SF_2 自由基 4s 和 \tilde{C} 态的共振增强 多光子电离研究

周晓国 李全新 张 群 俞书勤 苏 宜 陈从香 马兴孝

(中国科学院选键化学开放研究实验室,化学物理系,合肥 230026) (1999年5月22日收到)

利用六氟化硫和氩气混合样品直流脉冲放电产生 SF₂ 自由基 观测得到 320—365 nm 波长范围内 SF₂ 自由基 的 (2+1) 洪振增强多光子电离(REMPI)光谱.经分析,该 REMPI 谱对应于 SF₂ 自由基的 4(\tilde{B}^1B_1) Rydberg 态和 \tilde{C} 态的共振双光子吸收,获得了二个态的全对称伸缩振动模 ω'_1 和 OPLA 模 ω'_2 的振动频率值.初步澄清了 \tilde{C} 态的 带源及振动属性,并对 \tilde{C} 态附近 SF₂ 自由基的解离行为进行了讨论.

PACC: 3380E; 3320N

1 引 言

 SF_2 自由基是以 SF_6/O_2 混合气为等离子体源 的半导体蚀刻过程中的重要中间物.1969年,微波 谱¹⁻³的研究表明 SF₂自由基具有 C₂,构型,其 F---S---F 键角为 98.2°. 随后, 气相²⁻⁻⁴] 和基质隔 离⁵⁶¹研究给出了 SF₂自由基基态三个振动模的振 动频率值. 1989 年, Glinski 等^{7]}报道了 550—780 nm 范围内 SF2 自由基的发射光谱,并标识为最低价 键态 Ã¹B₁(带源为 18200 cm⁻¹). 同年 ,Hudgens 小 组^[8]研究了 SF₂在 330—370 nm 范围内的振动分辨 共振增强多光子电离(REMPI)激发谱,确认为SF? 由电子基态(\tilde{X}^1A_1)到 4 s Rydberg 态(\tilde{B}^1B_1)及价键 态 C 的双光子跃迁,得到了 4 s Rydberg 态的带源 $(\nu_{0-0} = 54433 \text{ cm}^{-1})$ 和振动频率 $\omega'(a_1 \text{ sym str}) =$ (991 ± 12) cm⁻¹, $\omega'_{2}(a_{1})$ bend)= (361 ± 24) cm⁻¹. 但可能由于 SF。自由基产率较低, 过高的激光强度 导致的非共振增强 MPI 信号对激发谱的干扰严重, 造成光谱结构复杂 未能对 C 态加以标识.

1998 年,我们利用研制的直流脉冲放电方法产 生 SF₂ 自由基,结合 REMPI 技术,获得了 SF₂ 自由 基的 REMPI 激发谱^{9]}. 其中,在 320—365 nm 范围 内,虽观测到了 4 € $\tilde{B}^{1}B_{1}$)Rydberg 态和 \tilde{C} 态的双光 子共振跃迁,但与 Hudgens^[8]相同,由于大量非共振 增强 MPI 信号和无规共振峰的干扰,无法给出理想的振动带分析.最近,我们采用溢流分子束直流脉冲放电产生 SF₂ 自由基,同时以长聚焦(f = 30 cm)代替紧聚焦(f = 6 cm),减小了非共振增强 MPI 信号的干扰,获得了较为干净清晰的 REMPI 激发谱,给出了合理的标识,得到了相应态的带源值(ν_{O-O}),量子亏损值(δ)及被激发振动模频率值(ω'_1 和 ω'_2).并结合其他实验结果,对 Ĉ态附近 SF₂ 自由基的解离行为加以讨论澄清.

2 实 验

实验装置由激光光源,放电系统,飞行时间 (TOF)质谱仪和信号检测系统组成,具体运作详见 文献[10].滞止压力为 1.01×10^5 Pa 的 SF₆/Ar (1:1)混合气经溢流喷嘴进入脉冲直流放电腔,经辉 光放电产生 SF₂ 自由基.在电离室被聚焦的激光(透 镜焦距为f = 30 cm)作用,经 REMPI 过程生成 SF₂⁺离子(m/z = 70).离子信号由 MCP 检测 经微 机采集处理.放电产生的背景离子对 REMPI 信号 的干扰的消除方法见文献 10].

激光光源为 YAG 抽运染料激光经倍频,最大输出为 2 mJ/pulse,在 320—365 nm 范围内激光输出能量基本保持在 1.5 mJ/pulse.信号经 20 次激光脉冲平均采集.

