短波长激光超热电子产生与抑制机理的研究*

祁兰英 蒋小华 赵雪薇 李三伟

张文海 李朝光 郑志坚 丁永坤

(西南核物理与化学研究所高温高密度等离子体物理国家重点实验室,成都 610003) (1999年4月12日收到;1999年5月10日收到修改稿)

介绍了在"神光 I"和"星光 II"上分别进行的二倍频、三倍频激光照射金盘靶、腔靶、碳氢有机膜平面靶的实验.通过测量硬 X射线谱推断超热电子特性,结合受激 Raman 散射光和双等离子体衰变产生的(3/2)∞0 谐波的观测,分析各种靶超热电子产生和抑制的机理,并探讨了抑制超热电子的有效途径.

PACC: 5250J; 5225; 5240H; 5235

1 引 言

在激光聚变研究中,为了提高靶的激光吸收效率,降低反常吸收,以及抑制超热电子对靶丸预热, 实现高效率内爆,研究短波长激光超热电子产生和 抑制机理,并寻找抑制超热电子的有效途径,是激光 惯性约束聚变(ICF)基础研究的重要课题.

通常认为激光与等离子体非线性相互作用激发 的电子等离子体波是产生超热电子的主要根源.产 生电子等离子体波的主要机制是 SRS(受激 Raman 散射): $\omega_0 \rightarrow \omega_s + \omega_{ep\omega}$;TPD(双等离子体衰变): ω_0 $\rightarrow \omega_{ep\omega1} + \omega_{ep\omega2}$;IAD(离子声衰变): $\omega_0 \rightarrow \omega_{ep\omega} + \omega_{ia}$; RA(共振吸收): $\omega_0 \rightarrow \omega_{ep\omega}$.此外,自聚焦与成丝过程 可以增强各非线性过程的发展,可以激发更强的电 子等离子体波,可以产生更多超热电子.大量实验证 明^{1-3]},在长波长(1.06 µm)、长脉宽、大尺度腔靶 中,产生超热电子的主要机制是 SRS,高强度、短脉 宽、小焦斑产生超热电子的主要机制是 RA,因此超 热电子的产生与激光参数和等离子体尺度有密切的 关系.

2 实验条件与诊断方法

实验是在"神光 ['和" 星光 [] "上进行的. 激光 波长分别为 0.53 和 0.35 μm(钕玻璃倍频和三倍频 激光)相应靶面激光能量分别为 60—230 J 和 30130 J. 激光脉宽为 0.6—1.0 ns ,焦斑直径分别为 ϕ 100—300 μ m 和 ϕ 50—200 μ m ,打靶透镜参数分别 为 f/1.7 和 f/3.实验靶型有腔靶、金盘靶和碳氢有 机膜 CH 膜 ,d = 0.6—1.2 μ m)平面靶.

采用多道滤波-荧光谱仪(FFS)和多道 K 边滤 波谱仪(KFS)相结合诊断激光等离子体相互作用中 超热电子产生的轫致辐射谱(1.5—100 keV),由此 辐射谱来推断超热电子的行为.根据激光倍频后激 光能量低(50—230 J)的特点,我们发展了高探测效 率硬 X 射线诊断技术,建立了多道 KFS⁴¹,探测效 率可以提高 3 个数量级以上,可以实现低通量(\geq 0.1 μ J·sr⁻¹)硬 X 射线谱(1.5—88 keV)的测量.由 谱的斜率推算出超热电子温度 T_h ,由谱的积分可得 到硬 X 射线总能量.根据理论计算出单位立体角超 热电子转换为硬 X 射线的转换率 η ,可以推算超热 电子总能量.

