微波激励 ArS_2 体系机理的探讨*

刘晓亚¹⁾²) 李 $权^1$) 蒋 M^1) 朱正和¹) 陈涵德²) 金行星²) 唐永建²)

1(四川大学原子与分子物理研究所,成都 610065)
 2(西南核物理与化学研究所,绵阳 621900)

(2000 年 3 月 14 日收到 2000 年 7 月 5 日收到修改稿)

采用 *ab initio* MP2/6-31+G方法计算了 ArS₂体系分析势能函数.并在此基础上 对 Ar+S₂的非反应动力学过程 进行了研究.结果表明 Ar 与 S₂的结合为很弱的物理吸附 其间没有化学键生成.在所计算的能量范围 Ar 与 S₂的动 力学过程主要是非弹性碰撞.通过对非弹性碰撞产物的分析 结果显示 Ar 原子对 S₂基态($X^{3}\Sigma_{p}$)有碰撞激发作用.

关键词:ArS₂,分析势能函数,反应动力学,碰撞激发 PACC:3120D,3430,3450E

1 引 言

1977年 Leone 和 Kosmic^[1]证实了硫分子(S₂)经 过光抽运的 $B^3\Sigma_u^- - X^3\Sigma_a^-$ 跃迁 发射可见光和近紫外 波段的激光 特别是1980年 Peterson 和 Schlie² 用电 激励的方法观察到了强烈的 S₂(B-X)辐射 S₂作 为一个高效的放电辐射体和可能的激光应用引起了 人们的极大兴趣,开发出了用微波激励 S₂-Ar 体系 的无电极微波硫灯[3],利用微波激发的无极硫灯是 90年代初新发明的高效节能光源. 微波无极硫灯是 在发光体内充填硫元素和低压氩气,在频率为2.45 GHz 微波能量的驱动下,制成高光效、光色好、节 能、无汞害、光衰小、低紫外和红外光输出的优异性 能的新型照明光源系统,它具有不同于传统气体放 电光源的发光机理 集诸多优点与一身 已成为照明 领域中各国竟相研究的热点.美国融合(Fusion)照 明公司开展这一项目较早,率先于1996年研制出具 有实用价值的硫灯产品 Solar-1000型^[4].

迄今,美国、俄罗斯等在微波激励硫灯的研究中 取得很大进展,美国能源部还建立了高功率硫灯实 验室.我国的硫灯应用研究也已起步.复旦大学、中 国工程物理研究院相继研制成功微波激励硫灯,目 前的硫灯须在高电功率(1000 W 左右)条件下运作, 小功率硫灯还未见报道.从理论或实验上对其发光 机理和激发阈值的研究对小功率硫灯(完全可以替 代白炽灯)的开发应用具有重大意义.由于作为缓冲

*中国工程物理研究院基金(批准号 980447)资助的课题.

气体的 Ar 原子在硫灯中的作用不可忽视^[5],它在 硫灯的启动和激发中占有非常重要的地位. 因此 ,从 原子分子动力学的角度出发探讨硫灯的激发机理是 很有意义的. 本文通过对 ArS₂ 体系的分析势能函数 和 Ar 与 S₂($X^{3}\Sigma_{g}^{-}$)分子的动力学过程的研究 ,初步 得到在 S₂Ar 体系中 ,Ar 对硫灯的碰撞激发的作用 使得 S₂ 分子从 $X^{3}\Sigma_{g}^{-}$ 态激发到 $B^{3}\Sigma_{u}^{-}$ 态 ,从而实现 硫灯的发光.

2 ArS_2 体系分析势能函数

2.1 ArS₂结构和性质的 ab initio 计算

采用 MP2/6-31+G 方法优化出 ArS_2 的平衡几 何构型 其结构参量和二阶谐性力常数列入表1中.

