用能量自洽法研究碱金属双原子分子的势能曲线*

文 \hat{P}^{1} 孙卫国¹⁾² 冯 灏¹

¹(四川大学化学工程学院,成都 610065)
 ²(四川大学原子与分子物理研究所,成都 610065)
 (2000年2月27日收到 2000年7月4日收到修改稿)

用能量自洽法(ECM)研究了碱金属双原子分子一些电子激发态的势能曲线: Na₂ 分子的 2 ¹ Π_g A ³ Π_g 和 b ³ Π_u 电子激发态 K_2 分子的 a ³ Σ_u^+ 2 ¹ Π_g B ¹ Π_u 和 A ¹ Σ_u^+ 电子激发态 C_{s_2} 分子的 1 ¹ Π_g 电子激发态. 所获得的势能曲 线表明 ,ECM 势能很好地符合 Rydberg-Klein-Rees 值或 inverted perturbation approach 值,得到了比 Morse 势, Hux-ley-Murrell-Sorbid HMS 势更令人满意的结果. 进一步显示了 ECM 势能函数是比其他解析势能函数更为优越的势能函数 ,同时也检验了 ECM 势能函数的广泛性.

关键词:能量自洽,双原子分子,势能,碱金属 PACC:3190,3420,3425

1 引 言

研究分子势能函数是物理化学、微观反应动力 学、原子分子物理等学科中的一个重要课题.随着化 学动力学、光化学、天体化学、天体物理以及激光物 理和空间技术的发展,分子势能函数的研究引起了 人们越来越多的重视¹⁻¹⁵¹.分子势能函数描述了分 子的能量、几何、力学与光谱性质,准确知道分子的 精确势能和振动结构,不仅有助于分子光谱和反应 散射的研究,而且有助于碰撞动力学如电子分子碰 撞、原子分子碰撞等的定量研究.

双原子分子势能函数是对双原子分子结构的完 全描述.人们对双原子分子势能函数已进行了许多 研究,先后提出了 Morse 函数^{16]},Hulbert-Hirschfelder 函数^{17]},Rydberg 函数^{18]},pseudo-Gaussion (PG)函数^{19]},Huxley-Murrell-Sorbie (HMS)函数^{20,21]},Lennard-Jones(*n-m*)函数^{22]}和 Varandas函数等^{3,4]}.其中HMS函数优于其他函 数.然而以上这些解析势能函数主要用于基态双原 子分子或离子不能满意地描述许多激发态的势能 曲线.随着激发态分子在分子动力学、光化学中的重 要性日益显著,有必要找出一种理想的解析势能函 数,不仅对基态分子,而且对激发态分子,也能很好

地描述其分子结构.

孙卫国和冯灏发展了能量自洽法(energy consistent method 缩写为 ECM)⁵],提出了一种新的解 析势能函数^{6]}:ECM 势能函数,并将其用于 H₂分 子的电子基态 $X^{1}\Sigma_{g}^{+}$,电子激发态 $C^{1}\Pi_{u}$, $a^{3}\Sigma_{g}^{+}$,e ${}^{3}\Sigma_{u}^{+}$ N_{2} 分子的电子基态 $X {}^{1}\Sigma_{a}^{+}$ O_{2} 分子的电子基 态 $X^{3}\Sigma_{\sigma}^{-}$, 电子激发态 $C^{1}\Sigma_{u}^{-}$, $B^{3}\Sigma_{u}^{-}$, 获得了令人 满意的结果,由于碱金属双原子分子具有简单的电 子结构 即在核的外层只有两个价电子 它们常被人 们用来验证量子力学的理论方法、物理模型,并检验 势能函数的质量,随着实验手段的不断改进,人们获 得了比较精确的碱金属双原子分子的光谱数据,为 势能函数的检验提供了必要的依据,本文用 ECM 方法研究了碱金属双原子分子的一系列电子激发 态即 Na₂分子的 2 Π_{g} $A^{3}\Pi_{g}$ 和 $b^{3}\Pi_{u}$ 态 K_{2} 分子 的 $a^{3}\Sigma_{u}^{+}$, $2^{1}\Pi_{\sigma}$, $B^{1}\Pi_{u}$ 和 $A^{1}\Sigma_{u}^{+}$ 态, Cs_{2} 分子的 1 ¹Ⅱ。态,得到了与 Rydberg-Klein-Rees(RKR)值或 inverted perturbation approach(IPA)值符合得很好 的势能 表明了 ECM 势能函数比其他解析势能函 数更优越 且在分子长程区具有正确的渐近性质 同 时也显示了 ECM 势能函数和 ECM 方法的正确性 和广泛性.