0.53 μm 激光产生的背向 SRS 光的波长范围为 0.53 μm $< \lambda_{SRS} < 1.1$ μm. SRS 总能量采用 LPT-1 激光能量计(灵敏度为 1 μJ,可测波长范围为 0.3— 2.5 μm)测量. 在诊断的光路上加波长 0.8 μm 附近 的带通滤光片和若干 QB15, AB9 玻璃滤光片,过滤 掉 0.53 μm 激光和少量基频光本底后,信噪比可达 3 个数量级以上,同时采用全反射铝镜代替平板玻 璃,可使测量 SRS 信号增大近 20 倍.

0.35 μm 激光产生的背向 SRS 光的波长范围为 0.35 μm<λ_{SRS}<0.703 μm. 采用由 CCD-1024 硅阵 列探测器、0.25 m 焦距光栅谱仪和计算机组成的光

^{*}国家高技术研究发展计划(批准号 1863-416-3) 资助的课题.

学多道分析器 OMA-2(灵敏度为 3 nJ·cm⁻²,可测波 长范围为 0.4—1.1 μ m,谱分辨率为 0.4 nm)来测量 背向 SRS 光时间积分谱.根据 SRS 光谱型的宽窄与 三倍频晶体产生的 0.53 μ m 本底光有较大差别,可 以把它们区分开,根据谱的相对强度,可以定性地推 断它的大小.在低功率密度(1×10¹⁴ W/cm² $\leq I_L \leq 4$ ×10¹⁴ W/cm²)三倍频激光照射条件下,TPD 是金 盘靶产生超热电子的一个主要根源,TPD 产物为 (3/2) ω_0 谐波,其波长为 234 nm,在空气中传播距 离有限,只能在靶室窗口附近收光,利用 OMA-4(可 测波长范围为 0.2—1.1 μ m)进行光谱测量."星光-Ⅱ "靶室的实验布局示意图见图 1.

图1 实验布局示意图

3 实验结果与分析

3.1 超热电子和 SRS 能量的特征

其他照射条件大致相同,不同激光波长产生的 超热电子和 SRS 的特征列于表 1 和表 2.

表 1 不同激光波长产生的 SRS 和超热电子的比较

粗型	$\lambda_0/\mu m$	$E_{\mathrm{SRS}} \cdot E_{\mathrm{L}}^{-1}$	$E_{\rm he} \cdot E_{\rm L}^{-1}$	$T_{\rm e}/{\rm keV}$	$T_{\rm h}/{\rm keV}$
金盘靶	1.053	4×10^{-3}	2.8×10^{-2}	3.72	13.6
	0.53	2×10^{-5}	3.1×10^{-3}	1.50	8.5
腔靶	1.053	$1-1.5 \times 10^{-1}$	1.8×10^{-1}		27—35
	0.53	2×10^{-2}	3.5×10^{-3}		15—20

由表 1 的结果可以看出:与基频光相比,采用二 倍频激光照射金盘靶和腔靶,产生的超热电子份额 分别减少一个数量级或一个数量级以上,超热电子 温度 T_h和热电子温度 T_e降低 1/2 左右,产生的 SRS 能量份额分别减少两个数量级和一个数量级以 上.由表 2 的结果同样看出:与基频光相比,采用三 倍频激光照射金盘靶,产生的超热电子能量减少两 个数量级左右,T_h降低2/3以上,T_e也明显下降. 与二倍频激光相比,三倍频激光照射腔靶产生的超 热电子总能量减少一个数量级以上,T_h降低1/2左 右.以上不同靶型的实验结果均表明 随着激光波长 的减小,产生的超热电子和SRS总能量均呈数量级 下降.因为超热电子是由非线性参量不稳定性过程 激发电子等离子体波产生的,所以反常吸收份额与 参量不稳定性阈值和增长率有关^[56].

