Fe/MnPd 薄膜各向异性和矫顽力的研究

唐云俊¹) B.F.P.Roos²) B.Hillebrands²) 赵宏武¹) 詹文山¹)

1(中国科学院物理研究所与凝聚态物理中心磁学国家重点实验室 北京 100080)

²(Physics Department ,University Kaiserslautern ,Kaiserslautern 67663 ,Germany) (1999年4月26日收到)

从理论和实验上对 Fe/MnPd 薄膜的交换偏置效应、各向异性和矫顽力的增加作了系统的研究. 研究表明,在 FM/AF 结构中,FM 和 AF 的交换耦合作用会诱导系统产生高阶各向异性,在 Fe/MnPd 结构中获得的单轴和立方 各向异性的大小同单轴各向异性与铁磁层的厚度成反比关系一样. 同时,铁磁层(FM)和反铁磁层(AF)的交换耦合 作用诱导而产生的高阶各向异性的存在是使系统矫顽力增加的重要原因.

PACC: 7570; 7560E; 7530G; 7530E

1 引 言

在铁磁(FM)/反铁磁(AF)薄膜系统中,由于 FM和AF层的交换耦合作用,导致磁滞回线偏移, 产生交换偏置效应^[1].通常用交换偏置场(H_{ex})或 单向各向异性(K₁)来描述这一现象.由于这一现象 在磁记录和磁传感器领域中具有重要的应用价值, 因此近年来,这一领域的研究十分活跃^[2-8].

尽管目前对于交换偏置效应的研究已经很多, 然而其机理尚不十分清楚^{2-4 8]}. 交换偏置作用研 究的核心问题是反铁磁的自旋在界面的排列方式. 按照其排列方式和特性,目前关于交换偏置作用的 理论研究大致可分为两类, 一种理论认为 AF 层的 自旋在界面是固定不动的,交换偏置效应是由界面 粗糙引起的随机分布的交换场所引起的^{3]};另一种 理论认为 ,AF 层的自旋在外场的作用下会发生转 动. Mauri 等^{2]}提出在AF 层中形成平行于界面的磁 畴壁可以显著降低薄膜磁化所需的能量,实验和理 论计算还发现 FM 层和 AF 层的自旋存在垂直排列 的取向[568].尽管这两种理论均可以获得与实验相 吻合的交换偏置场的数值 但是 它们均无法解释在 实验中发现的 FM/AF 交换偏置系统的矫顽力较之 于纯 FM 层的增加与 FM 和 AF 层的厚度的关 系^[7,9-11].尽管,在FM/AF结构中,矫顽力增加的 现象十分明显 但是直到最近 这一现象才引起人们 的重视[78] 而目前尚没有理论模型来阐明这一 现象.

研究中 最常用于 FM/AF 交换偏置系统的反 铁磁材料为 FeMn^[12].由于 FeMn 的 Neel 温度只有 200℃且易于腐蚀,在实际应用中受到了限制.因此, 人们不断探索构成 FM/AF 系统的新的反铁磁材 料,期望在获得大的交换偏置场的同时,获得较高的 冻结温度(Blocking Temperature)和较好的抗腐蚀 性能^{13,14]}.其中,反铁磁材料 MnPd 的 Neel 温度高 达 540℃,为 CuAu-I型面心四方结构^{15]},是构成 FM/AF 交换偏置系统的候选材料之一.然而,尚未 见关于以 MnPd 为反铁磁层的 FM/AF 交换偏置系统的报道.

作为对 Fe/MnPd 系统研究的一部分 本文报道 了该系统的交换偏置场、矫顽力和各向异性的大小 随铁磁层厚度的变化规律.发现,由于交换偏置效 应,系统不仅存在单向各向异性,而且具有单轴和立 方各向异性,且各向异性常数与 Fe 的厚度成反比. 本文建立的唯象的理论模型表明,交换偏置作用诱 导的高阶各向异性的存在,是使 FM/AF 系统矫顽 力增加的重要原因之一.

2 实 验

样品用分子束外延(MBE)设备生长,MBE的 本底真空优于 5×10^{-8} Pa. Fe,Pd 以电子枪蒸发, Mn 以蒸发腔(K-cell)蒸发,速率分别为 0.01 nm/s. 样品在室温下生长于热氧化的 Si 基片上,制备的样 品为楔形结构:Si/SiO₂/Fe(t_{Fe})/MnPd(20 nm)/ Pd(2 nm)其中,铁的厚度从 2 nm 到 16 nm,Fe 的 厚度 $t_{\text{Fe}}=4 \text{ nm}$ 的样品. 生长过程中,沿样品表面外 加 50 Oe 的磁场. 为便于比较,在同样条件下生长了 厚度从 2 nm 到 10 nm 的纯 Fe 薄膜作为比较. 利用 原位 Auger 来控制样品中 Mn,Pd 的相对含量. 利用 X 射线来测量样品的晶体结构,同时利用磁光克尔 效应谱仪(MOKE)来测量样品在室温下的磁性.

