PuHⁿ⁺(n=123)分子离子的势能函数与稳定性*

李 $权^{1}$ ²) 刘晓亚¹) 王红艳¹) 朱正和¹)

1(四川大学原子与分子物理研究所,成都 610065)

2(四川师范大学化学系,成都 610066)

傅依备 汪小琳 孙 颖

(西南核物理与化学研究所 绵阳 621900)

(2000年4月2日收到 2000年6月25日收到修改稿)

用密度泛函 B3LYP 方法对 PuHⁿ⁺(n = 1 2 3)分子离子进行了理论研究.结果表明 ,PuH⁺ ,PuH²⁺ 分子离子能 稳定存在 基态电子状态是 $X^7\Sigma^-$ (PuH⁺)和 $X^8\Sigma^-$ (PuH²⁺),并导出了相应的几何性质、力学性质和光谱数据. PuH³⁺($^7\Sigma^-$)分子离子不能稳定存在.

关键词:PuHⁿ⁺,分子离子,势能函数,密度泛函理论(DFT) PACC:3120D,3420

1 引 言

金属钚有活泼的化学性质,极易与 H₂,H₂O (g),O₂和 CO 等物质发生反应.PuO 分子和 PuH 分 子是重要的钚化合物,PuO 分子及分子离子的结构 和势能函数,文献[1,2]已有报道,文献[3]报道了 PuH 分子的势能函数与光谱数据,关于 PuH 分子离 子的势能函数与稳定性尚未见报道.关于 PuH 分子 离子的稳定性对钚材料的理论研究,对于进一步提 高钚表面的抗腐蚀能力有重要意义.

锕系元素化合物的核外电子数多,交换作用比 较复杂,相对论效应不能忽视.用 *ab initio* 研究锕 系元素化合物时,在相对论有效原子实势 (RECP)⁴¹近似下,用密度泛函理论(DFT)可方便 地处理电子相关问题,给出的结果合理可靠,与实验 结果符合甚好^{2,5-71}.

本文采用 Gaussian 94 程序,在 Pu 原子 RECP 近似下,用 B3LYP(Becke 三参数交换函数与 Lee-Yang-Parr 相关函数组成的杂化 DFT 方法)方法对 PuHⁿ⁺¹(n=1 2 3)分子离子体系进行研究.

2 对称化基函数(SBF)

Pu 原子使用文献[6]报道的收缩基函数

[3s3p2d2f],即 3 个 s 型轨道,分别用 5 个、6 个和 1 个高斯函数展开 3 个 p 型轨道,分别用 4 个、5 个和 1 个高斯函数展开 2 个 d 型轨道,均用 1 个高斯函 数展开 2 个 f 型轨道,均用 2 个高斯函数展开.H原 子用 6-311G * 基函数(4s3p1d),即 4 个 s 型轨道,分 别用 6 个、3 个、1 个和 1 个高斯函数展开; 3 个 p 型 轨道,分别用 3 个、1 个和 1 个高斯函数展开; 1 个 d 型极化轨道,用 1 个高斯函数展开.计算 PuH 分子 离子时基函数共为: $T(s 轨道)+6 \times 3(p 轨道)+3 \times$ $S(d 轨道)+2 \times T(f 轨道)=54 个,展开基函数所用$ 高斯函数为 23+45+15+28=111 个.

PuH 分子离子属 C_{∞_v} 群,计算时用其子群 C_{2v} 群, C_{2v} 群共有四类不可约表示,即四个类型的电子 状态 A_1 , A_2 , B_1 和 B_2 以及四个类型的分子轨道 a_1 , a_2 , b_1 和 b_2 .上述 54 个基函数必须进行对称匹 配才有实际物理意义.根据 C_{2v} 群的原子轨道型对 称化基函数可得 PuH 分子离子的四个不可约表示 的原子轨道型对称化基函数,具体如下:

 A_1 23 个 SBF 即 7 个 S 6 个 P_z 3 个 d_{z^2} 3 个 $d_{x^2-y^2}$ 2 个 f_{z^3} 2 个 $f_{z(x^2-y^2)}$ 轨道函数,

A₂ 5个 SBF 即 3个 d_{xy} 2个 f_{zry}轨道函数,

 B_1 13 个 SBF 即 6 个 p_x 3 个 d_{xz} 2 个 f_{xz^2} 2 个 $f_{x(x^2-3y^2)}$ 轨道函数,

 B_2 13 个 SBF 即 6 个 p_y 3 个 d_{yz} 2 个 f_{yz}^2 2

^{*}国家自然科学基金(批准号:19974026),中国工程物理研究院基金(批准号 9950731)和四川省教育厅青年基金(川教计 26号)资助的课题.