表 2 不同激光波长产生的超热电子特征的典型结果

靶型	$E_{\rm L}/J$	$\lambda_0/\mu m$	$E_{\rm hX}/\mu J \cdot { m sr}^{-1}$	$E_{\rm he}/{\rm mJ}$	$T_{\rm h}/{\rm keV}$	$T_{\rm e}/{\rm keV}$
金盘靶	110	1.053	1040	3025	16.1	2.12
	86.1	0.351	6.02	30.2	7.1	1.6
金盘靶	85	1.053	480	1373	16.1	2.02
	97	0.351	4.22	24.6	6.4	1.32
腔靶	138	0.53	38.1	1089	12.3	1.4
	125.1	0.53	31.9	742	17.4	1.5
	118	0.35	2.6	104	6.97	2.1
	89	0.35	1.02	34	7.9	1.97

1)参量不稳定性阈值 I

对于背向 SRS($n \ll n_c/4$),有

 $I_{\rm L} \approx 4 \times 10^{17} (L_n \lambda_0)^{-1}$ (W/cm²). (1) 对于 TPD ,有

 $I_{\rm L} \approx 5 \times 10^{15} (L_n \lambda_0)^{-1}$ (W/cm²), (2)

式中 L_n 为等离子体密度标长. 由(1)和(2)式可知, λ_0 越短 SRS 等主要非线性过程越难激发,超热电 子越难产生.

从另一角度也可得到类似的结论.电子-离子的 碰撞频率 ν_α由下式表示:

 $u_{ei} = 8.72 \times 10^{-11} n_e ZIn\Lambda / T_e^{3/2}.$ (3) 实验和理论模拟计算均表明, T_e 随着 λ_0 的减小而 减少,因而 ν_{ei} 增大,即 λ_0 越短,逆轫致吸收越强(n_c $\approx 10^{21} \lambda_0^{-2}$),反常吸收减弱,超热电子和 SRS 减少.

2)参量不稳定性增长率 γ_0

 γ_0 可由下式表示:

$$u_0 \propto rac{1}{\omega_0} \left[\omega_{
m ep\omega}^2 / \omega_{
m ek} \left(\omega_0 - \omega_{
m ek} \right) \right]^{1/2}, \quad (4)$$

式中 ω_0 为入射激光频率. 由(4)式可见, γ_0 随着 λ_0 减短(ω_0 增大)而降低,因而 SRS 和超热电子就减 少.实验结果与理论分析一致,与利弗莫尔实验 室^[7]的实验结论也一致.可见三倍频可以有效地抑 制超热电子.

3.2 SRS 和超热电子增强因素

利用 OMA-2 光学多道谱仪观测三倍频激光照 射有膜(碳氢有机膜)腔靶和无膜腔靶产生的背向 SRS 光的时间积分谱示于图 2.

(b)无膜腔靶 图 2 腔靶 SRS 时间积分谱

在图 <u>2(a</u>)和(b)中,左边尖窄峰是倍频晶体产 生的波长为 0.53 µm 的剩余本底光,右边较宽的峰 是 SRS 时间积分谱, 对图 2 的 SRS 光谱相对强度已 作了归一化处理,比较两者可以看出,有碳氢有机膜 的腔靶产生的 SRS 强度明显比无膜腔靶增强几倍: 另外 还观测到轻材料作靶容易产生 SRS. 在大致相 同的照射条件下 碳氢有机膜靶比高 Z 金盘靶产生 的 SRS 和超热电子均增加一个数量级以上 激光入 射角大,容易产生SRS.当40」激光以45°角入射到 金盘靶上时,能明显观测到 SRS 时间积分谱;入射 角 $\theta < 30^{\circ}$ 就观察不到 SRS 谱. 以上诸方面 SRS 和 超热电子增强的主要原因是由于碳氢材料作靶或在 腔中加的碳氢材料是轻材料,其形成的等离子体膨 胀速度快(离子声速 $C_s = \sqrt{ZT_s/M}$),所以轻材料 作靶或在腔中填充轻材料,产生的等离子体密度标 长 $L(L = C_s \times \tau)$ 明显大于高 Z 金材料或无膜腔 靶,使小于 n_c /4 的等离子体密度的标长 L 增大;另 外,当激光以大角度入射时,也可能使小于 n_c /4 的 等离子体密度的标长 L 增大.这两方面因素均降低 了产生 SRS 的阈值 见(1)式],因而容易激发 SRS, 致使 SRS 增强,超热电子增多.