3 结果和讨论

MnPd和 MnNi ,MnPt等,同样具有 CuAu-I型 结构.以往的研究表明,制备态的 MnNi 和 MnPt的 薄膜为非磁性无序的面心立方相(fcc),而非反铁磁 面心四方相(fct)^{13,14]}.因此为了获得反铁磁相,必 须进行退火或在制膜时提高基片温度,而这会导致 不可避免的界面扩散,不利于分析研究.我们在研究 中发现,采用适当底层薄膜,如 Fe,则可以在室温 下、勿需退火即可获得 MnPd 的反铁磁 fct 相,从而 实现了 Fe/MnPd 薄膜中的交换偏置作用.图1示出 样品的 X 射线分析结果.图中的各峰均可以 MnPd 面心四方相(fct)标定,其中 fct 相特有的、由 fcc 相 (200)劈裂而成的(200)和(002)峰清晰可见,表明样 品中反铁磁面心四方相(fct)的存在.

图 1 样品 Si/SiO₂/Fe(4 nm)/MnPd(20 nm)/Pd(2 nm)的 X 射 线谱

图 2 示出楔形样品的交换偏置场(H_{ex})和矫顽 力(H_e)随楔型层 Fe 厚度(t_{Fe})的变化规律. 正如预 期,由于交换偏置作用为界面效应, H_{ex} 与 t_{Fe} 成反比 关系.通常用与铁磁层材料及其厚度无关的单位面 积内的界面能量 ΔE 来比较不同交换偏置系统的交 换偏置效应的大小^[12]: $\Delta E = H_{ex}M_{FM}t_{FM}$,其中, M_{FM} , t_{FM} 分别为铁磁层的饱和磁化强度和厚度.若 取 Fe 的饱和磁化强度 $M_{FM} = 1.7 \times 10^{-4}$ J/cm³,本 文表明,对于以 MnPd 为反铁磁层的交换偏置系统, 界面能量 $\Delta E = 1.7 \times 10^{-9}$ J/cm²,它略小于制备态 的以 FeMn 为反铁磁层的 FM/FeMn 结构的界面能 量(通常为 0.2×10^{-8} — 0.2×10^{-7} J/cm³),但是却 远大于界面能量为 0.2×10^{-9} J/cm² 的以 NiMn 为 反铁磁层的制备态的交换偏置结构 ¹²¹. 这表明, MnPd 是一个极有潜力的可用于 FM/AF 结构中的 反铁磁材料.

图 2 样品 Si/SiO₂/Fe(*t*_{Fe})/MnPd(20 nm)/Pd(2 nm)的交换偏 置场(*H*_{ex})和矫顽力(*H*_c)随楔型层 Fe 厚度 *t*_{Fe}的变化

同时我们也发现,系统的矫顽力(*H*_c)不仅较之 纯 Fe 薄膜的矫顽力大幅增加,而且也与 Fe 厚度成 反比关系,这一现象在其他的交换偏置系统中也有 报道^[7,9—11]. 一般认为,*H*_{ex}和*H*_c都是由 FM-AF 的 交换耦合作用引起的,遗憾的是,目前对交换偏置作 用的研究仅局限于对*H*_{ex},而几乎完全忽视了对*H*_c 的研究.

为进一步考察系统的交换偏置作用和矫顽力, 本文首先研究了系统的各向异性.图 3 示出 H_{ex} 和 H_{e} 随外场与样品易磁化方向的夹角(θ)的关系.由 图可见, H_{ex} 随 θ 并不是简单的 $\cos\theta$ 关系 表明系统 中不仅存在单向各向异性,还存在高阶各向异性.尽 管对于 H_{ex} 和 H_{e} 随 θ 的关系对了解交换偏置作用 的机制十分重要,这是因为铁磁层和反铁磁层的自 旋在界面的不同方向的排列会影响系统的交换偏置 作用,然而这方面的研究却很少 $^{(7,16-18]}$. 对多晶 NiFe/FeMn 系统的研究发现 $^{(16)}$, H_{ex} 随 θ 为简单的 $\cos\theta$ 关系,而在单晶样品中却发现两者有复杂的对 应关系,表明系统中高阶各向异性的存在 $^{(18)}$.在对 NiFe/CoO^{(7]}系统的研究中,也发现了高阶各向异 性, H_{ex} 与 θ 也呈现出复杂的对应关系.