^{*}国家自然科学基金(批准号:19674038)和教育部科学基金(批准号:97061009)资助的课题.

2 能量自洽法和 ECM 势能函数

2.1 ECM 势能函数

为了找到一种能很好地描述双原子分子在整个 分子离解区域行为的势能函数,孙卫国和冯灏^{6]}提 出了一种新的解析势能——energy consistent method ECM)势 $V_{ECM}(R)$,

 $V(R) = V_{\text{ECM}}(R) = V_{\text{MS}}(R)$

+ Λ(R)δV(R), R ≥ R_e, (1) 其中 Λ(R)δV(R)是势能长程修正项, Λ(R)是势 能变分函数 δV(R)是势能差,

 $\delta V(R) = V_{MS}(R) - V_{0}(R).$ (2) 势能修正项使得新势能 V(R)在分子长程区能有精确的行为.在分子的排斥势区域,即当核间距 R小 于平衡核间距 $R_{0}(R < R_{e})$ 时,分子势能可视不同的 分子电子态取为

$$V(R) = \begin{cases} V_{\text{ECM}}(R) \\ \vec{s} \\ V_0(R) \end{cases} \qquad R < R_e. \quad (3)$$

方程(2)和(3)中的 V₀(R)可取为 Morse 势,

$$V_{\rm M}(R) = D_{\rm e}(e^{-2\beta x} - 2e^{-\beta x}),$$
 (4)

其中 $x = R - R_e$, D_e 为分子离解能 Morse 参数

$$\beta = (f_2/2D_e)^{1/2}$$
, (5)

V₀(R)还可为 Rydberg 势,

$$V_{\text{Rydberg}}(R) = -D_{e}(1 + \rho x)e^{-\rho x}$$
, (6)

式中

$$\rho = (f_2/D_e)^{1/2}$$
, (7)

或为 pseudo-Gaussion(PG)势,

$$V_{PG}(R) = -D_{e}\{1 + \gamma [1 - (R/R_{e})^{2}]\}$$
$$\cdot e^{\{\gamma [1 - (R/R_{e})^{2}]\}}, \qquad (8)$$

式中

$$\gamma = \frac{1}{2} (4 + f_2 R_e^2 / D_e)^{1/2} - 1.$$
 (9)

方程(1)和(2)中的 $V_{MS}(R)$ 是孙卫国和冯灏修正后的 Murrell-Sorbid MS)势^[6],

$$V_{\rm MS}(R) = -D_{\rm e}(1 + a_1x + a_2x^2 + a_3x^3)e^{-a_1x},$$
(10)

其中展开系数 a_n 的数学表达式与 HMS 势²¹所定 义的 a_n 相同 ,但 ECM 势求解 a_n 所用的振动力常 数 f_n 是用二阶微扰理论推导出来的新公式⁶所获 得的 这是与 HMS 势不同之处.

将(2)式代入(1)式,可将这种新的双原子分子 解析势能重新表达为

 $V(R) = [\Lambda(R) + 1] V_{MS}(R) - \Lambda(R) V_0(R),$ (11)

其中势能变分函数选为

$$A(R) = \lambda \frac{x}{R} (1 - e^{-\lambda^2 x R_e}), \quad (12)$$

其中 λ 是势能变分参数. 在 $R = R_e \mathfrak{V}$, Λ (R)具有 如下性质:

$$\Lambda(R_{\rm e}) = \Lambda^{(1)}(R_{\rm e}) = 0.$$
 (13)

从而使 V(R)具有正确的物理势能应有的主要物理 特性^{6]}.因此,以方程(11)为基础,用能量自洽法能 求得精确的双原子分子势能和分子振动波函数.