3.3 超热电子产生机理

在 0.53 μ m 激光照射金盘靶实验中 ,KFS 观测 金盘靶产生硬 X 射线 10—88 keV)总能量 E_{hx} 以及 LPE-IA 型激光能量计测量的 E_{SRS} 一并示于表 3.表 3 中 E_{he} 值由下式计算:

$$E_{\rm he} = E_{\rm hX1} / \eta ~(J/4\pi),$$
 (5)

式中 η 为超热电子转化为硬 X 射线转换率,当靶厚 $d \approx 15 \ \mu m$, $T_h \approx 15 \ keV$, η 值近似取为 2×10^{-4} ; E_{hX1} 为靶后 2π 空间发射硬 X 射线总能量,由理论 计算给出 $E_{hX1} = (1/4 - 1/5) E_{hX}$ (靶前 2π 空间 E_{hX} 值,考虑了 X 射线角分布修正).

表 3 0.53 μm 激光照射金盘靶超热电子能量 *E*_{he}和 *E*_{SRS}典型结果比较

$I_{\rm L}/{\rm W}\cdot{\rm cm}^{-2}$	$E_{\rm he}/{\rm mJ}$	$E_{\rm SRS}/\rm mJ$	离焦/ _µ m
4.7×10^{15}	~377	90	0
4.5×10^{14}	~91	0.81	300
5.8×10^{14}	~167	2.8	340

通常认为 SRS 能量主要是由激光强度 I_L 和等 离子体尺度 L 决定的.当阈值较高时, I_L 起关键作 用 治 I_L 低于阈值时,在再大尺度的等离子体中, SRS 也不会发生.因此表 3 的结果在不离焦时的 E_{SRS} 值远大于离焦时的 E_{SRS} 值.由表 3 也明显看 出,在激光离焦和不离焦的情况下,超热电子总能量 E_{he} 均大于 E_{SRS} ,而且大部分 E_{SRS} 值只占 E_{tar} 的 $1/10^5$,因此粗略推断,在本文实验条件下,波长 0.53 μ m 激光照射金盘靶产生超热电子的机制 SRS 不起主要作用.由于"神光 I "靶室窗口是 K_9 玻璃, 使我们实验无法观测 $2\omega_0$ 和(3/2) ω_0 谐波能量,但 是由金盘靶的等离子体密度标长 L 估算不稳定性 过程阈值(见表 4)可以初步猜想.

表 4 不稳定性阈值的估计

离焦	τ./	TPD	SRS($n \ll n_c$ /4)	SRS($n \approx n_c/4$)
$/\mu { m m}$	$L/\mu m$	$/W \cdot cm^{-2}$	$/W \cdot cm^{-2}$	$/W \cdot cm^{-2}$
0	~ 100	1.5×10^{14}	7.5×10^{15}	7.5×10^{13}
340	~240	6.3×10^{13}	3.0×10^{15}	3.0×10^{13}

不离焦时亚临界区域大小为焦斑大小或为离子 声速与激光脉宽乘积,即 $C_s \times \tau = 10^7$ cm/s×lns = 100 μ m.

比较表 3 和表 4 可以看出 :在激光不离焦情况 下,实际激光强度 I_L 大于 TPD 和 SRS($n \approx n_c/4$) 阈值,而小于 SRS($n \ll n_c/4$)阈值,因此,此时产生 超热电子的主要机制可能是 TPD 和 RA,此外还有 SRS($n \approx n_c/4$).在激光离焦的情况下,使几种不稳 定性阈值变得更低,但是实际 I_L 值还是小于 SRS ($n \ll n_c/4$)阈值,此时,产生超热电子可能还是 TPD 起主要作用,此外还有 SRS($n \approx n_c/4$).