表1 ArS2 结构和性质参量

	ArS ₂
	$R_{\rm S-S} = 0.21282 \rm nm$
平衡结构	$R_{\text{S-Ar}} = 0.44183 \text{ nm}$
	\angle SSAr = 180°
能量。)	-4.42285 eV
	f_r (SS) = 1.4997 × 10 ⁻¹
力常数 ^{b)}	f_{RR} (SAr)= 1.5744 × 10 ⁻⁴
	$f_{rR} = 3.04021 \times 10^{-5}$
	$f_{aa} = 5.03687 \times 10^{-4}$

^{。)}基态原子能量为能量零点,^{,,)}力常数为内坐标力常数,其单位为原 子单位制.

2341

从计算结果可知,基态 ArS_2 为线性结构,电子 态为 $X^3\Sigma$.

2.2 基态 ArS₂ 体系的多体项展式分析势能函数

基态 $ArS_2(X^3\Sigma)$ 属于 C_{∞_v} 构型,由原子分子静 力学^[6]确定其离解极限为

 $\operatorname{ArS}_{2}(X^{3}\Sigma) \rightarrow \begin{cases} \operatorname{Af}({}^{1}S_{g}) + 2\mathfrak{K}({}^{3}P_{g}), & (\mathbb{I}) \\ \operatorname{Arf}({}^{1}S_{g})^{*} + \mathfrak{S}_{2}(X^{3}\Sigma_{g}^{-}), & (\mathbb{I}) \\ \operatorname{SArf}(X^{3}\Sigma^{-}) + \mathfrak{K}({}^{3}P_{g}). & (\mathbb{II}) \end{cases}$

为了方便地研究势能函数,根据势能面上稳定 结构的结构特征,本文采用优化内坐标.对于三体 项,取ArS₂($X^{3}\Sigma$)的两个平衡结构键长的平均值为 参考结构, $R_{1}^{\circ} = R_{SS}^{\circ} = 0.21282 \text{ nm}, R_{2}^{\circ} = R_{3}^{\circ} =$ $R_{SAr}^{\circ} = 0.54824 \text{ nm},故内坐标 <math>\rho_{i}$ 经下列变换而成 为优化内坐标 S_{i} :

$$\begin{bmatrix} S_1 \\ S_2 \\ S_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{bmatrix}, \quad (1)$$

式中 $\rho_i = R_i - R_i^{\circ}$ (*i*=1 2 3).

若基态原子能量设为能量零点,满足离解极限 (Ⅰ)(Ⅱ)(Ⅲ)的多体项展式分析势能函数 为^[7—9]

$$V(R_1, R_2, R_3) = V_{SS}^{(2)}(R_1) + V_{SAr}^{(2)}(R_2) + V_{SAr}^{(2)}(R_3) + V_{ArSS}^{(3)}(R_1, R_2, R_3), (2)$$

式中 $V_{SAr}^{(2)}$ (R_2)和 $V_{SAr}^{(2)}$ (R_3)为 SAr 双原子分子 在基态时的双体项势能函数.由于 SAr($X^3\Sigma$)属于 van der Waals 分子,其相互作用势较弱,长程势较为 明显.因此,对于这个双原子分子的势能函数,本文 采用既有长程式又有短程式的双体势能函数,其形 式为^[10]:

$$V = A(1 + a_1R + a_2R^2 + a_3R^3)$$

$$\cdot \exp(-a_4R) - \tanh(R - R_m/2)$$

$$\cdot (C_6R^{-6} + C_8R^{-8} + C_{10}R^{-10}), \quad (3)$$

式中 $R_{\rm m}$ 为双原子分子的平衡距离 ; A_{a_i} 和 C_i 均为势能参量 ,其参量见表 2.

对(2)式中 S₂($X^{3}\Sigma_{g}^{-}$)双原子分子的双体势能 函数,本文采用 Murrell-Sobie(MS)函数,其形式 为^[11]:

$$V^{(2)}(R) = -D_{e}(1 + a_{1}\rho + a_{2}\rho^{2} + a_{3}\rho^{3})\exp(-a_{1}\rho), \quad (4)$$

式中 $\rho = R - R_{e}$, R_{e} 为双原子分子的平衡核间距, D_{e} 为离解能, a_{i} 为势能参量, 表 3 给出了 S₂ 双原子 分子的势能参量.

