统所实测的 曲线,表示在同一成像距离处线偏振成像系统所实 测图像清晰度比无偏振成像系统实测图像清晰度 大.可见线偏振成像系统确实提高了成像效果.在远 距离处,成像清晰度可增大 2 倍.

根据实测曲线可进行理论计算 :在虚线 无偏振 曲线)上任取一点 $A(c_1,r_0)$ 过 A 点作平行于横轴 的直线交实线(线偏振曲线)于 $B(c_1,r_1)$,然后把 c_1,r_0,r_1 代入(6)式便算出 c_0 的值 ,这就是在 r_0 处 线偏振成像清晰度的理论计算值.表 2 是理论计算 所得的不同 r_0,c_0 值.根据理论计算值 ,所作的点如 图 5 所示 ,图中■点分布的趋势和实测值完全符合 (除近距离区域外,理论计算值远大于实测值,这是 由于在近距离区域探测器以接近饱和)这些说明推 导的图像清晰度和成像距离的关系,即偏振技术提 高成像清晰度的定量分析完全正确.在相同的成像 距离处,偏振成像系统的图像清晰度比无偏振成像 系统图像清晰度大.

表 2 偏振成像清晰度的理论计算值

r_0	122.50	123.03	123.34	123.69	124.07	124.29	124.76	125.01	125.31
<i>c</i> ₀	4.7097	4.8269	4.8094	4.441	4.5269	4.4411	4.1057	4.2323	3.927
r_0	125.56	125.84	126.09	126.32	126.52	126.77	127.05	127.23	127.50
<i>c</i> ₀	4.156	3.8592	3.8906	3.7461	3.7742	3.7533	3.6436	3.4593	3.5501
r_0	127.73	128.07	128.26	128.67	129.20	129.43	129.76	130.07	130.37
<i>c</i> ₀	3.2997	3.3117	3.3478	3.3106	3.0860	3.1979	2.9712	2.8424	2.8094
r_0	130.52	130.82	131.02	131.31	131.91	132.28	132.73	132.97	133.06
<i>c</i> ₀	2.7223	2.6974	2.5457	2.4126	2.434	2.4182	2.2099	2.1654	2.1887

4.2 相同的图像清晰度 不同的成像距离

在虚线上任取一点 $Q(c_1, r_0)$,过 Q 点作一垂 直于横坐标的直线交实曲线于一点 $P(c_0, r_0)$,然后 把 c_1, c_0, r_0 的值代入(6)式便可算出 r_1 的值,这一 计算的物理意义是对于同一成像清晰度,线偏振成 像系统的成像距离 r_1 比无偏振成像系统的成像距 离 r_0 要大.根据计算所得到的数据所作的图形如图 6 所示.

图 6 中▲点是根据实测数据和以上理论公式计 算得出的数值,它表示成像清晰度相同时,偏振成像 系统的成像距离比无偏振成像的距离大,也就是说 对于同样的实验效果,线偏振成像系统可进行远距 离成像.根据图 6,从宏观角度可看出偏振技术可大 大提高成像距离.

图中实验数据是在衰减常数 $\alpha = 0.5$ 的水体中 获得的 ,如果用衰减常数很小的水体(如 $\alpha = 10^{-2}$) 来做实验 ,线偏振成像系统提高成像清晰度和远距

离成像的倍数会更大.

可以用圆偏振代替线偏振成像,同样的实验方法,不断地改变成像距离,在不同的成像距离处,测量出圆偏振、90°线偏振、无偏振成像系统所成图像的清晰度,水体衰减常数 $\alpha = 0.5$ 的实验结果如表3.

根据表 3 的实验数据 ,用 Origin 软件可作出不同偏振成像系统所成的图像清晰度与距离的关系曲线 ,如图 7 所示. 从图 7 还可看出圆偏振成像清晰度与距离的关系与线偏振成像清晰度与距离的关系大致相同 :成像距离越远 ,图像清晰度越小. 在近距离 区域 ,探测器接近饱和 ,清晰度减小.

若改变水体常数,在不同的偏振状态下,图像清 晰度也不同.图8为水体衰减常数为1时,不同偏振 状态下图像清晰度的测量值,在水体中增加牛奶使 水体变浑,衰减常数变为2,改变偏振条件所测图像 清晰度如图9所示.