2.2 能量自洽法(ECM)

用能量自洽法求解精确的双原子分子势能的基 本步骤如下:

1. 将分子离解能 D_e ,平衡核间距 R_e ,约化质 量 μ ,分子振转常数 ω_e , $\omega_e x_e$, α_e 代入文献 6 中的 (15)-(17)式求得力常数 f_2 , f_3 , f_4 ,再代入文献 [6]中的(9)-(11)式求出展开系数 a_1 , a_2 , a_3 ;

2. 对于势能变分函数 Λ(R)中的势能变分参 数 λ 的给定值 ,由物理量(D_e , R_e , ω_e , $\omega_e x_e$, α_e , μ , β ; a_1 , a_2 , a_3 ,λ)唯一确定了势能 V(R),解 V(R) 的径向薛定谔方程(RSE),得到一组能级 ε ;

3. 将由 RSE 算得的能级 ε 与稳定双原子分子 电子态的'真实振动能级 " ε_v 进行比较 :若 ε 收敛于 ε_v 则 RSE 能级就是体系真正的振动本征值 ,波函 数是真正的振动本征矢量 ,由此算出的 ECM 势 V(R)是该双原子分子体系的真正振动势能. 若 ε 不收敛于 ε_v 则改变 λ 值 ,重复步骤 2 ,3 ,直到所计 算出的 ε 在要求的精度范围内收敛于 ε_v 即与 ε_v 自 洽)为止. 所以 ,将由 ECM 所获得的双原子分子势 能称为 ECM 势.

在 ECM 方法中所用的" 真实能级 " ϵ_v 可以是实 验测得值或是用光谱常数 ω_e , $\omega_e x_e$, $\omega_e y_e$ 等通过常 用的能级展开式计算出的" 实验 "能级 ,也可以是用 高精度的量子力学方法计算出的理论能级.

3 ECM 方法对碱金属双原子分子的 应用

本文将 ECM 方法应用于碱金属双原子分子的

电子激发态: N_{a_2} 分子的 $2 {}^{1}\Pi_{g}$, $A {}^{3}\Pi_{g}$ 和 $b {}^{3}\Pi_{u}$ 态, K₂ 分子的 $a {}^{3}\Sigma_{u}^{+}$, $2 {}^{1}\Pi_{g}$, $B {}^{1}\Pi_{u}$ 和 $A {}^{1}\Sigma_{u}^{+}$ 态, C_{s_2} 分 子的 $1 {}^{1}\Pi_{g}$ 态.

计算这些分子电子激发态的势能所需要的分子 离解能 D_e ,平衡核间距 R_e 和分子振转常量 ω_e , $\omega_{\rm e} x_{\rm e}$, $a_{\rm e}$ 等列于表 1 中 ;由 ECM 方法所得的力常数 f_n 展开系数 a_n 和变分参数 λ 列于表 2 中.所有物 理量均为原子单位($E_{\rm h}$ =2.1947463607×10⁵cm⁻¹, a_0 =0.0529176719 nm).