3 实验结果与分析

3.1 320—360 nm 范围内 SF₂ 的 REMPI 激发谱

实验表明⁹¹:在 320—365 nm 范围内,仅当放电 和激光共存时,才能观察到 $SF_2^+(m/z = 70)$ 离子 信号.此外,本文获得的 SF_2^+ 光谱与文献 8 基本符 合.据此,可认为该离子信号是由气体放电产生的 SF_2 自由基经 REMPI 产生的. 图 1 示出 320—365 nm 波长范围内 SF₂ 自由基 的 REMPI 光谱. 光电子谱的测量给出了 SF₂ 的绝 热电离势约为 10.08 eV(81301 cm⁻¹)^{11]}. 在我们实 验的波长范围内 ,SF₂ 至少需吸收三个光子才能电 离. 对比 Hudgens 小组^[8]报道的 4 s Rydberg 态 REMPI 光谱 ,我们将该段光谱标识为 \tilde{B} 态(4 s , $\nu =$ 1—6)及 \tilde{C} 态($\nu = 0$ —4)的(2 + 1)REMPI 光谱. 因 缺少适当的倍频晶体 ,位于红端的 4 s 的 Rydberg 态 带源^[8]未给出.

图 1 320-365 nm 波长范围内 SF2 自由基(2+1) REMPI 激发谱

由于本实验中溢流分子束直流脉冲放电产生 SF₂自由基浓度较大,同时以长聚焦(f = 30 cm)代 替紧聚焦(f = 6 cm),大大减少了光谱中因过高光 子流密度造成的非共振增强多光子电离(MPI)信号 对激发谱的干扰,获得了规律性较强的 4 s \prec X 双光 子激发跃迁的主振动带系 1^o₀(n = 1—6)及合频带系 1^o₀2^o₀(n = 1—5,m = 1 2).同时 \tilde{C} 态也表现出较清 晰的 1^o₀(n = 0—4) 2^o₀(n = 1 2)和 1^o₀2^o₀(n = 1—3, m = 1 2)振动序列,具体标识结果见表 1.

由上可知,我们获得的 4 s Rydberg 态的振动频 率($\omega_1' = (981 \pm 34) \text{cm}^{-1}, \omega_2' = (373 \pm 26) \text{cm}^{-1}$)及 外推带源($\nu_{O-O} = 54484 \text{ cm}^{-1}$)与 Hudgens 小组^[8] 所得数据($\omega_1' = (991 \pm 12) \text{cm}^{-1}, \omega_2' = (361 \pm 24)$ cm⁻¹, $\nu_{O-O} = 54433 \text{ cm}^{-1}$)符合较好,与离子基态的 ω_1' 值((935 ± 40) cm⁻¹)^{11]}十分接近,表明其构型与 离子实构型近乎一致.

根据 Rydberg 公式,

ν_O—O = IPa – 109737/(n – δ)², (1) 其中,_{νO}—O为 Rydberg 态带源, IPa 为绝热电离势, n 为主量子数 , δ 为量子亏损值. 对于以硫原子为中心 的物种 ,ns ,np ,nd 及 nf 的 Rydberg 态的 δ 值分别 位于 2.00 ,1.60 0.08 0.06 附近^[12]. 由此不难得到 n = 4 , $\delta = 1.98$ (即 4 s Rydberg 态)是合理取值 ,其 双光子激发过程为

 $\dots 5b_2^2 8a_1^2 3b_1^2 \quad \text{SF}_2(\widetilde{X}^1 A_1) + 2h\nu \rightarrow \dots 5b_2^2 8a_1^2 3b_1^{-1} 4sa_1^{-1} \quad \text{SF}_2(\widetilde{B}^1 B_1).$

Hudgens 小组^[8]虽未观测到 Č 态的有规振动带 系 但较为肯定地指出 Č 态应发端于 350 nm 附近. 通常 ,对于 $C_{2v} \leftarrow C_{2v}$ 对称性之间的跃迁 ,带源对应 的 Franck-Condon 因子较大.因此 ,在我们的激发谱 中 ,以较强的 A 峰(349.22 nm)作为 Č 态的带源.由 Rydberg 公式(1)知 :SF₂ 自由基的 3p ,4p 及 3d 的 Rydberg 态带源应分别位于 25313 ,62249 及 68431 cm⁻¹附近.显然 Č 态(带源为 57270 cm⁻¹)不是 Rydberg 态.但获得的两个振动频率($\omega_1 = (975 \pm 38)$ cm⁻¹ $\omega_2 = (362 \pm 25)$ cm⁻¹)与 4 s 的 Rydberg 态十 分接近 表明其构型与离子实构型相似.因此 Č 态 与 4 s 的 Rydberg 态间可能存在较强的相互作用 ,是 一个有 Rydberg 特性的价键态.