表 2 SAr($X^3\Sigma^-$)双体项参量*

	SAr($X^3\Sigma^-$)
$R_{\rm m}/{\rm nm}$	0.40498
A/eV	7.0020×10^{3}
a_1/nm^{-1}	73.207
a_2/nm^{-2}	-667.03
a_3/m^{-3}	1982.4
a_4/nm^{-4}	45451.0
$C_6/\text{eV}\cdot\text{nm}^6$	1.5104×10^{-4}
$C_8/\text{eV}\cdot\text{nm}^8$	-1.4697×10^{-5}
C_{10} /eV·nm ¹⁰	1.0904×10^{-7}

* SAr 二体项参数由 ab initio 计算获得

表 3 S₂($X^{3}\Sigma_{\sigma}^{-}$)双体项参量*

	$D_{\rm e} {\rm /eV}$	$R_{\rm e}/{\rm nm}$	a_1/nm^{-1}	a_2/nm^{-2}	a_3/nm^{-3}
S_2 ($X^3\Sigma_g^-$)	4.414	0.18892	39.54	431.2	2332.0

* S₂ 二体项参量由实验数据拟合获得¹²].

$$V_{\text{ArSS}}^{(3)}(R_1, R_2, \dot{R}_3) = PT$$
, (5)

式中 P 为优化内坐标 S 的多项式 ,T 为量程函数 , 本文所采用的形式为

$$P = C_0 + C_1 S_1 + C_2 S_2 + C_3 S_2^2 + C_4 S_3^2 + C_5 S_1 S_2 + C_6 S_3^4 , \qquad (6)$$

 $T = \begin{bmatrix} 1 - \tanh(\gamma_1 S_1/2) \end{bmatrix} 1 - \tanh(\gamma_2 S_2/2) \end{bmatrix}$

$$\cdot [1 - \tanh(\gamma_3 S_3/2)]. \tag{7}$$

在(2)式中有7个线性系数 C_i 和3个非线性系数 γ_i .对全势能表面进行非线性优化,确定出3个非线性系数,而7个线性系数 C_i 由7个已知条件确定,所确定的分析势能函数(2)式的参量见表4.

表 4 分析势能函数的三体项参量

$C_{3} - 1.760645 \times 10^{-2} C_{4} - 2.879053 \times 10^{-1} C_{5} - 6.220108 \times 10^{-1} C_{6}$ $C_{6} - 6.798081 \times 10^{-2} \gamma_{1} = 1.70 \gamma_{2} = 0.45 \gamma_{3} = 1.0$	$C_0 = 6.195807 \times 10^{-1}$	$C_1 = 2.794965 \times 10^6$	$C_2 = 8.531314 \times 10^{-2}$
$C_6 6.798081 \times 10^{-2}$ $\gamma_1 = 1.70 \qquad \gamma_2 = 0.45 \qquad \gamma_3 = 1.0$	$C_3 = 1.760645 \times 10^{-2}$	$C_4 = 2.879053 \times 10^{-1}$	$^{-1}C_5 - 6.220108 \times 10^{-1}$
$\gamma_1 = 1.70$ $\gamma_2 = 0.45$ $\gamma_3 = 1.0$	C_6 6.798081×10 ⁻²		
.1 .2 .3	$\gamma_1 = 1.70$	$\gamma_2 = 0.45$	$\gamma_3 = 1.0$

根据分析势能函数绘制的等值势能图如图 1、 图 2、图 3 和图 4.图 1 是固定 \angle SSAr = 180°时,把 S—Ar 键固定在 X 轴上,表现 S—Ar 键和

图 1 ArS₂伸缩振动图 1—9等值线为:-4.42275,-3.5,-2.0,-0.1,-0.01,-0.008,-0.006,-0.003,-0.001 eV