本文中,对于 Na_2 分子的 $2^{1}\Pi_{a}$ $A^{3}\Pi_{a}$ 和 $b^{3}\Pi_{u}$

表1 部分碱金属双原子分子电子态的分子常量

态	R_{e}/a_{0}	$D_{\rm e} I E_{\rm h}$	$\omega_{\rm e} / E_{\rm h}$	$\omega_{\rm e} x_{\rm e} / E_{\rm h}$	$\alpha_{\rm e} / E_{\rm h}$	文献
Na ₂ -2 $^{1}\Pi_{g}$	7.0845	2.101701×10^{-2}	4.667524×10^{-4}	1.593806×10^{-6}	2.952050×10^{-9}	[7]
Na ₂ -4 $^{3}\Pi_{g}$	6.8722	2.345146×10^{-2}	5.430780×10^{-4}	2.223956×10^{-6}	2.778946×10^{-9}	[8,9]
Na ₂ - $b^{3}\Pi_{u}$	5.8708	4.317264×10^{-2}	7.026279×10^{-4}	2.172552×10^{-6}	2.970730×10^{-9}	[10]
$K_2-a \ ^3\Sigma_u^+$	10.9084	1.157309×10^{-3}	9.856483×10^{-5}	2.141459×10^{-6}	3.332246×10^{-9}	[11]
K ₂ -2 $^{1}\Pi_{g}$	9.0711	1.056120×10^{-2}	2.530096×10^{-4}	5.661520×10^{-7}	7.752513×10^{-10}	[12]
K_2 - $B^{-1}\Pi_u$	8.0049	9.627536×10^{-3}	3.412291×10^{-4}	1.491963×10^{-6}	1.052620×10^{-9}	[13]
K_2 - $A^{-1}\Sigma_u^+$	8.5979	2.883386×10^{-2}	3.214267×10^{-4}	7.133398×10^{-7}	6.415776×10^{-10}	[14]
Cs_2-1 $^1\Pi_g$	10.7663	6.690523×10^{-3}	8.401584×10^{-5}	4.634028×10^{-7}	2.268640×10^{-10}	[15]

态 K_2 分子的 $a^{3}\Sigma_{u}^{+}$,2 ${}^{1}\Pi_{g}$,B ${}^{1}\Pi_{u}$ 和 $A^{1}\Sigma_{u}^{+}$ 态 ,所 用的" 真实能级 "为基于实验的 RKR 值 ,而对于 Cs₂ 分子的 1 ${}^{1}\Pi_{a}$ 态 ,所用的" 真实能级 "为以 RKR 值为 初始值,运用逆向微扰方法求得的量子力学势能 ——IPA值.对于各电子态,当 R $\ge R_e$ 时,方程(2) 中的 V₀(R)= V_M(R).

表 2 部分碱金属双原子分子电子态的力常数和 ECM 势能展开系数

态	$f_3 I E_{\rm h} a_0^{-3}$	$f_4 I E_h a_0^{-4}$	a_1 / a_0^{-1}	a_2 / a_0^{-2}	a_3/a_0^{-3}	λ
Na ₂ -2 $^{1}\Pi_{g}$	-3.8970×10^{-3}	3.1052×10^{-3}	0.7660	0.1848	0.02263	1.82
Na ₂ -4 ${}^{3}\Pi_{g}$	-5.3560×10^{-3}	3.1283×10^{-3}	0.8107	0.1969	0.02006	1.60
Na ₂ - $b^{3}\Pi_{u}$	-9.1228×10^{-3}	5.8737×10^{-3}	0.7338	0.1494	0.01316	1.09
K_2 - $a^3\Sigma_u^+$	-4.6584×10^{-4}	6.2849×10^{-4}	0.7872	0.1608	0.03106	-3.50
K_2 -2 $^1\Pi_g$	-1.5914×10^{-3}	1.1253×10^{-3}	0.8561	0.2588	0.03754	2.50
K_2 - $B^{-1}\Pi_u$	-3.4714×10^{-3}	1.3515×10^{-3}	1.2205	0.5300	0.1010	2.58
K ₂ -A ${}^{1}\Sigma_{u}^{+}$	-2.4933×10^{-3}	1.3366×10^{-3}	0.5185	0.07079	0.004654	1.30
Cs_2-1 $^1\Pi_g$	-8.3518×10^{-4}	5.9158×10^{-4}	0.2969	-0.01983	0.006195	-1.57

在图 1 至图 5 中,我们把 ECM 势与 Morse 势和 HMS 势进行了比较. 从图 1 和图 2 ,即 Na₂ 分子的 2 ¹ Π_{g} 和 4 ³ Π_{g} 态的势能曲线可看出,在平衡距离附 近, ECM 势, Morse 势, HMS 势都能与 RKR 值^[7,8] 很好地符合,而在 $R > R_{e}$ 时,如图 1 中的 9.5 $a_{0} < R < 24.0 a_{0}$ 部分, 图 2 中的 9.5 $a_{0} < R < 21.0 a_{0}$ 部分, Morse 势明显小于 RKR 值;虽然 HMS 势比 Morse 势好,但仍小于 RKR 值,而 ECM 势却与 RKR 值符合得很好.当 $R < R_{e}(=7.0845 a_{0})$ 时,图 1 中的 $V(R) = V_{M}(R)$;当 $R < R_{e}(=6.8722 a_{0})$ 时,图 2 中的 $V(R) = V_{ECM}(R)$,此时 ECM 势能曲 线的排斥支部分也明显优于 Morse 势和 HMS 势.

