X射线在毛细导管中传输的理论研究*

陈宝振

(北京师范大学低能核物理研究所,北京 100875) (2000年1月5日收到,2000年4月16日收到修改稿)

给出了 X 射线在毛细导管中传输特性的简明而系统的理论描述.在这个理论描述的基础上,建立了 X 射线在 毛细导管中传输的计算模型,编制了 X 射线在毛细导管中传输的计算程序.利用编制的 X 射线在毛细导管中传输 计算程序得到的数值结果和实验结果符合得很好.

关键词:毛细导管,X射线,传输模型 PACC:0785M,0790C

1 引 言

X 射线发现至今已有一百多年的历史.在本世 纪初 X 射线已获得了很多有意义的应用.这些应用 都是在硬 X 射线波段,都不需要任何光学系统;由 于 X 射线的波长很短,新射率非常接近1,因此难以 用传统的光学器件控制它的传输.目前,没有适合的 高质量的 X 射线光学器件对它的传输进行有效的 调控,是限制它的广泛应用和深入发展的一个重要 因素.例如,分辨率本应超过光学显微镜二,三个量 级的 X 射线显微镜由于没有适合的 X 射线光学器 件,它的分辨率还没有超过光学显微镜.

利用空心导管中 X 射线的多次全反射来调控 X 射线的传输虽然已知道多年,但是利用空心导管 组成的 X 射线光学器件(X 射线透镜)来调控射线 的传输的想法,只是在近年才提出来并在俄罗斯,美 国和中国相继取得成功.同调控 X 射线的传输的其 他 X 射线光学器件相比,X 射线透镜具有一些独特 的优点^[1-3],因此 X 射线透镜的出现将极大推动 X 射线光学的广泛应用和深入发展,为 X 射线光学展 示了诱人的发展前景.这些诱人前景的实现在很大 程度上取决于 X 射线透镜性能的改进和提高.从根 本上说,X 射线透镜性能的改进和提高最终要靠材 料、工艺和实验工作的进展.进行理论研究(包括计 算机模拟)是加速上述三方面工作进展的必由之路.

2 X 射线在毛细导管中传输的理论 描述

毛细导管是指由玻璃组成的很细的中空的圆柱 形的管子.管子的内径大约在 1—100µm.

本文提出的 X 射线在毛细导管中传输的理论 描述包括以下几个方面.

 1.介质折射率 毛细导管的物理特性由介质 折射率 n 来描述。

 $n = 1 - \delta - i\beta , \qquad (1)$

式中 δ 和 β 同原子散射因子 $f = f_1 + if_2$ 之间的关 系可表达为 $\delta = r_e \lambda^2 N f_1 / 2\pi$, $\beta = r_e \lambda^2 N f_2 / 2\pi$,这里 r_e 是电子经典半径, λ 是 X 射线波长.

2. 几何光学近似 本文讨论的 X 射线,波长在 1—10⁻³nm 的电磁波(X 射线光子的能量约为 1keV 到 10³keV). 一般说来,应该利用毛细导管中的麦克 斯韦方程来求解 X 射线在毛细导管中的传输特性. 但是这样做工作量太大.利用几何光学近似既可大 大削减工作量又可保证计算精度.我们将 X 射线在 毛细导管中的整个传输过程分解为两个子过程:其 一是 X 射线和毛细导管管壁的相互作用过程.这个 过程描写了 X 射线在毛细导管内的传输方向和强 度的变化.可以用菲涅尔公式来定量的描写这一过 程.反射率可表达为

^{*}国家自然科学基金(批准号:19775009)资助的课题.

$$\overline{R}(\theta) = \begin{bmatrix} 1 - \frac{4\beta}{\theta_c^2 \sqrt{(\theta_c/\theta)^2 - 1}} , \exists 0 \leq \frac{\theta}{\theta_c} < 1 - 2Y^2; \\ 0, \exists 1 - 2Y^2 \leq \frac{\theta}{\theta_c}. \end{bmatrix}$$
(2)

这里, $Y = \frac{\delta}{\beta}$, $\theta_c = \sqrt{2\delta}$ 是全反射临界角^[4].其二是 X射线在毛细导管管壁之间的传输过程.由于毛细 导管的最小线度大约为微米量级,而如上所述 X射 线的波长是纳米量级.这样,X射线在毛细导管管壁 之间的传输过程就可以几何光学的直线行进来描 写.