图 2 ArS₂伸缩振动放大图 1—6 等值线为:-4.422836, -4.4228,-4.4225,-4.4221,-4.42216,-4.42 eV

S-S 键伸缩振动的等值势能图,由于势能面表面 浅平,该图很难看出线性ArS,的平衡结构.为此做 了局部放大,如图2.在放大图中可以准确地分析出 平衡结构 $R_{SS} = 0.21282 \text{ nm}$, $R_{SAr} = 0.44183 \text{ nm}$), 在该平衡结构下准确地再现了离解能 $D_e = 4.42285$ eV. 而且从图 1 和图 3 可知, 通道 Ar + S,→ArS, 通 道上有一个鞍点(R_{SAr} = 0.641 nm, R_{SS} = 0.205 nm ,E = -4.4055 eV),而在 S+SAr→ArS₂ 通道上 也存在一个鞍点($R_{SAr} = 0.432 \text{ nm}$, $R_{SS} = 0.670$ nm, E = -0.007 eV). 这表明当 Ar 原子向 SS 接近 时大约要克服 0.0085 eV 的能垒 由于 S—Ar 键很 弱 其键能为 0.0107 eV(由 ab initio 计算获得) 基 本上可以看作是物理吸附,所以 SAr 之间没有生成 化学键,虽然在通道Ar+S,→ArS,上有鞍点存在, 但非常小;当S原子向 S—Ar 接近时大约要克服 0.0037 eV 的能垒 由于 S-Ar 之间基本上可认为

是物理吸附,当 S 原子向 S—Ar 接近时,可以看作 是 S 原子向 S 原子相接近, S 原子与 S 原子反应是 强烈的放热反应没有活化能,也无鞍点存在,而我们 所得出的势能函数存在一个非常小的鞍点,这是由 于当 S 原子向 S—Ar 接近时需要克服 S 原子对 Ar 原子物理吸附的影响.

图 3 ArS₂伸缩振动放大图 1—5 等值线为:-4.415,-4.41, -4.406,-4.405,-4.4 eV

图 4 是固定 $R_{SS} = 0.21282 \text{ nm}$,把 S—S 键固 定在 X 轴上,让 Ar 原子绕 S—S 分子旋转时的等 值势能图.图 4 中已清楚地表示出了平衡态 ArS_2 的 结构特征,有两个等价的线性极小($X = \pm 0.54824$ nm),在线性结构的极小点之间的平分线上存在一 个角形的鞍点,分析鞍点附近的等值势能线,其结构 为 X = 0.0 nm, Y = 0.770 nm,鞍点的能量为 -4.402 eV即 Ar 绕 S—S 旋转时 Ar 要发生内迁 移需翻越能垒为 0.0208 eV,这说明在 S—S 键的 平分线上 S 原子对 Ar 原子的排斥比其他位置强.

图 4 ArS₂ 旋转图 1—9 等值线为:-4.4228,-4.421, -4.38,-4.3,-4.2,-4.1,-4.03,-4.01,-4.0 eV

3 Ar和 S₂分子的碰撞动力学

3.1 计算方法

分子动力学研究的基石就是分析势能函数,为 此采用上面所计算的能全面反映 ArS₂($X^{3}\Sigma$)结构 和性质的分析势能函数和数据.势能函数形式为(2) 式,其中 R_1 , R_2 和 R_3 分别表示 ArS₂体系中 Ar—S, S—S 和 Ar—S 的核间距离.

势能函数(2)式确定之后,用 Monte-Carlo 准经 典轨线方法^{13—15}求解 Hamilton 运动方程.设A + BC 三原子碰撞体系中各个原子的质量分别为 m_A , m_B 和 m_C ,在直角坐标系中,坐标分别为 A(q_1 , q_2 , q_3),B(q_1 , q_2 , q_3)和 C(q_1 , q_2 , q_3),相应的共轭动 量为 A(p_1 , p_2 , p_3),B(p_1 , p_2 , p_3)和 C(p_1 , p_2 , p_3).因此,描述三粒子状态的 Hamilton 运动方程必须建立 18 个,在质心坐标系这 18 个运动方程经坐标变换,获得相对 Hamilton 运动方程 12 个,采用内 坐标经过坐标再变换,可以建立起内坐标(R_1 , R_2 , R_3)表示的势能函数的 Hamilton 运动方程 12 个.对 此方程组进行 Runge-Kutta-Gill(RKG)法和 Adms-Moultor(AM)法联合数值求解,最后得出在一系列 初始相对平动能 E_t 下产物 S₂分子的振动量子数 (ν)分布.即