图 3 和图 4 为 K_2 分子的 $a^{-3}\Sigma_u^+$ 和 $2^{-1}\Pi_g$ 态的

势能曲线. 图 3 中, $R < R_{e}(=10.9084 a_{0})$ 时, $V(R) = V_{M}(R)$,HMS 势不仅在 $R > R_{e}$ 部分(15. 0 $a_{0} < R < 20.0 a_{0}$)与 RKR 值¹¹¹偏差较大,而且比 Morse 势还差.在势能排斥支,HMS 势也与 RKR 值 有一定偏差;Morse 势虽在 $R < R_{e}$ 部分与 RKR 值 符合得很好,但在 $R > R_{e}$ 部分(16.5 $a_{0} < R < 20.0$ a_{0})却大于 RKR 值.在整个势能区间,只有 ECM 势 最为理想. 图 4 中,当 $R < R_{e}(=9.0711 a_{0})$ 时, $V(R) = V_{PC}(R)$;Morse 势在 $R > 10.0 a_{0}$ 时已不 能很好地描述分子势能,HMS 势也在 $R > 11.3 a_{0}$ 后与 RKR 值^[12]产生偏差,只有 ECM 势在上述区 间与 RKR 值符合得很好.ECM 势能函数在 K₂ 的

图 1 Na₂ 分子电子激发态 $2^{1}\Pi_{\alpha}$ 的势能曲线

图 2 Na₂ 分子电子激发态 $4^{3}\Pi_{a}$ 的势能曲线

图 3 K_2 分子电子激发态 $a^{3}\Sigma_{\mu}^{+}$ 的势能曲线

 $B^{1}\Pi_{u}$ 和 $A^{1}\Sigma_{u}^{+}$ 态中的应用也取得了与图 4 类似的结果.

图 4 K₂ 分子电子激发态 2¹Π_α 的势能曲线

图 5 为 Cs₂ 分子的 1 ¹ Π_g 态的势能曲线. 当 *R* <*R* (= 10.7663 *a*₀)时 ,*V*(*R*) = *V*_{ECM}(*R*),HMS 势在 *R* > 13.5 *a*₀ ,Morse 势在 *R* > 13.0 *a*₀ 后都与 IPA 值^[15]有明显的偏差. 只有 ECM 势与 IPA 值符 合得最好.

图 5 C_{s_2} 分子电子激发态 $1^{1}\Pi_{g}$ 的势能曲线

4 结 论

综上所述 ECM 势能函数能准确地描述双原子 分子短程和长程整个区域的势能 ECM 势能函数是 比 Morse HMS 等常用的势能函数更为优越的解析 势能函数.本文显示了 ECM 势能函数不仅如我们 前期所示那样^[6],适用于非金属双原子分子,也适 用于金属双原子分子.历史上一些常用的解析势能 函数计算电子激发态势能时往往会产生很大的偏差 但 ECM 势能函数不仅对势能曲线的排斥支作 了改善,而且使吸引支也得到了更令人满意的结果. 此外,ECM 方法计算简便、快速,不仅能得到物理性 质更好的势能,也能得到令人满意的振动波函数.所以,ECM方法是目前获得双原子分子稳定电子态的 正确势能函数和振动激发态波函数集合的优秀方法.

