铌酸钾锂晶体及其宽带二次谐波产生*

于天燕余鲲王奇

(上海大学物理系,上海 201800)

万尤宝 潘守夔

(中国科学院上海光学精密机械研究所,上海 201800) (1999年5月31日收到;1999年6月22日收到修改稿)

报道了利用引上提拉法生长出非线性光学晶体铌酸钾锂,并用其实现了对准连续可调谐钛宝石激光倍频.在 波长为 890—952 nm 范围内,通过室温下非临界相位匹配,得到 445—476 nm 的二次谐波.抽运光强为 144—269 mW,二次谐波强度为 0.58—1.73 mW, 倍频效率可达 0.65%.

PACC: 4265; 6818

1 引 言

由非线性光学晶体对可见及近红外光倍频得到 的短波长蓝绿光,在光存储、光计算、光通讯和激光 医疗等方面有广泛的应用, 铌酸钾锂(KLN) 晶体以 其铁电畴结构稳定 没有光折变引起的光损伤 非线 性系数大 机械稳定性好等优点 成为适宜于激光倍 频的一种优良的非线性晶体, IBM 的研究者曾报道 在 110 ℃温度下 KLN 晶体实现了对波长为 900 nm 的 GaAs 激光输出的倍频^{1]};Yoon 等人在室温下实 现了对波长为 900 nm 钛宝石激光输出的倍频^{2]}但 都未能测出倍频光的功率, 1993 年, Reid 报道在单 模 GaAlAs 二极管激光器上实现了对 820 nm 近红 外光倍频,测得二次谐波功率为0.36 mW^[3].本文 报道用引上提拉法生长的具有良好光学均匀性的 KLN 晶体,并利用 KLN 晶体对波长为 890—952 nm的钛宝石近红外光进行倍频,获得了 445—476 nm 的可调谐二次谐波,并测得其功率,同时从喇曼 谱和铁电畴结构上分析了影响二次谐波效率的几个 因素

2 KLN 晶体

KLN 晶体是一种负单轴晶体 ,具有"完全填充" 的四方钨青铜型结构 ,属 P4bm 空间群和 C4v 点 群,其组成可用化学式 $K_3Li_{12-x}Nb_{5+x}O_{15+2x}(0 < x < 0.5)$ 表示.用传统方法如 Kyropoulos^[4]和 Czochralsk(CZ)^{5]}法生长的 KLN 单晶,常常由于组成和结构特性改变而引起开裂,大大限制了其实际应用.本文用的 KLN 晶体是采用电阻加热引上提拉法生长的.

将分析纯 Li₂CO₃、优级纯 K₂CO₃ 和纯度为 99.99%的 Nb₂O₅ 这些原料在 300℃ 左右烘烤 5 h, 除去其中的水分,然后按摩尔比为 K₂O:Li₂O: Nb₂O₅=3:(2-y):(5+y)(-0.65<y<0.3)的比 例称取晶体生长所需的原料,经充分研磨混合均匀 后,用液压机将其压制成直径为 30 mm 的块料,在 铂金坩埚中预先熔化.然后将预先已熔入直径为 30 cm 铂金坩埚的原料在 1100 ℃ 左右重新熔化 ,并在 该温度恒温4h,用籽晶测试法调整熔体的表面温度 接近固液平衡温度,在该平衡温度下种,恒温34— 45 min 后开始提拉. 合适的引上速率为 0.5 mm/h, 转速为 5—10 r/min. 晶体生长经历收颈、放肩和等 径过程,a轴取向生长的晶体尺寸一般长为 15-20mm、宽为 4—12 mm、厚为 4—7 mm, 大量的晶体生 长实验结果表明:从Li₂O含量为20-26 mol%的熔 体中可生长出全透明的 KLN 晶体,当熔体中 Li₂O 含量为 26.5 mol% 时,得到的晶体中有明显的宏观 缺陷,经 XRD 分析表明该晶体中含有 KNbO3相; 当熔体中 Li₂O 含量超过 26.5 mol%时,已不能生长 出 KLN 晶体. 这些结果与 K₂O—Li₂O—Nb₂O₅ 三元

^{*}国家自然科学基金(批准号:59832080)资助的课题.

系统的相图基本相符.

KLN 晶体是从 K₂O—Li₂O—Nb₂O₅ 三元系统 中生长出的固熔体晶体,用引上法生长时,由于组分 离子的分凝,使固液界面处组分离子的浓度发生变 化.用精确测定晶体不同部位晶格常数的变化来分 析组分离子分布的方法,表明在本文的实验条件下 所生长的 KLN 晶体中组分离子的浓度变化较小.

总之,用这种方法生长的 KLN 晶体,Li 的摩尔 百分含量高,因而具有良好的透过性能和光学均匀 性,且无开裂,尺寸也较大.提高晶体中 Li 的含量, 增强了晶体的双折射,从而使之能在较短波长实现 非临界相位匹配.通过规范的生长过程来控制 KLN 晶体中 Li 的含量,从而对波长范围为 790—920 nm 的激光,实现室温下非临界相位匹配二次谐波产生 的可能⁶¹.