3. 微分几何 毛细导管内管壁的几何特性是 由微分几何中的空间曲面方程来描写. 如果同上述 的几何光学近似联系起来看 ,X 射线在毛细导管中 的整个传输过程在数学上就表现为 1)利用微分几 何的公式求 X 射线(见下面 4)和毛细导管内管壁的 交点 2)由微分几何和菲涅尔公式求反射 X 射线的 方向和强度.

4. 光束离散化假设 详细内容见下面计算模型.

5. 管壁内表面粗糙度假设 (2)式表明是将毛 细导管内管壁作为理想化的平滑几何曲面来看待 的.由于制造工艺等因素的影响,一个实际的毛细导 管内管壁并不是一个平滑的几何曲面而是一个不平 滑的粗糙曲面.已经知道,毛细导管内管壁的粗糙程 度对于 X 射线在毛细导管中传输有重要的影响.有 各种各样的方法来考虑毛细导管内管壁的粗糙度的 影响.本文采用沃勒-德拜公式来考虑表面粗糙度的 影响(2)式变为

$$\widetilde{R}(\theta) = \overline{R}(\theta) \exp\left(-\frac{(4\pi\sigma\sin\theta)^2}{\lambda^2}\right). \quad (3)$$

这里 σ 是描写毛细导管内管壁的粗糙程度的物理量.

3 计算模型

根据上述的 X 射线在毛细导管中传输的理论 描写 ,用 X 射线在弯的圆柱形毛细导管中传输效率 的计算作为一个例子 ,来简介一个新算法.

从光源出发照射到毛细导管入口端面上的一束 X 射线可以用若干条光线来近似(光束离散化假 设),保证光束离散化假设成立的一个条件是 $\theta_{\rm D} = \lambda/d < \theta_{\rm c}$.这里 , $\theta_{\rm D}$ 是细光束衍射发散角 ,d 是光束 直径.

X 射线通过毛细导管的传输效率 η 定义为

$$\eta = I_{\rm out}/I_{\rm in}$$
 , (4)

这里,*I*_{in}是入射到毛细导管入口端面的 X 射线的强度,*I*_{out}是从毛细导管出口端面出射的 X 射线的强度,*U*out是从毛细导管入口端面的一束 X 射线被分成 *M* 条光线,第 *m* 条光线的强度为 *I*_{in}(*m*).显然,

 $I_{in} = \sum_{m=1}^{M} I_{in}(m)$, $I_{out} = \sum_{m=1}^{M} I_{out}(m)$. 由此可将(4)式改写为

$$\eta = \sum_{m=1}^{M} I_{\text{out}}(m) / \sum_{m=1}^{M} I_{\text{in}}(m).$$
 (5)

现在,我们给出 $I_{out}(m)$ 的计算方法. 令第 m 条光 线在毛细管内壁经第一次反射后的强度为 $I_{re}(m)$, 1),那么

$$I_{\rm ref}(m,1) = I_{\rm inf}(m)\widetilde{R}(m,\theta_1), \qquad (6)$$

 $\widetilde{R}(m, \theta_1)$ 第 *m*条光线第一次反射的反射率.显然, 经 *q* 次反射后第*m*条光线的强度应为

$$I_{\rm re}(m,q) = I_{\rm in}(m) \prod_{s=1}^{q} \widetilde{R}(m,\theta_s). \quad (6)$$

若经 q 次反射后第 m 条光线射出毛细管 ,那么可得

$$I_{\text{out}}(m) = I_{re}(m,q) = I_{\text{in}}(m) \prod_{s=1}^{r} \widetilde{R}(m,\theta_s)$$
$$= I_{\text{in}}(m)\eta(m).$$
(7)

将(7)武代入(5)武,则(5)武可写为

$$\eta = \sum_{m=1}^{M} \eta(m) \zeta(m). \qquad (8)$$

这里

$$f(m) = \prod_{s=1}^{q} \widetilde{R} (m, \theta_{s}),$$

$$f(m) = I_{in}(m) \sum_{m=1}^{M} I_{in}(m)$$

显然,一旦知道 θ_s ,就可以依次求出 $R(m, \theta_s)$, $\eta(m),\eta$.下面给出 θ_s 的算法.