$$\begin{cases}
\frac{\partial H}{\partial p_i} = \dot{q}_i \\
\frac{\partial H}{\partial q_i} = \dot{p}_i
\end{cases}$$
(1) (8)

反应截面 σ_r 按

$$\sigma_{\rm r} = (E_{\rm t}, \nu, J) = \pi b_{\rm max}^2 \lim_{N \to \infty} \frac{N_{\rm t}(E_{\rm t}, \nu, J)}{N(E_{\rm t}, \nu, J)} (9)$$

计算,式中 $N \subseteq N_r$ 分别是计算的总的轨线数与指定生成物的轨线数; b_{max} 为最大碰撞参数; E_t 为初始相对平动能; ν , J 分别为振动和转动量子数.在计算中N 取为 5000,通过试算的方法选取 b_{max} .即对每一个初始平动能 E_t 选一系列的碰撞参数值,并且对这些碰撞参数不做随机取样,这样得到一系列的碰撞结果,从中选取刚好处于非弹性碰撞和弹性碰撞临界状态的结果所对应的值作为最大碰撞参数 b_{max} .

3.2 结果与讨论

用 Monte-Carlo 方法选取初始变量,采用 general trajectory program 计算程序,初始平动能分别为 0.3474×10^{-19} , 0.6948×10^{-19} , 1.3896×10^{-19} , 3.4739×10^{-19} , 6.9478×10^{-19} , 10.4217×10^{-19} , 13.8956×10^{-19} , 20.8434×10^{-19} J, S₂ 基态 ($X^{3}\Sigma_{g}^{-}$)的初始振动量子数分别设为 0,10,20,30, 40 对 Ar + S₂($X^{3}\Sigma_{g}^{-}$)体系进行了一系列轨线计 算.Ar 到 S₂($X^{3}\Sigma_{g}^{-}$)质心之间的初始距离为 ρ . 当 初始振动量子数为 V'' = 0,10,20,30,40 时,绝大部 分反应产物为非弹性碰撞产物.

当初始振动量子数为 V'' = 0,10,20,30,40 时, 非弹性碰撞的产物分布见表 5 和表 6.

表 5 Ar + S₂($X^{3}\Sigma_{g}^{-}$)碰撞产物各振动能级上的 粒子数相对分布率($V''=0, \rho=2.0 \text{ nm}$)

	0.4174	0.6948	1.3896	3.4739	6.9478	10.4217	13.8956	20.8434
0	100	99.7	92.7	74.2	58.6	56.9	50.0	38.1
1—49		0.3	7.3	25.8	41.4	43.04	49.94	61.89

注: E_t 的单位是 10^{-19} J, V 是产物的振动量子数.

表 6 $Ar + S_2(X^3\Sigma_g^-)$ 碰撞产物各振动能级上的

粒子数相对分布率($\rho = 2.0 \text{ nm}$)

$V^{''}$	V E_t V	1.3896	3.4739	6.9478	10.4217	13.8956	20.8434
	10	13.86	11.92	7.20	3.20	9.62	2.48
10	0—9	48.07	42.86	46.42	28.76	41.60	32.56
	11—49	38.07	45.22	46.32	67.47	48.76	64.51
	20	6.42	4.801	4.828	4.30	3.341	3.140
20	0—19	59.03	55.71	56.42	56.28	51.49	55.12
	21—49	34.55	39.48	38.75	39.42	45.16	41.712
	30	3.980	3.158	2.465	2.97	3.520	2.992
30	0—29	74.61	73.26	68.15	67.47	71.24	55.36
	31—49	21.39	23.58	29.38	29.56	25.24	41.65
40	40	2.936	2.591	2.126	2.208	2.133	2.514
	0—39	87.69	86.66	85.94	85.37	84.217	83.29
	41—49	9.385	10.75	11.89	11.88	13.35	14.18

注 : E_t 的单位是 10^{-19} J , V 是产物的振动量子数 , V["]是初始振动量 子数.