- [1] H.Y.Wang, T.Gao, Y.G.Yi, M.L.Tan, Z.H.Zhu, Y.B. Fu, X.L.Wang, Y.Sun, Acta Physica Sinica, 48(1999), 2221(in Chinese] 王红艳、高 涛、易有根、谭明亮、朱正和、 傅依备、汪小琳、孙 颖 物理学报 48(1999) 2221].
- [2] T.Gao, H. Y. Wang, Y. G. Yi, M. L. Tan, Z. H. Zhu, Y. Sun, X. L. Wang, Y. B. Fu, Acta Physica Sinica, 48(1999), 2227(in Chinese]高涛、王红艳、易有根、谭明亮、朱正和、孙颖、汪小琳、傅依备,物理学报, 48(1999), 2227].
- [3] A.J.C. Varandas, Mol. Phys., 53 (1984), 1303.
- [4] A. J. C. Varandas, J. D. da Silva, J. Chem. Soc. Faraday Trans. II, 82(1986), 593; 88(1992), 941.
- [5] W.G.Sun, Molec. Phys., 92(1997), 105.
- [6] W.G. Sun, H. Feng, J. Phys., B32 (1999), 5109.
- [7] T.J. Whang, H. Wang, A. M. Lyyra, L. Li, W. C. Stwalley, J. Molec. Spectrosc., 145 (1991), 112.
- [8] Y. M. Liu, H. M. Chen, J. Li, D. Y. Chen, L. Li, R. W. Field, J. Molec. Spectrosc., 192 (1998), 32.
- [9] S. Magnier, Ph. Millié, O. Dulieu, F. Masnou-Seeuws, J. Chem. Phys., 98 (1993),7113.
- [10] T. J. Whang, W. C. Stwalley, J. Chem. Phys., 97(1992), 7211.

- [11] L. Li, A. M. Lyyra, W. T. Luh, W. C. Stwalley, J. Chem. Phys., 93(1990), 8452.
- [12] G. X. Zhao, J. T. Kim, J. T. Bahns, W. C. Stwalley, J. Molec. Spectrosc., 184 (1997), 209.
- [13] J. Heinze, U. Schühle, F. Engelke, J. Chem. Phys., 87 (1987), 45.
- [14] G. Tong , L. Li , T. J. Whang , W. C. Stwalley , John A. Coxon , M. G. Li , J. Molec. Spectrosc. , 155 (1992), 115.
- [15] C. Amiot, W. Demtröder, C. R. Vidal, J. Chem. Phys., 88 (1988), 5265.
- [16] P. M. Morse, Phys. Rev. 34 (1929), 57.
- [17] H. M. Hulbert, J. O. Hirschfelder, J. Chem. Phys., 9(1941), 61.
- [18] R. Rydberg, Z. Phys., 73(1931) 376.
- [19] M.L.Sage, J. Chem. Phys., 87(1984) A31.
- [20] J. N. Murrell , K. S. Sorbie , J. Chem. Soc. Faraday Trans. [], 70(1974), 1552.
- [21] P. Huxley, J. N. Murrell, J. Chem. Soc. Faraday Trans. [], 79(1983), 323.
- [22] J.E. Lennard-Jones, Proc. Roy. Soc., A106 (1924), 463.

STUDY ON THE POTENTIAL ENERGY CURVES OF ALKALI DIATOMIC MOLECULES WITH ENERGY CONSISTENT METHOD*

WEN JING^a) SUN WEI-GUO^a)^b) FENG HAO^a)

^a College of Chemical Engineering, Sichuan University, Chengdu 610065, China)
 ^b Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China)
 (Received 27 February 2000; revised manuscript received 4 July 2000)

Abstract

The studies on the potential energy curves of the electronic excited states $2 {}^{1}\Pi_{g}$, $4 {}^{3}\Pi_{g}$, $b {}^{3}\Pi_{u}$ of Na₂, the states $a^{3}\Sigma_{u}^{+}$, $2 {}^{1}\Pi_{g}$, $B {}^{1}\Pi_{u}$, $A {}^{1}\Sigma_{u}^{+}$ of K₂ and the state $1 {}^{1}\Pi_{g}$ of Cs₂ molecules by using the energy consistent method (ECM) are reported here. The results show that the present ECM potentials agree very well with the known Rydberg-Klein-Rees data or the inverted perturbation approach data, and that they are much better than other analytical potentials such as the Morse and the Huxley-Murrell-Sorbie potentials for the electronic excited states of alkali diatomic molecules.

Keywords : energy consistent , diatomic molecule , potential energy , alkali metal PACC : 3190 , 3420 , 3425

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 19674038) and by the Science Foundation of State Education Ministry of China (Grant No. 97061009).