KLN 晶体的主要非线性性质列于表 1.为了便 于比较,同时列出其他一些非线性晶体的主要非线 性性质.

表 1 室温下几种倍频晶体的非线性光学性质

材料	非线性系数	折射率	透光波段/ _µ m	损耗系数	性能指数	
	$d_{\rm eff}$ (pm/V)	<i>n</i> [λ/nm]		α/cm^{-1}	d^2/n^3	$d^2 / (n^3 \alpha^2)$
KLN	$d_{31} = -14 \pm 2$	2.230(820)	0.35-5.0	0.4 ± 0.1	17.7	110.63
KNbO3	$d_{32} = 20.5 \pm 0.3$	2.277(860)	0.36-4.0	1.5	33.9	15.07
LiNbO ₃	$d_{31} = 6.5$	2.230(1064)	0.40-5.0	0.11-0.42	3.81	21.60
KTP	$d_{31} = 6.5$	1.830(1064)	0.35-5.0	0.3-0.8	6.9	10.87
KDP	$d_{36} = 0.46 \pm 0.04$	1.439(1064)	0.21-1.5		0.007	

3 实 验

实验装置如图 1 所示. 实验中所用 KLN 晶体 尺寸为 4.7 mm×3.7 mm×7.1 mm,其组成配比为 $K_2O \sim 30 \mod \%$, $Li_2O \sim 26 \mod \%$, $Nb_2O_5 \sim 44$ mol% 相应晶体中 K, Li, Nb 的含量分别为 K~30 mol%, Li~18.2 mol%, Nb~51.8 mol%, Li 的含量

图 1 KLN 晶体中二次谐波产生实验装置示意图

相对较高,因而有较强的双折射.这一配比使 KLN 晶体在实验中实现了对波长为 890—952 nm 光的室 温下一类非临界相位匹配的二倍频.KLN 晶体的有 效非线性系数张量有三个非零成分,即 d₃₁,d₃₃和 $d_{15}^{[3]}$. 非线性作用的表达式为 $P_{c}(2\omega) = \epsilon_{0}d_{31}$ · $E_{a}^{2}(\omega)$,这不仅表明倍频光功率与有效非线性系数 及基波强度有关,而且描述了晶体产生非线性行为 的几何条件为基波和谐波均沿与 c 轴垂直的 b 轴传 播. 由表 1 可以看出 ,KLN 晶体的有效非线性系数 较大,因而其倍频光功率也较大. KLN 晶体的 b 面 被抛光并镀膜,作为入射通光面. 晶体置于带有控温 装置的调整架上.

所用基频光由声光调 Q Nd: YAG 激光抽运的 准连续钛宝石激光器产生^[7],其脉冲重复频率为 10 kHz.由于倍频转换效率既与基波功率有关,又受基 波模式好坏的影响,而对于我们所用的激光器,这两 者是相互制约的,因此兼顾这两方面,实验前先将钛

宝石激光调节为最佳输出.890—952 nm 处其最佳 输出的平均功率约为 144—269 mW.功率与波长的 调谐曲线见图 2.用焦距为 120 mm 的透镜将其聚焦 后入射到晶体上,通过控温装置调节晶体的温度,使 之实现最佳非临界相位匹配.

4 结果及讨论

满足相位匹配时,在白纸上观察到较强的蓝光 (倍频光),并且是一个模式较好的亮斑.用石英棱镜 将基波与二次谐波分开,测得二次谐波功率为 0.58—1.73 mW,调谐曲线见图 3.当增大抽运光功 率时,发现辐照于白纸上的倍频光背景有一条直线, 这是由于基波光斑发散角增大,对基波的利用不充 分而造成的⁸¹.图4为倍频光强与基波光强的关系 曲线(基波为906 nm 的红外光).由图4可以看出, 倍频光强度随基波强度增大而增大.

图 3 二次谐波的调谐曲线

图 4 二次谐波强度与基波强度的关系曲线

利用控温装置逐步提高晶体的温度,发现倍频 光强度增大,倍频效率有所提高.这说明 KLN 晶体 的二次谐波效率与温度有关.在 KLN 晶体的结构 中,由于 Li⁺在 C 格点处对[NbO₆]⁻的内振动有很 大影响,致使 ν_5 模分裂为三个峰.在 KLN 晶体的喇 曼谱中,287 cm⁻¹峰对应的是 ν_5 模分裂开的三个峰 之一.如果 Li 的含量很高,那么 KLN 晶体中 C 格 点将被 Li⁺完全占据,这使晶体极易开裂,在其喇曼 谱中 ν_1 , ν_2 两特征模对应的峰也将大大加宽.从所 测得的喇曼谱来看,两个特征峰 853 cm⁻¹(ν_1)和 655 cm⁻¹(ν_2)并没有加宽,说明所用晶体 Li 的含量 适中,与前面提及的生长无开裂晶体时 Li₂O 的含量 基本一致.从以上分析看,Li⁺离子对 NbO₆ 引⁻离子 的模振动有很大影响,从而影响了 KLN 晶体的电 光效应和非线性光学效应.因此,Li⁺在二次谐波产 生中的作用很重要.在 KLN 晶体的非临界相位匹 配的允许温度范围内,随着温度升高,Li⁺和 [NbO₆ 引⁻的运动或排布受到很大影响,从而也就影 响了转换效率.图 5 为 KLN 晶体的喇曼谱.