从表 5 可知,当初始 V["] = 0 时,产物分布在 V = 0 振动能级上的布居率随能量的增加而减少,而 分布在 V = 1—49 振动能级上的布居率随能量的增 加而增加,在 $E_t = 13.8956 \times 10^{-19}$ J时,V = 1—49 振动能级上的粒子数大于 V = 0 振动能级上的粒子 数,如图 5.当 V'' = 10 时,产物分布在 V > 10 能级 上的比率随 Ar 原子的初始平动能的增加呈上升趋 势,最高达到 67.47,之后在能量为 13.8956×10⁻¹⁹ J 时降为 48.76,当能量为 20.8434×10⁻¹⁹ J 时回升 到 64.51.相反,分布在 V = 10 及之下振动能级上 的粒子数 随能量的增加而大致呈下降趋势.当 V''= 20 ,30 ,40 时,碰撞产物分布在高于初始 V''的振 动能级上的布居率也随 Ar 原子的初始平动能的增 加而基本上呈上升趋势,如表 6.另一方面,当 S₂($X^3\Sigma_g^-, V'' = 0$)分子在具有较高初始平动能的 Ar 原子碰撞作用下,一定数目的 S₂ 分子能逐步达 到较高的基态振动能级上.

图 5 Ar + S₂($X^{3}\Sigma_{g}^{-}$)碰撞产物在各振动能级上的相对分布 (V''=0)

按照谐振子模型,振动能级之间为等间距,S₂ 分子基电子态上的振动能级数目为 49,所以,计算 程序及统计结果都以 49 为最高的基态上的振动能 级,超过该值就认为是离解了或被激发到更高的电 子态上.S₂ 分子基电子态 $X^{3}\Sigma_{g}^{-}$ 和激发态 $B^{3}\Sigma_{u}^{-}$ 的能 级相对位置互相嵌套^[2,12,16],使得 $B^{3}\Sigma_{u}^{-}$ 态的最低 振动能级低于基态 $X^{3}\Sigma_{g}^{-}$ 的离解极限.通过计算, $B^{3}\Sigma_{u}^{-}$ 激发态的能量最低点对应基态 $X^{3}\Sigma_{g}^{-}$ 的V=43 的振动能级,这就意味着处在高于 43 振动能级的基 态 S₂ 分子,通过碰撞转移,可直接激发到 $B^{3}\Sigma_{u}^{-}$ 态 的较低振动能级.而被碰散的结果中(既振动量子数 大于 49),也可认为大部分被激发到 $B^{3}\Sigma_{u}^{-}$ 电子态 上.为此统计了振动量子数大于 43 的非弹性碰撞产 物,包括碰散的产物,这些结果可认为是能被激发到 $B^{3}\Sigma_{u}^{-}$ 能级上的,见表 7 和图 6.
 10.4217
 2.13
 7.686
 33.018

 13.8956
 8.488
 15.012
 32.795

 20.8434
 17.44
 24.973
 46.349

注:V是产物的振动量子数.

图 6 Ar + S₂($X^{3}\Sigma_{g}^{-}$)碰撞产物在各振动能级上的相对分布 (V > 43)

从表 7 和图 6 知 ,随着 Ar 原子初始平动能的增加 ,产物被激发到高于 43 振动能级的粒子数也随之 增加 ;另一方面 ,随着 S₂($X^3\Sigma_g^-$)分子所处的初始振 动量子数的增大 ,产物被激发到高于 43 振动能级的 粒子数也随之增加.