 $0.53 \mu m$ 激光照射黑腔靶实验中,产生的超热 电子总能量 E_{he} 和 SRS 光能量 E_{SRS} 典型值分别为 390—585 mJ 和 750—969 mJ,而且 SRS 光峰波长典 型值为 $\lambda_m = 0.78 \mu m$.根据 Mantey-Rowe 关系式中 的能量守恒方程:

$$\omega_0 = \omega_s + \omega_{ep\omega} , \qquad (6)$$

式中 ω_0 , ω_s , $\omega_{ep\omega}$ 分别为入射激光频率、SRS 光频 率、电子等离子体波频率, 由 $\lambda_0 = 0.53 \,\mu\text{m}$ 和 $\lambda_{SRS} = 0.78 \,\mu\text{m}$ 可得

$$\omega_{\rm s}=0.67\omega_0 \,, \qquad (7)$$

并代入(6)式 得

$$\omega_{\rm ep\omega} = 0.32\omega_0. \tag{8}$$

入射光光波能量转化为 SRS 光波能量和电子等离 子体波能量,它们之间能量分配是以频率为比例的, 即

$$\frac{E_{\rm SRS}}{E_{\rm ep\bar{\omega}}} = \frac{\omega_{\rm SRS}}{\omega_{\rm ep\bar{\omega}}}.$$
 (9)

以(7)和(8)式代入(9)式,可得

$$E_{\rm SRS} = 2.1 \times E_{\rm ep\omega}.$$
 (10)

电子等离子体波把大部分能量交给电子,即: $E_{he} \leq E_{epw}$.结合(10)式,比较 E_{SRS} 和 E_{he} 两者的能量关系,初步推断黑腔靶产生超热电子的主要机制是SRS,此外还有TPD.

在目前" 星光 II "三倍频输出激光参数条件下(1 ×10¹⁴ W/cm² \leq $I_L \leq$ 4×10¹⁴ W/cm²),金发泡盘、金 盘靶的 SRS 基本被抑制,观测不到 SRS 光谱,只能 观测到(3/2) ω_0 光谱(图 3),实验仅仅在 EN70°方向 测到(3/2) ω_0 的红移峰,同时还观测到超热电子总 能量约为 15—40 mJ,从一些资料⁸¹介绍 0.35 μ m 激光照射实验中 TPD 的激发阈值 \geq 1×10¹⁴ W/cm²,在 6×10¹⁴ W/cm² 激光强度下,TPD 达到 饱和,从激发到饱和,TPD 产生的超热电子能量为 0.05-35 mJ.综合以上结果,可以定性推断:在 $1 \times 10^{14} \text{ W/cm}^2 \leqslant I_L \leqslant 4 \times 10^{14} \text{ W/cm}^2$ 情况下,金盘、金发泡盘产生超热电子机制是 TPD;在腔靶条件下,

图 3 盘靶(3/2)ω₀光谱

激光等离子体受到腔体的约束,使腔内等离子体密 度比盘靶更均匀,致使<n_c/4 区域空间等离子体密 度尺度增大,从而增强了非线性过程的产生,在目前 星光 [[输出参数下(I_L≥1×10¹⁴ W/cm²),不论什么 腔靶都存在 SRS 被激发现象(图 2),腔靶产生 SRS 比金盘靶增大一个数量级以上.对于碳氢有机膜盘 靶,不仅观察到 TPD 增强,而且观测到 SRS 剧烈增 长,以致 OMA-4 测到的谱饱和,不同角度方向测到 SRS 光谱(图 4),背向 SRS 增长率最大,90°方向最 小,因此定性推断腔靶和碳氢有机膜平面靶产生超

热电子的主要机制是 SRS 此外还有 TPD.