个 $f_{y(3r^2-y^2)}$ 轨道函数.

3 PuHⁿ⁺(n = 1,2,3)分子离子的离 解极限与势能函数

分子势能函数对应一定的电子状态,为了准确 表达体系的势能函数,须首先确定正确的离解极限 和可能的电子状态.可根据原子分子反应静力学原 理⁸³来确定离解极限和可能电子状态.

从头计算给出 PuH⁺,PuH²⁺和 PuH³⁺分子离 子的离解通道分别如下:

> $PuH^{+} \longrightarrow Pu^{+} + H ,$ $PuH^{2+} \longrightarrow Pu^{2+} + H ,$ $PuH^{3+} \longrightarrow Pu^{2+} + H^{+} .$

 $Pu^+ 和 Pu^{2+}$ 的基电子状态分别为²¹ ${}^{8}F_{g}$ 和 ${}^{7}F_{g}$;H和 H⁺的基电子状态分别为^[9] ${}^{2}S_{g}$ 和 ${}^{1}S_{g}$.根 据原子分子反应静力学原理 ,Pu⁺ ,Pu²⁺ ,H和 H⁺ 属于 *SU*(*n*)群 ;PuH⁺ ,PuH²⁺和 PuH³⁺属于 $C_{\infty_{v}}$ 群 ,*SU*(*n*)群的对称性高于 $C_{\infty_{v}}$ 群 ,当对称性降低 形成分子离子时 ,*SU*(*n*)群的不可约表示可分解为 $S_{\infty_{v}}$ 群的不可约表示的直和 ,通过直积和约化可得 $C_{\infty_{v}}$ 群的不可约表示 ,即所形成分子离子的可能电 子状态 .Pu⁺(${}^{8}F_{g}$)和 H(${}^{2}S_{g}$)分别分解为 $C_{\infty_{v}}$ 群表 示的直和为

 ${}^8\mathrm{F}_\mathrm{g} {\longrightarrow} {}^8\Sigma^- {\bigoplus} {}^8\Pi {\bigoplus} {}^8\Delta {\bigoplus} {}^8\Phi$,

 $^{2}S_{g} \longrightarrow ^{2}\Sigma^{+}$.

两者直积并约化为

 ${}^{8}F_{g} \otimes {}^{2}S_{g} = ({}^{8}\Sigma^{-} \oplus {}^{8}\Pi \oplus {}^{8}\Delta \oplus {}^{8}\Phi) \otimes {}^{2}\Sigma^{+}$

 $= {}^{7} {}^{9}\Sigma^{-} \bigoplus {}^{7} {}^{9}\Pi \bigoplus {}^{7} {}^{9}\Delta \bigoplus {}^{7} {}^{9}\Phi.$

所以 ,PuH⁺分子离子的可能电子状态有 ? Σ^{-} , Σ^{-} , $^{7}\Pi$, $^{9}\Pi$,... ;同理 ,PuH²⁺分子离子的可能电子状态 有 $^{6}\Sigma^{-}$, $^{8}\Sigma^{-}$, $^{6}\Pi$, $^{8}\Pi$,... ;PuH³⁺分子离子的可能电 子状态有 $^{7}\Sigma^{-}$, $^{7}\Pi$, $^{7}\Delta$, $^{7}\Phi$.

采用 Pu 原子的 RECP 近似和 H 原子的 6-311G * 全电子基函数 ,用 B3LYP 方法计算 PuH⁺ 分子离 子 7 重态和 9 重态 ,PuH²⁺ 分子离子 6 重态和 8 重 态 ,PuH³⁺ 分子离子 7 重态 ,优化结果见表 1、表 2 和 图 1—图 4.

由表 1 和图 1 知 ,PuH⁺ 分子离子的基态为 X $^{7}\Sigma^{-}$,而 $^{9}\Sigma^{-}$ 为激发态 ,由表 2 知 :PuH²⁺ 分子离子的 基态为 X $^{8}\Sigma^{-}$.