综上所述,在 Ar 与 S₂ 基态($X^{3}\Sigma_{g}^{-}$)的碰撞过 程中 绝大部分是弹性碰撞,随着 Ar 原子的初始平 动能和 S₂($X^{3}\Sigma_{g}^{-}$)分子基态初始振动量子数的增 加 S₂ 分子基态被激发到激发态($B^{3}\Sigma_{u}^{-}$)的可能性 大大增加.在 Ar 原子动能较低(小于 1. 3896 × 10⁻¹⁹ J)的时候,有少量的弱结合分子 ArS₂ 生成,如 果有大量的 ArS₂ 分子存在于硫灯中,将不利于硫灯 中 S₂($X^{3}\Sigma_{g}^{-}$)分子的激发甚至不会产生光辐射,但 在硫灯的微波场中,Ar 原子的平动能不会小于 1.3896×10⁻¹⁹ J,这对硫灯的激发没有影响.

4 结 论

从原子分子动力学角度出发研究微波硫灯的激发机理,在于探究 Ar 与 S₂ 分子基态($X^3 \Sigma_g^-$)在微波场中相互作用关系.微波等离子体激发是一种激

43.542

48.730

56.530

发途径,从文献[2,12,16]可知,S₂分子基电子态 $X^{3}\Sigma_{g}^{-}$ 和激发态 $B^{3}\Sigma_{u}^{-}$ 的能级相对位置互相嵌套,不 依靠三体复合过程电子很容易使S₂分子基态 $X^{3}\Sigma_{g}^{-}$ 激发到 $B^{3}\Sigma_{u}^{-}$ 激发态,但 Ar 的电离能很高,不容易 电离,产生的电子非常少,因此,等离子体激发不一 定是主要的激发途径.为此,通过对 Ar 与 S₂($X^{3}\Sigma_{g}^{-}$)动力学过程的研究表明,Ar 在硫灯中有 碰撞激发的作用.在 Ar 的碰撞下,S₂($X^{3}\Sigma_{g}^{-}$)被逐 步激发到较高振动能级,当基态S₂分子处在大于 43的振动能级上时通过与 Ar 原子的碰撞能量转移 激发到 $B^{3}\Sigma_{u}^{-}$ 激发态.即在 Ar 原子的碰撞作用下: Ar+S₂($X^{3}\Sigma_{g}^{-}$,V''=0)→Ar+S₂(V''>0)→Ar+S₂ (V''>10)→Ar+S₂(V''>20)...→Ar+S₂(V''>43) →Ar+S₂($B^{3}\Sigma_{u}^{-}$).从而完成S₂分子基态 $X^{3}\Sigma_{g}^{-}$ 到 激发态 $B^{3}\Sigma_{u}^{-}$ 的激发.与此类似 S与S₂分子等对S₂ ($X^{3}\Sigma_{g}^{-}$)的碰撞应有同样的结果,它们也能通过碰 撞把S₂的 $X^{3}\Sigma_{g}^{-}$ 激发到 $B^{3}\Sigma_{u}^{-}$ 激发态,具体是否如 此,有待于进一步探讨.总之,在硫灯中原子分子碰 撞激发的机理占有重要地位.这些研究对硫灯的激 发机理提供理论指导,对硫灯的开发应有重要的理 论指导意义.