4 结束语

通过实验证明了采用短波长激光打靶具有优势,能大大提高不稳定性阈值和降低不稳定性增长率,使超热电子和 SRS 总量明显降低一至两个数量级,T_h也明显下降 1/2—2/3,这表明采用短波长激光是抑制 SRS 和超热电子的有效途径.另外,实验还证明了采用轻材料(碳氢有机膜)作靶或腔中加碳氢材料以及大角度激光入射,对抑制 SRS 和超热电子是不利的.

短波长(0.53 µm)、中等脉宽、中等激光强度、 小的等离子体尺度(*L*≤100 µm)的金盘靶中超热电 子产生的主要机制可能是 RA 和 TPD,当 240 µm≥ *L*>100 µm 时,可能主要是 TPD.在大尺度(*L*≥ 300 µm)黑腔靶中,超热电子的主要来源是 SRS(*n* <*n*_c/4).三倍频、中等激光强度、小尺度激光等离 子体产生超热电子的主要机制是 TPD.三倍频腔靶 和碳氢有机膜平面靶产生超热电子的主要机制是 SRS,此外还有 TPD. 感谢'神光 I'和'星光 II'全体运行人员以及本所 209 室制靶同志的大力协作.

- [1] W.L.Kruer , Phys. Fluids , B3(1991), 2360.
- [2] 祁兰英、李三伟、郑志坚等,强激光与粒子束,5(1993),415
 [Qi Lan-ying, Li San-wei, Zhang Zhi-jian et al., High Power Laser and Particle Beams 5(1993),415(in Chinese)]
- [3] R. P. Drake , R. E. Turner , B. F. Lasinski *et al.*, *Phys. Rev. Lett.* 53 (1984),1739.
- [4] 祁兰英、李三伟、张文海等,强激光与粒子束,7(1995),437 [Qi Lan-ying,Li San-wei,Zhang Wen-hai *et al.*,*High Power Laser and Particle Beams*,7(1995),437(in Chinese)].
- [5] 常铁强等编 激光等离子体相互作用与激光聚变(湖南科学技术出版社,长沙,1991),第 27页[Chang Tie-qiang et al., Laser Plasma Ineraction and Laser Fusion (Hunan Science and Technology Publishing House, Changsha, 1991), p. 27(in Chinese)].
- [6] W. L. Kruer ,Intense Laser Plasma Interactions ,from Janus to Nova. Phys. Fluides B3 (1991) 2356.
- [7] W. L. Kruer ,Intense Laser Plasma Interactions ,from Janus to Nova. Phys. Fluides B3 (1991) 2360.
- [8] R. P. Drake, R. E. Turner, B. F. Lasinski et al., Phys. Rev. Lett. 40(1989) 3219.

STUDIES ON THE PRODUCTION AND SUPPRESSION MECHANISM OF THE HOT ELECTRONS PRODUCED BY SHORT WAVELENGTH LASER^{*}

QI LAN-YING JIANG XIAO-HUA ZHAO XUE-WEI LI SAN-WEI

ZHANG WEN-HAI LI CHAO-GUANG ZHENG ZHI-JIAN DING YONG-KUN

(State Key Laboratory for Laser Fusion , Institute of Southwest Nuclear

Physics and Chemistry , Chengdu 610003)

(Received 12 April 1999; revised manuscript received 10 May 1999)

ABSTRACT

The experiments on gold-disk and hohlraum and plastic hydrocarbon foil targets irradiated by laser beams with wavelengths 0.35 μ m (Xingguang-II) and 0.53 μ m (Shenguang-I) are performed. The characteristics of hot electrons are commonly deduced from the spectrum of hard X-ray. Associated with the measurement of backward stimulated Raman scattering and (3/2) ω_0 , the production mechanism of hot electrons for different target types is analyzed in laser plasma with shorter wavelength. An effective way to suppress hot electrons has been found.

PACC: 5250J; 5225; 5240H; 5235

^{*} Project supported by the Foundation of High Technology Research and Development Plan of China (Grant No. 863-416-3).