表 1 PuH⁺ 分子离子的电子组态、电子状态和 平衡几何与能量的优化结果

电子组态	电子状态	平衡核间距 R _e /nm	平衡能量 E/Hartree
α电子 σππσπσδ δφφσ β电子 σππσσ	⁷ ∑ ⁻	0.208	- 72. 13649
α电子 σσππσππ δδφφσ β电子 σσππ	⁹ ∑ ⁻	0.326	- 72.065997

表 2 PuH²⁺分子离子的电子组态、电子状态和 平衡几何与能量的优化结果

电子组态	电子状态	平衡核间距 _{Re} /nm	平衡能量 E/Hartree
α电子 σππσσσδ δππσ β电子 σππσ	$8\Sigma^{-}$	0.262	- 71.65720
α电子 σππσσδδ ππσ β电子 σππσσ	⁶ ∑ [−]	0.196	- 71.64430

图 1 PuH⁺和 PuH²⁺分子离子的势能曲线

从头计算 Pu⁺(⁸F_g), Pu²⁺(⁷F_g)和 H(²S_g)的能 量 E 分别为 - 71. 5773664, - 71. 149496 和 -0.5021559 Hartree; $E(Pu^+) + E(H) =$ -72.0795223 Hartree 与 PuH⁺分子离子势能曲线 (图 1)的渐近线能量值(-71.63664 Hartree) 接近, $E(Pu^{2+}) + E(H) = -71.6516519$ Hartree 与 PuH²⁺分子离子势能曲线(图 1)的渐近线能量值 (-72.63664 Hartree) 接近,所以,根据原子分子反 应静力学中的微观过程可逆性原理可得到,PuH⁺ ($X^{7}\Sigma^{-}$ 和 PuH²⁺($X^{8}\Sigma^{-}$)的离解极限为

PuH⁺(X⁷Σ⁻)→Pu⁺(${}^{8}F_{g}$)+H(${}^{2}S_{g}$), PuH²⁺(X⁸Σ⁻)→Pu²⁺(${}^{7}F_{g}$)+H(${}^{2}S_{g}$). 图 1—图 4 分别为 PuH⁺, PuH²⁺和 PuH³⁺分子 离子的势能曲线,图 2 和图 3 中实线为拟合函数曲 线,拟合函数为 Murrell-Sorbie(M-S)势能函数^[8], $V = -D_{0}(1 + a_{1}\rho + a_{2}\rho^{2} + a_{3}\rho^{3})\exp(-a_{1}\rho),$ 其中 $\rho = R - R_{e}$, R 为核间距, R_e为平衡值.

图 2 和图 3 中的势能曲线均具有对应于分子稳 定平衡结构的极小点,说明 $PuH^+(X^{7}\Sigma^{-})$ 和 $PuH^{2+}(X^{8}\Sigma^{-})$ 分子离子是稳定存在的.图 4 中的势 能曲线仅具有对应于不稳定排斥态的排斥支,无平 衡核间距和平衡能量,说明 $PuH^{3+}(^{7}\Sigma^{-})$ 分子离子 不能稳定存在.

 PuH^+ , PuH^{2+} 分子离子稳定存在和 PuH^{3+} (⁷ Σ^-)分子离子不稳定存在与对应的离解通道相 关. PuH^+ 和 PuH^{2+} 分子离子的离解通道分别为 $Pu^+ + H$ 和 $Pu^{2+} + H$,两原子间只存在化学键力和 核排斥力,与一般的双原子分子一样,势能曲线仅有 一个极小点,对应稳定的分子态. PuH^{3+} 分子离子的 离解通道为 $Pu^{2+} + H^+$,两原子间除了化学键力和 核排斥力外,还存在较强的 Pu^{2+} 和 H^+ 的库仑排斥 力,致使 $PuH^{3+}(7\Sigma^-)$ 分子离子不能稳定存在.

用正规方程组拟合 M-S 势能函数得到的各参数值见表 3,由从头计算得到的各电子状态的几何性 质和由表 3数据计算得到的力学与光谱数据见表 4.

由表 3 和表 4 数据可看出,离解能越大,力常量 也越大,分子离子越稳定,稳定性PuH⁺大于 PuH²⁺.