令 *S* 是源点,它的坐标为(x_s , y_s , z_s). *P* 是某一条光 线与毛细导管入口端面的交点,它的坐标为(x_p , y_p , z_p). 直线 *SP* 的方程为

$$\frac{x - x_s}{I_x} = \frac{y - y_x}{I_y} = \frac{z - z_s}{I_z} , \qquad (9)$$

式中(I_x , I_y , I_z)是直线 *SP*的方向余弦.直线 *SP*与 毛细管内壁的交点(x_c , y_c , z_c)由联立方程(9)和 (10)的解确定.

$$\left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = r^2$$
, (10)

式中 r 和 R 分别是毛细导管的半径和曲率半径.方程(10)是毛细管内壁曲面方程.根据微分几何,毛细管内壁外法线的方向余弦(E_x , E_y , E_z)可以表达为

$$E_{x} = \frac{\sqrt{x^{2} + y^{2} - R}}{\sqrt{x^{2} + y^{2}}} \frac{x}{r} ,$$

$$E_{y} = \frac{\sqrt{x^{2} + y^{2}} - R}{\sqrt{r^{2} + y^{2}}} \frac{y}{r} , E_{z} = \frac{z}{r} , \quad (11)$$

直线 SP 的掠射角 θ,可以表达为

 $\theta = \sin^{-1}(I_x E_x + I_y E_y + I_z E_z).$ (12) 为了最后完成关于我们的算法的描述,还需要知道 反射光线的方向余弦(O_x , O_y , O_z)它由下面的表达 式确定:

$$O_x = I_x - 2E_x \sin\theta , O_y = I_y - 2E_y \sin\theta ,$$

$$O_z = I_z - 2E_z \sin\theta.$$
(13)

4 结果和讨论

七十年代末,就提出了 X 射线在毛细导管中传 输的简单算法⁴¹.进入九十年代,由于光纤技术的 进步使得毛细导管组成的 X 射线透镜开始具有实 用价值.几种不同的典型算法先后提出.美国 Gibson 小组提出了一个 X 射线在毛细导管中传输的赝 重力加速模型(pseudo-gravitational acceleration).这 个模型的实质是将 X 射线在毛细导管中传输的)毛细 导管中传输近似为 X 射线在毛细导管子午面上的 传输^[5].因此 Gibson 小组的模型是一个近似结果, 不是一个严格结果.日本 Furuta 小组⁶¹和比利时 Vincze 小组⁷¹分别提出过描写 X 射线在毛细导管 中传输的细致的光线跟踪模型.但是,他们采用的用 来描写毛细导管内壁的曲面方程和我们的曲面方程 不一样.例如,Vincze 小组把弯的圆柱管内壁的曲面 方程写为

 $\mathbf{R}(z,\phi) = \mathbf{h}(z) + F(z) (\mathbf{e}_x \cos\phi + \mathbf{e}_y \sin\phi),$ (14)

这里,取 F(z)是 z 处的管内半径, e_x , e_y 分别是 x 和 y 轴的单位矢量.显然,在(14)式中半径为 F(z)的圆是同 z 轴垂直的.然而 (10)式确定的弯的圆 柱管内壁的曲面方程表明半径为 r 的圆是同弯圆 柱管轴线在 z 处的切线垂直的.在直管的情况下, (10)和(14)式没有区别.利用本文提出的算法 编制 了计算程序.下面给出计算结果并进行一些简要的 讨论.

1.X 射线在不同类型的毛细导管中的传输效率 之间存在着一些内在的关系.例如,曲率半径为 R的弯圆柱形毛细导管当R 趋向无穷大时弯圆柱形 毛细导管就会变成直圆柱形毛细导管.因此,如果计 算程序是正确的,当R 趋向无穷大时 X 射线在弯圆 柱形毛细导管中的传输效率就应趋向于 X 射线在 直圆柱形毛细导管中的传输效率.在表 1 展示了 X 射线在不同曲率半径的弯圆柱形毛细导管中的传输 效率和在直圆柱形毛细导管中的传输效率.在表 1 利用了如下的参数:X 射线能量 = 10.0keV,管半径 r = 0.05mm, 管长 L = 100.0mm, **焦**距 f = 80.0mm.

表1 不同曲率半径的传输效率

R/m	50	100	180	(straight)
η	0.98662	0.99558	0.99621	0.99630

2. 同 Gibson 小组实验和理论结果的比较.

Gibson 小组做过很多 X 射线在圆柱形毛细导 管中传输效率的实验和理论工作,一个典型结果在 表 2 中^[5].为了比较,本文的计算结果也列入其中. 由表 2 可见,本文的计算结果同 Gibson 小组的实验 结果符合得较好.表 2 中的参数 :X 射线能量 = 8.0keV,管半径 r = 0.003mm,管长 L = 150.0mm, 焦距 f = 100.0mm.