图 7 圆偏振、线偏振成像清晰度与成像距离的关系曲线

图 & 衰减常数为 1 对应的水体较图 9 衰减常 数为 2 对应的水体清,从图 8 可以看出右旋圆偏振 成像清晰度较 90°线偏振成像清晰度大;从图 9 可看 出右旋圆偏振成像清晰度和 90°线偏振成像清晰度 差不多;不论从图 8 还是从图 9 都可看出:对线偏振 成像来说,90°线偏振成像清晰度最大,成像效果最

表 3 不同成像距离、不同偏振状态的图像清晰度测量值

成像距离 r/cm	113	114	115	116	117	118	119	120
圆偏振图像清晰度	2	2.636	3.76	3.588	3.608	2	2.224	2.478
90°线偏振图像清晰度	3.033	2.794	5.026	4.311	4.846	5.211	5.077	4.042
无偏振图像清晰度	3.918	4.304	3.05	4.295	4.581	2.903	3.119	2.828
成像距离 r/cm	121	122	123	124	125	126	127	128
圆偏振图像清晰度	3.352	3.085	3.9	4	3.5	3.649	3.2	3
90°线偏振图像清晰度	4.085	2.968	5.735	4.07	4.711	4.906	5.355	3.378
无偏振图像清晰度	2.529	3.304	4.512	3.08	2.47	3.911	3.25	4.188
成像距离 r/cm	129	130	131	132	133	134	135	136
圆偏振图像清晰度	2.396	2.38	1.409	1.782	1.552	1.607	1.694	1.014
90°线偏振图像清晰度	2.8	2.625	1.944	1.918	1.603	1.636	2.524	2.182
无偏振图像清晰度	3.639	3.025	1.746	2.61	2.104	1.808	2.087	1.825
成像距离 r/cm	137	138	139					
圆偏振图像清晰度	1.328	1.058	0.773					
90°线偏振图像清晰度	1.415	1.141	1.072					
无偏振图像清晰度	1.536	1.206	1.365					

图 8 衰减常数为 1 不同偏振条件下图像清晰度实测值

图 9 衰减常数为 2 时,不同偏振条件下图像清晰度的实测值

好 对圆偏振成像来说右旋圆偏振成像清晰度比左 旋圆偏振成像清晰度大,因为对右旋圆偏振成像来 说,大部分粒子散射光被偏振器滤去,而对左旋圆偏 振成像来说,大部分粒子散射光被偏振器滤去,无偏 振器时成像质量最差,这是因为所有粒子散射光完 全进入 CCD 探测器成像系统导致图像信号完全淹 没在噪声中,图像模糊不清.

从上述实验结果可以得出这样的结论:在水体 较浑时 圆偏振成像效果没有线偏振成像效果好,当 水体较清时,圆偏振成像效果较线偏振成像效果好, 可以用线偏振取代圆偏振成像.

- [1] R.Graaff M. N. Koelink , F. F. M. de Mul , Applied Optics ,32 (1993) 426.
- [2] W. Liu ,N. Cao ,N. Takeuchi ,Image enhancement by polarizing discrimination in turbid media ,SPIE Vol. 3121 ,1997 25.
- [3] Cao Nianwen ,Liu Wenqing ,Chinese Journal of Quantum Electronics ,16 (1999),110.
- [4] K. M. Yoo, Feng Liu, R. R. Alfano, Optics Letters, 16(1991), 1068.
- [5] Liu Wenqing Cao Nianwen , Chinese Journal of Quantum Electronics ,14(6) (1997), 520.
- [6] G. D. Gilbert , Applied Optics 9(2) (1970) A21.

QUANTITATIVE STUDY OF IMPROVEMENTS OF THE IMAGING CONTRAST AND IMAGING RANGE BY THE POLARIZATION TECHNIQUE

CAO NIAN-WEN LIU WEN-QING ZHANG YU-JUN

(Anhui Institute of Optics and Fine Mechanics , Chinese Academy of Sciences , Hefei 230031)
 (Received 23 January 1999 ; revised manuscript received 6 April 1999)

Abstract

The relation between the polarization technique and the enhance for the image contrast and the imaging range has been reported in this paper. The equation expressing the image contrast and the imaging range is calculated and the experimental data is acquired. The experimental data agree with the calculated result. It is shown quantitatively that the polarization technique improves the image contrast and imaging range greatly.

PACC: 4230