图 5 KLN 晶体的喇曼谱

当基波入射到晶体中某些位置时,出射的倍频 光是一系列强度很弱的点 即使在达到完全相位匹 配处 在那个模式较好的亮斑周围仍有一些强度很 弱的点.这与 KLN 晶体是铁电畴结构有关.如果非 线性晶体是孪晶或包含有铁电多畴 ,一般而言 ,界面 或畴壁两边的相位匹配条件不同,因而基波与二次 谐波之间的相位匹配关系就受到破坏.对于完美的 单晶 在相位匹配温度观测到二次谐波强度中有单 一的尖峰,但在不完美晶体中,此峰变宽或者出现好 几个不同强度的峰,因此,为了提高倍频效率和晶体 的质量 晶体要单畴化.将晶体的两极性面抛光、镀 膜后 加上电极 即加平行于极性晶轴的外加电场), 而后置于耐高温的液体中,以保证电极与极性面间 紧密接触 对其进行高温高电压处理 从而使之极化 成为单畴晶体 对于我们所观察到的现象 是由于晶 体单畴化不均匀或不完全,在晶体内仍存在畴壁,造

成相位失配和对光的散射等原因而引起的.

将聚焦透镜换为焦距为 80 mm 的短焦距透镜, 且晶体恰好置于基波入射波焦点处,增大基波功率, 此时发现晶体内有一连串气泡状小点产生,极像自 聚焦现象中"由细微的破坏小点所组成的丝状破坏 通道".已有许多研究发现,利用普通的脉冲激光甚 至连续激光入射,在一定条件下,也可以在某些介质 内产生自聚焦,对于上述现象,认为有两种可能的解 释: ______就是自聚焦现象;另一种可能是因为晶体内

某些粒子分布不均匀而引起的.将所用晶体在室温 下用 Mark Ⅲ型干涉仪检测,证明其具有很好的光 学均匀性,从而排除了第二种可能,因此认为这种现 象是由于入射到晶体上的基波功率密度增大而引起 的自聚焦现象.

用 Lecroy 数字示波器测得 906 nm 基波和二次 谐波的波形如图 6 所示,所得二次谐波脉宽明显变 窄.因此利用 KLN 晶体所产生的调谐倍频光适合 于其在光通讯、激光医疗等方面的应用.

图 6 906 nm 基波(a)和二次谐波(b)的波形图

5 结 论

实验结果表明,用电阻加热引上提拉法能够生 长出无开裂的 KLN 单晶,它具有良好的化学稳定 性和机械稳定性,是适合于激光倍频的优良非线性 材料.它能够在室温下实现对 890—952 nm 的调谐 钛宝石激光的非临界相位匹配的二倍频.

- [1] A. W. Smith ,G. Burns ,B. A. Scott et al. ,J. Appl. Phys. ,42 (1971) 684.
- [2] Dae-Ho Yoon et al. Jpn. J. Appl. Phys. 33 (1994) 3510.

- [3] J. J. E. Reid , Appl. Phys. Lett. 62 (1993), 19.
- [4] T.Fukuda ,H. Hirano ,S. Koide ,J. Cryst. Growth ,6(1970), 293.
- [5] W. A. Bonner et al. J. Cryst. Growth ,1(1967), 318.
- [6] M. Ouwerkerk , Adv. Mater. 3 (1991) 399.
- [7] 葛月明、崔俊文、何慧娟,中国激光,A23(1996),969 [Ge Yue-ming, Cui Jun-wen, He Hui-juan, *Chinese Journal of Lasers*, A23(1996),969(in Chinese)].
- [8] 张桂燕、景阳春等,光学学报, 4(1984),515 [Zhang Gui-yan, Jing Yang-chun *et al*., *Acta Optica Sinica*, 4(1984),515(in Chinese)].
- [9] H. R. Xia ,H. Yu ,H. Yang et al. ,Phys. Rev. ,B55(1997), 14892.

POTASSIUM LITHIUM NIOBATE CRYSTAL AND THE SECOND HARMONIC GENERATION IN IT*

YU TIAN-YAN YU BING-KUN WANG QI

(Department of Physics, Shanghai University, Shanghai 201800)

WAN YOU-BAO PAN SHOU-KUI

(Shanghai Institute of Optics and Fine Mechanics , Chinese Academy of Sciences , Shanghai 201800)
(Received 31 May 1999; revised manuscript received 22 June 1999)

Abstract

The tetragonal tungsten bronze type potassium lithium niobate single crystals grown by the resistance heating Czochralski technique are reported. Frequency doubling of a quasi-continuous tunable Ti: sapphire laser is realized in the crystal. Tunable second harmonic generation within the range of 445—476 nm by noncritical phase matching at room temperature is obtained. The incident power is 144—269 mW and the power of the second harmonic generation is 0.58—1.73 mW. The conversion efficiency is about 0.65 percent.

PACC: 4265; 6818

⁴⁶⁷

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 59832080).