表 3 $PuH^+(X^7\Sigma^-, \Sigma^-)$, $PuH^{2+}(X^8\Sigma^-)$ 的 M-S 参量

电子状态	$D_{\rm e}/{\rm eV}$	a_1/nm^{-1}	a_2/nm^{-2}	a_3/nm^{-3}
PuH ⁺ (X $^{7}\Sigma^{-}$)	2.09511	29.615	255.56	869.98
PuH^+ (${}^9\Sigma^-$)	0.18998	21.143	129.63	302.20
$\mathrm{PuH}^{2+}(X^{8}\Sigma^{-})$	0.571172	25.595	181.40	483.70

表 4 $PuH^+(X^7\Sigma^-, \Sigma^-)$, $PuH^{2+}(X^8\Sigma^-)$ 的几何、力学、光谱数据

电子状态	$R_{\rm e}/\rm nm$	$f_2/aJ \cdot nm^{-2}$	$f_3/aJ \cdot nm^{-3}$	f_4 /aJ·nm ⁻⁴	$\omega_{\rm e}/{\rm cm}^{-1}$	$\omega_{\rm e} x_{\rm e} / {\rm cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	$\alpha_{\rm e}/{\rm cm}^{-1}$	偶极矩/Debye
PuH^+ ($X~^7\Sigma^-$)	0.208	122.83	-3946.6	79330	1441.250	22.5623	3.8822	0.07703	3.6331
PuH^+ (${}^9\Sigma^-$)	0.326	5.715	-130.02	1749.2	310.8857	11.6836	1.5804	0.07096	1.0080
PuH ²⁺ (X $^8\Sigma^-$)	0.262	26.75	- 785.1	14512	672.5718	18.7542	2.4468	0.0835	0.7560

4 分子离子的稳定性

原子离子的正价数可以很高,例如,U原子可 电离为 U⁹¹⁺甚至为裸核,然而,稳定的三、四价以上 正离子很少存在.这与分子内正电荷对之间的排斥 有关.通常双原子分子或分子离子的势能曲线有一 个势能极小的稳定态或为无极小的排斥态,或者同 时有势能的极小和极大.已经熟知有三种可能出现 势能极大,即由预离解所致,如 S_2 的 $^{3}\Sigma_{u}^{-}$ 和 $^{3}\Pi_{u}^{[10]}$ 相交预离解,由不相交规则(noncrossing rule)所致, 即分子群同一不可约表示的势能曲线避免相交而导 致极大,还有由简并态消失所导致的 van der Waals 极大.

最近系列研究^[11-13]指出,分子内正电荷对之 间的排斥可导致第四种势能极大.例如,HCl²⁺(X³∑⁻)→H⁺(¹S_g)+Cl⁺(³P_g),可同时出现势能极小 与极大, $R_{min} = 0.1440 \text{ nm}$, $R_{max} = 0.2180 \text{ nm}$,两者 能量差 $\Delta E = 0.6150 \text{ eV}$.势能极小是核排斥与化学 键力平衡所致,势能极大是化学键力与正电荷对(如 H⁺和 Cl⁺)排斥平衡所致.同时具有势能极小与极 大的分子称为能量阱或火山态分子,有重要理论与 应用研究价值.

高价分子离子的离解通道会增加,例如 AB²⁺ 分子离子有两种可能的离解通道,1)AB²⁺→A²⁺ + B_{2}) AB^{2+} → $A^{+}+B^{+}$.满足第一种离解通道的 分子离子内只有化学键力和核排斥力,无正电荷对 之间的排斥,与通常的双原子分子和单价双原子分 子离子一样,只有势能极小,可稳定存在.如 PuH²⁺ 和 PuO²⁺ 分子离子^[2].符合第二种离解通道的分子 离子内除了化学键力和核排斥力外,还存在正电荷 对的库仑排斥力,如果库仑排斥力与核排斥力总是 占优势,则其势能曲线将是完全排斥的,无能量极小 点,如 HF²⁺ 分子离子^[12],PuO³⁺ 分子离子^[2];若化 学键力与核排斥力平衡,将出现能量极小点,以及化 学键力与库仑排斥力的平衡将引起势能极大值,如 HCl²⁺,HBr²⁺和 Hl²⁺ 分子离子^[11]和 BH²⁺,CH²⁺, NH²⁺ 分子离子^[13].