表1 320-365 nm	波长范围内 SF ₂	自由基
---------------	-----------------------	-----

(2 + 1)REMPI	共振峰位置及标识
---	-------	--------	----------

标识	λ/nm 2.	21 (-1)	相对带源的能	′ / 1	′ / 1
		$2h\nu$ cm ⁻¹	量 E/cm^{-1}	$\omega_1 / cm^{-1} c$	021 cm
4s ← Ĩ					
1_0^{-1}	360.61	55462	0		
$1_0^{\ 1} 2_0^{\ 1}$	358.08	55853	391		391
$1_0^{\ 1} 2_0^{\ 2}$	355.36	56281	819		410
${1_0}^2$	354.10	56481	1019	1019	
$1_0^2 2_0^1$	351.70	56867	1405	1014	386
${1_0}^2 {2_0}^2$	349.25	57266	1804	985	399
1_0^{3}	347.97	57476	2014	995	
$1_0^{\ 3}2_0^{\ 1}$	345.80	57837	2375	970	361
$1_0{}^32_0{}^2$	343.60	58207	2745	941	370
1_0^{4}	342.17	58450	2988	974	
$1_0^4 2_0^1$	340.26	58779	3317	942	329
$1_0^4 2_0^2$	338.28	59123	3661	916	344
${1_0}^5$	336.48	59439	3978	990	
$1_0{}^52_0{}^1$	334.43	59803	4341	1024	363
1_0^{6}	330.88	60445	4983	1005	
Ĩ≁Ĩ					
0_{0}^{0}	349.22	57270	0		
2_0^{-1}	347.09	57622	352		352
2_0^2	344.93	57983	713		361
1_0^{-1}	343.59	58209	939	939	
$1_0^{\ 1}2_0^{\ 1}$	341.46	58572	1302	950	363
$1_0^1 2_0^2$	339.12	58976	1706	993	404
1_0^{2}	338.01	59170	1900	961	
$1_0^2 2_0^1$	335.96	59531	2261	959	361
$1_0^2 2_0^2$	333.87	59904	2634	928	373
${1_0}^3$	332.18	60208	2938	1038	
$1_0^{\ 3}2_0^{\ 1}$	330.42	60529	3259	998	321
${1_0}^4$	326.66	61226	3956	1018	

3.2 在 330—350 nm 波长范围内 SF₂ 自由基解离 行为的讨论

在实验中,还测量了 SF⁺(m/z = 51)离子信号 的分质量谱.当激光波长由 350 nm 向紫端扩展时, 开始出现较强的 SF⁺离子信号,且在 338—342 nm 间达到最大.图 2 同时列出了 SF₂⁺和 SF⁺的 REM-PI 激发谱,Hudgens^[8]分析了在 330—350 nm 范围 内 SF₂ 的解离行为,讨论了 \tilde{C} 态对应的可能电子组 态.由于缺乏确凿的证据,仅对内在机理给出了推 断,可能为 REMPID 过程,即 SF₂自由基由基态吸 收二个光子到达 \tilde{C} 态(...5 $b_2^28a_1^23b_1^{16}b_2^{1}$, A_2), 同时吸收另一个光子电离为 SF₂⁺离子,而后 SF₂⁺ 离子再吸收一个光子解离为 SF⁺离子碎片.

图 2 在 330—365 nm 波长范围内(a) SF₂⁺(*m*/*z* = 70)(b) SF⁺ (*m*/*z* = 51)(2+1) REMPI 激发谱