表 2 同 Gibson 小组实验和理论结果的比较

5.0	2.0	1.0	0.62
0.95	0.78	0.60	0.42
0.95	0.76	0.55	0.30
0.93	0.82	0.65	0.47
	5.0 0.95 0.95 0.93	5.0 2.0 0.95 0.78 0.95 0.76 0.93 0.82	5.0 2.0 1.0 0.95 0.78 0.60 0.95 0.76 0.55 0.93 0.82 0.65

3. 对一些实验结果的解释 ,Furuta 小组做了 X 射线在直毛细导管中传输效率的实验并提出了一个 X射线在直毛细导管中传输的理论描写来解释他们 的实验结果⁶¹. 我们的理论结果 ,Furuta 小组的理 论结果 ,Furuta 小组的实验结果都放在图 1 中. 由图 1 可见 ,Furuta 小组的理论结果和实验结果的拟合 并不好. 利用我们的模型 ,发现如果将直管改为曲率 半径为 16m 的弯管得到的理论结果和实验结果符 合得很好.

仅用改变粗糙度的大小不能拟合直管实验结果 的情况在文献 8 中也遇到过.我们的理论结果,文 献 8 的理论结果,文献 8 的实验结果都放在图 2 中.由图 2 可见,文献 8 的理论结果和文献 8 的实

图 1 和文献 6 给出的理论和实验结果比较 实圆 点 为 文 献 [6]的 实验结果(L = 25 cm, f = 60 mm, r =

0.0094mm);实线为文献 6 的理论结果(参数同上);虚线为本 文的理论结果(σ =3.0nm,R=16m 其他参数同上)

图 2 和文献 8 给出的理论和实验结果比较

实圆点为文献[8]的实验结果(L = 44cm, f = 160mm, r = 0.1mm);实线为文献 8 的理论结果(参数同上);虚线为本文的理论结果(σ=3.0nm, R = 70m, 其他参数同上)

验结果拟合得并不好.利用本文的模型,直管改为曲 率半径为 70m 的弯管同样可以使理论结果和实验 结果符合得很好.

现在对上述情况(要用弯管代替直管才能拟合 实验结果)给一个简单的物理解释.某些参量在实验 误差范围内的变化会使直管变成弯管.以直管的长 度 L_0 为例,设想长度为 L_0 的直管被放在距离为L的两点之间, $\Delta L = L_0 - L$ 为微米量级.显然,在实 验中微米量级的长度误差是可能出现的.这个微米 量级的长度误差就可能使直管变成弯管.进一步,设 想直管变成的弯管是圆弧形的.那么,弯管的曲率半 径就可以近似地表达为

$$R = \frac{L_0}{2} \sqrt{\frac{L_0}{6(L_0 - L)}}.$$
 (15)

由(15)式可以得到,当 $L_0 = 25$ cm, $\Delta L = L_0 - L$ 为 μ m时,R = 25m.

5 结 论

本文给出了 X 射线在毛细导管中传输特性的 简明而系统的理论描述,建立了相应的计算模型,编 制了相应的计算程序.利用编制的 X 射线在毛细导 管中传输计算程序得到的数值结果和实验结果符合 得很好.最后,提出了一个在实验误差范围内对理论 拟合有重要影响的因素.

- [1] M. A. Kumakhov, F. F. Komarov, Phys. Rept., 191(1990), 289.
- [2] Q. Xiao et al., SPIE, **1736** (1992) 227.
- [3] B. Z. Chen, Y. M. Yan, J. Beij. Norm. Univer. (Science Edition), 31 (1995) 31.
- [4] R. H. Pantell *et al.*, *IEEE*, **QE14**(1978), 694.
- [5] J.B. Ullich et al. J. Appl. Phys. **74** (1993) 5933.
- [6] K. Furuta et al. ,Rev. Sci. Instrum. 64 (1993),135.
- [7] L. Vincze et al. , Rev. Sci. Instrum. , 69(1998) 3494.
- [8] D.Y.Li et al. , J. Beij. Norm. Univer. (Science Edition), 31 (1995) 23.

THEORETICAL INVESTIGATION OF X-RAY TRANSMISSION THROUGH A CYLINDER CAPILLARY*

CHEN BAO-ZHEN

(Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875, China)
 (Received 5 January 2000; revised manuscript received 16 April 2000)

Abstract

A brief description of the systematic theory for X-ray transmission through a cylinder capillary is proposed. Based on the description, a calculation model for X-ray transmission through a cylinder capillary is suggested and a corresponding computer program is worked out. The numerical results of X-ray transmission through a cylinder capillary given by the computer program fit the corresponding experimental results very well.

Keywords : capillary , X-rays , transmission model PACC : 0785M , 0790C

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 19775009).