本文研究进一步证实上述看法. PuH²⁺(X⁸∑⁻)尽管为二价正离子,但没有出现势能极大.因 锕系元素的特征,低级电离势很小并且比较相近,例 如,U的第一,二,三级电离势为4.96,11.07和 17.74 eV;而O的第一,二,三级电离势为13.58, 35.13和55.13 eV;H的第一电离能为13.595 eV. 所以,在 PuH²⁺中不会出现正电荷对 Pu⁺和 H⁺,而 是 Pu²⁺和 H,因而不出现势能极大.同理,可以说明 PuH⁺(X⁷∑⁻)无势能极大.PuH³⁺(⁷∑⁻)的不稳定 态是因为在分子离子中存在比较强的正电荷间 Pu²⁺和 H⁺的排斥所致.

- [1] T. Gao, H. Y. Wang, Z. H. Zhu *et al.*, *Acta Physica Sinica*,
 48(1999) 2222(in Chinese] 高 涛、王红艳、朱正和等,物 理学报, 48(1999) 2222].
- [2] Q. Li X. Y. Liu, Z. H. Zhu et al., Acta Physico-Chimica Sinica(to be accepted) in Chinese] 李 权、刘晓亚、朱正和等,物 理化学学报,待发表].
- [3] T.Gao, H.Y. Wang, Z.H. Zhu et al., Chinese J. Atomic and Molec. Physics. 17 (2000) A6 (in Chinese] 高 涛、王红艳、朱正和等原子与分子物理学报 17 (2000) A6].
- [4] H.Y.Wang, T. Gao, Z.H. Zhu et al., Acta Physica Sinica,
 48(1999) 2215(in Chinese] 王红艳、高 涛、朱正和等,物理 学报,48(1999) 2215].
- [5] S.G. Wang, W.H.E. Schwarz, J. Phys. Chem., 99(1995), 11687.
- [6] S.G. Wang, D.K. Pan, W.H.E. Schwarz, J. Chem. Phys., 102(1995), 9296.
- [7] P.J. Hay, R.L. Martin, J. Chem. Phys. ,109 (1998), 3875.

- [8] Z. H. Zhu. Atomic and Molecular Reaction Statics (Science Press, Beijing, 1996) in Chinese] 朱正和,原子分子反应静力 学(科学出版社,北京,1996)].
- [9] Z.H. Zhu, H.G. Yu, Molecular Structure and Moleculor Potential Engergy Function(Science Press, Beijing, 1997) in Chinese] 朱正和、俞华根,分子结构与分子势能函数(科学出版 社,北京,1997)
- [10] Y.J.Tang, Y.K.Zhao, Z.H.Zhu *et al.*, *Acta*, *Physica Sinica A*7(1998),1600(in Chinese] 唐永键、赵永宽、朱正和等, 物理学报 *A*7(1998),1600].
- [11] Z.H. Zhu, F. H. Wang, B. Chen, M. L. Tan, H. Y. Wang, Molec. Phys., 92 (1997),1061.
- [12] F. H. Wang, Z. H. Zhu, C. L. Yang, F. Q. Jing. Chin. Phys. Lett., 15 (1998),715.
- [13] F. H. Wang, Z. H. Zhu, F. Q. Jing, J. Molec. Structure, 453 (1998),71.

POTENTIONAL ENERGY FUNCTION AND STABILITY OF PuHⁿ⁺¹ ($n = 1 \ 2 \ 3$)^{*}

LI QUAN^{a)b)} LIU XIAO-YA^{a)} WANG HONG-YAN^{a)} ZHU ZHENG HE^{a)}

^a (Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China)
 ^b (Department of Chemistry, Sichuan Normal University, Chengdu 610066, China)

FU YI-BEI WANG XIAO-LIN SUN YING

(Southwestern Institute of Nuclear Physics and Chemistry, Mianyang 621900, China)

(Received 2 April 2000; revised manuscript received 25 June 2000)

Abstract

The theoretical study on $\text{PuH}^{n+}(n = 1, 2, 3)$ using density functional method (B3LYP) shows that PuH^+ and PuH^{2+} can be stable and $\text{PuH}^{3+}(^7\Sigma^-)$ cannot be stable. Electronic ground states are $X^7\Sigma^-(\text{PuH}^+)$ and $X^8\Sigma^-$ (PuH²⁺) and their force constants and spectroscopic data have been worked out.

Keywords : PuH^{n+} , molecular ions, potentional energy function, density functional theory **PACC**: 3120D, 3420

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 19974026) and by the Science Foundation of China Academy of Engineering Physics (Grant No. 9950731).