我们的实验结果显示:SF+信号随波长的变化 规律与 SF₂ 自由基 4 s←X 的双光子跃迁带系无关, 并且该离子信号恰好从 C←X 跃迁带源(349.22 nm)开始出现.考虑到 \tilde{C} 态和4s的Rydberg态能级 非常接近 但在 330—350 nm 波长范围内 SF2 自由 基 4 s←X 双光子跃迁的 4 s 1號 n = 3 A 5 ,即 a ,b , c)峰在 SF⁺ 谱中无反映,而且 $\tilde{C} \leftarrow \tilde{X}$ 双光子跃迁的 1% n = 3 A)非常弱,在其紫端观察不到 1⁴ 之后的 振动峰,说明 \tilde{C} 态势阱较浅,在较低的振动能级 SF_2 即发生预解离. 据此,与 Hudgens^[8]的推测相反,我 们则倾向于 REMPDI 机理 即 SF2 自由基基态通过 双光子共振到达 $\widetilde{ ext{C}}$ 态 ,由于 $\widetilde{ ext{C}}$ 态势阱较浅 ,带有预 解离特性,而解离为 SF 碎片 SF 碎片再经过多光子 电离产生 SF⁺ 离子. 需要补充说明的是,由 SF₂ 自 由基4pRydberg 态附近光解离行为的研究^{13]}知: SF_2^+ 离子发生解离的能级位置处于绝热电离势以 上约 15116 cm^{-1} ,即 SF_2 自由基电子基态以上 96417 cm⁻¹左右的能量位置. 在本实验的波长范围 内,三光子能量不可能达到 SF₂⁺离子基态的解离位 置 即(2+1)REMPI 过程不能解释 SF2⁺的解离行 为.由于存在其他(2+2)和(2+3)REMPI过程的可 能性 仍需通过进一步的实验和理论计算 ,才能完全

澄清 SF, 的解离特性.

4 结 论

用分子束混合气的直流脉冲放电产生 SF2 自由

- [1] D. R. Johnson , F. X. Powell , Science , 164 (1969), 950.
- [2] W. H. Kirchhoff, D. R. Johnson, F. X. Powell, J. Mol. Spectrosc. 48 (1973), 157.
- [3] Y. Endo , S. Saito , E. Hirota , J. Mol. Spectrosc. ,77(1979), 222.
- [4] J. C. Deroche ,H. Burger ,P. Schulz ,H. Willner ,J. Mol. Spectrosc. 89 (1981) 269.
- [5] A. Hass ,H. Willner ,Spectrochim . Acta . 34A(1978),541.
- [6] H.Z. Willner , Anorg. Allg. Chem. **481**(1981), 117.
- [7] R.J. Glinski , Chem. Phys. Lett. ,155(1989),511.
- [8] R.D. Johnson III, J. W. Hudgens, J. Phys. Chem. 94 (1990), 3273.

基.研究了在 320—365 nm 波长范围内 SF₂ 自由基的(2+1)REMPI,观测了 4 s Rydberg 态和 \tilde{C} 态的 共振序列,分别给以标识,得到相应的振动模(ω'_1 和 ω'_2)频率值,并讨论分析了 \tilde{C} 态附近的 SF₂ 自由基的解离行为.

- [9] Q.X. Li ,J. N. Shu ,Q. Zhang et al. ,J. Phys. Chem. ,102A (1998) ,7233.
- [10] Q. Zhang J. N. Shu Q. X. Li, *Acta Physica Sinica* **47**(1998), 1770(in Chinese]张群、束继年,李全新等,物理学报,**47** (1998),1776].
- [11] D. M. De Leeuw , R. Mooyman , C. A. De lange , Chem. Phys. , 34(1978) 287.
- [12] S. T. Manson , Phys. Rev. ,182 (1969), 97.
- [13] Q. Zhang Ph. D. Thesis(University of Science and Technology of China, Hefei, 1999) in Chinese I张 群,博士学位论文(中 国科学技术大学, 合肥, 1999)].

STUDY ON THE RESONANCE-ENHANCED MULTI-PHOTON IONIZATION OF THE 4s AND \tilde{C} STATES OF SF₂ RADICAL

ZHOU XIAO-GUO LI QUAN-XIN ZHANG QUN YU SHU-QIN

SU YI CHEN CONG-XIANG MA XING-XIAO

(Laboratory of Bond-Selective Chemistry ,Department of Chemical Physics ,University of Science and Technology of China ,Hefei 230026 ,China) (Received 22 May 1999)

Abstract

The SF₂ radical was generated by using a pulsed dc discharge in the mixture of SF₆/Ar. The (2+1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy of SF₂ radical was observed at 320—365 nm. The analysis shows that the observed spectra can be assigned to the resonant excitation of SF₂ (4s Rydberg and \tilde{C} states). The spectroscopic parameters ω'_1 and ω'_2 were obtained. And we try to clarify the band origin, the vibrational properties and the dissociative characteristics of the \tilde{C} state.

PACC: 3380E; 3320N