- [1] S. R. Leone, K. G. Kosmic, Appl. Phys. Lett., 30 (1977), 346.
- [2] D. A. Peterson, L. A. Schlie, J. Chem. Phys., 73 (1980), 1551.
- [3] E. Z. Wang, *Vacuum Electronics*, 3(1988), 11(in Chinese) [王尔镇,真空电子技术,3(1988), 11].
- [4] W. X. Cai, J. Yang, D. H. Chen et. al., Zhaoming Gongcheng Xuebao, 10(1999), 6(in Chinese] 蔡伟新、杨 捷、陈大华等,照明工程学报, 10(1999), 6].
- [5] C. L. Yang, Z. H. Zhu, Acta Physica Sinica, 48(1999), 1852 in Chinese 【杨传路、朱正和,物理学报,48(1999), 1852].
- [6] Z. H. Zhu, H. G. Yu, Molecular Structure and Molecular Reaction Statics Science Press, Beijing, 1996 (in Chinese] 朱正 和、俞华根,原子分子反应静力学(科学出版社,北京, 1996)].
- [7] Z. H. Zhu, H. G. Yu, Molecular Structure and Molecular Potential Energy Function (Science Press, Beijing, 1997) in Chinese Ⅰ 朱正和、俞华根, 分子结构与分子势能函数(科学出版 社,北京, 1997)].
- [8] H.Y. Wang, T. Gao, Y. G. Yi, M. L. Tan, Z. H. Zhu, Y. B. Fu, X. L. Wang, Y. Sun, *Acta Physica Sinica*, 48 (1999),2215 (in Chinese] 王红艳、高 涛、易有根、谭明亮、朱正和、傅依备、汪小琳、孙 颖,物理学报,48(1999),2215].
- [9] H. Y. Wang, T. Gao, Y. G. Yi, M. L. Tan, Z. H. Zhu, Y. Sun, X. L. Wang, Y. B. Fu, Acta Physica Sinica, 48

(1999), 2222(in Chinese]王红艳、高 涛、易有根、谭明亮、 朱正和、孙 颖、汪小琳、傅依备,物理学报,48(1999), 2222].

- [10] P. Huxley, D. B. Knowles, J. N. Murrell, J. D. Watts, J. Chem. Soc. Faraday Trans., 2 (1984), 1349.
- [11] P. Huxley, J. N. Murrell, J. Chem. Soc. Faraday Trans., 2(1983), 323.
- [12] Y. J. Tang, T. Gao, H. Y. Wang, X. Y. Liu, Y. G. Yi, Z. H. Zhu, Y. K. Zhao, *Chinese J. Atomic and Mol. Phys.*, 15(1998), 159(in Chinese] 唐永建、高 涛、王红艳、 刘晓亚、易有根、朱正和、赵永宽,原子与分子物理学报, 15 (1998), 159].
- [13] S. Q. Yu, Microchemistry Reaction (Anhui Scientific Press, Hefei, 1983) in Chinese I 俞书勤,微观化学反应(安徽科学 技术出版社,合肥, 1983)].
- [14] J. J. Jin, Molecular Chemistry Reaction Dynamics (Shanghai Communication University Press, Shanghai, 1988) in Chinese)
 [金家骏,分子化学反应动力学(上海交通大学出版社,上海, 1988)].
- [15] J. M. Fu, Z. H. Zhu, Chinese J. Atomic and Mol. Phys., 3 (1991), 1901 (in Chinese) 傅金明、朱正和,原子与分子物理学报, 3 (1991), 1901].
- [16] Y. J. Tang, Y. K. Zhao, Z. H. Zhu, Y. B. Fu, Acta Physica Sinica, 47 (1998), 1600(in Chinese] 唐永建、赵永宽、朱 正和、傅依备,物理学报, 47 (1998),1600].

LIU XIAO-YA³)^b LI QUAN^a) JIANG GANG^a ZHU ZHENG-HE^a CHEN HAN-DE^b JIN XING-XING^b TANG YONG-JIAN^b)

^a (Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China)
 ^b (Southwestern Institute of Nuclear Physics and Chemistry, Mianyang 621900, China)

(Received 14 March 2000; revised manuscript received 5 July 2000)

Abstract

Based on ArS₂ analysis potential function, which was calculated using *ab initio* MP2/6-31 + G method and multibody expansion theory, the dynamic process has been studied. The results indicated that the restraint of Ar and S₂ due to physical adsorption, and the reaction of Ar and S₂ is primarily non-elasticity collision at a serial set of energies. Through analysis of inelastic collision products, it is shown that Ar atom can excite S₂($X^3\Sigma_g^-$) to S₂($B^3\Sigma_u^-$) gradually.

Keywords : ArS_2 , analysis potential energy function , reaction dynamics , collision excitation PACC : 3120D , 3430 , 3450E

⁴⁹ 卷

^{*} Project supported by the Science Foundation of China Academy of Engineering Physics (Grant No. 980447).