图 3 样品 Si/SiO₂/Fe(4 nm)/MnPd(20 nm)/Pd(2 nm)*H*_{ex}和 *H*_e随外场与样品易磁化方向的夹角(θ)的关系

假定系统的磁化强度在磁化过程中均匀转动,则可利用 Stoner-Wohlfarth 模型来描述其磁化过程,进而计算出系统的各向异性的大小.系统的自由能 F 为^[18]

F

$$= K_{1}\cos\theta + K_{2}\cos^{2}(\theta - \theta_{\text{off}}) + K_{4}\cos^{2}(\theta - \theta_{\text{off}})\sin^{2}(\theta - \theta_{\text{off}}) - HM_{c}\cos(\theta - \phi), \qquad (1)$$

其中, K_1 , K_2 和 K_4 为单向、单轴和立方各向异性 常数, θ 为磁化强度与 K_1 易轴的夹角, θ_{off} 为 K_1 , K_2 和 K_4 易轴的偏移, ϕ 为外场与 K_1 易轴的夹角, M_s 为饱和磁化强度.以(1)式计算的 H_{ex} 和 H_c 结果同 时列于图3,可以发现,理论计算与实验极为吻合. 计算获得的各阶各向异性常数示于图4.由图可见, 首先,系统除单向各向异性外,还有相当大的单轴和 立方各向异性,其次,与单向各向异性常数一样,单 轴和立方各向异性常数与铁磁层 Fe 的厚度成反比 关系,表明单轴和立方各向异性同样是由界面的 FM-AF 交换耦合所引起的.

关于交换偏置系统 FM/AF 中高阶各向异性的 起源值得讨论. FM/AF 交换偏置系统中由交换耦 合作用诱导的高阶(单轴、立方)各向异性的存在,首 先由 Mathieu 等人^[19]在单晶 NiFe/FeMn 样品中发 现,目前,尚没有一个理论模型来阐明其原因.最近 Michel 等人^[20]在对 NiFe/NiO 系统的研究中也发

图 4 样品 Si/SiO₂/Fe(t_{Fe})/MnPd 20 nm /Pd 2 nm)各向异 性常数与 t_{Fe} 的关系($1erg = 10^{-7}$ J)

现 在单晶样品中存在立方各向异性 而在多晶样品 中则没有发现.他们认为,在上述系统中,立方各向 异性的存在与铁磁或反铁磁层的内禀磁晶各向异性 无关 而是在制样过程中所加偏场诱导所致 由于纯 单晶 NiFe 薄膜制备过程诱导产生的可能的单轴和 立方各向异性非常小,不足以形成 NiFe/NiO 的磁 滞回线 因此 立方各向异性必定来源于 FM-AF 的 交换耦合.同时,由于单晶样品较之于多晶样品界面 更有序 从而导致 NiO 的自旋能更均匀地对铁磁层 产生作用.也有人认为,FM-AF 界面的铁磁层和反 铁磁层的高阶交换耦合作用是诱导高阶各向异性的 可能的原因^[7,17] 最近的微磁学的计算也表明^{8]}, FM 层和 AF 层自旋的垂直排列耦合会诱导产生单 轴各向异性,在我们的多晶样品中,显然高阶各向异 性的存在与 FM-AF 界面的交换耦合作用有关, 这 是因为,对于多晶的纯 Fe 薄膜,由于无数晶粒的局 域各向异性的平均效应,其总的各向异性为零.而当 反铁磁层 MnPd 蒸发到 Fe 层上时 局域的 FM-AF 交换耦合偏置作用的大小则取决于每个晶粒的各向 异性的易轴与铁层的磁化强度的方向夹角.显然 这 个夹角较小的晶粒则会产生较大的交换耦合作用, 从而导致系统的各向异性不再为零.即那些易轴方 向平行于 Fe 的 001 方向的晶粒则会诱导产生立方 各向异性,而那些易轴方向平行于 Fe 的 110 方向 的晶粒则会诱导产生单轴各向异性.又由于单轴和 立方各向异性同单向各向异性一样都是由于铁磁层 和反铁磁层的界面交换耦合作用引起的 因此它们 应具有单向各向异性与铁磁层的厚度成反比的相同

关系 这也正是本文实验中所观察到的.

我们再来讨论系统的矫顽力. 众所周知,界面粗 糙度和自旋在界面的 FM/AF 界面的分布会影响 FM/AF 界面的交换耦合作用,同时在退磁过程中 可能成为畴壁移动的势垒,使矫顽力增加,这是 FM/AF 系统矫顽力增加的原因之—^[21].同时,人们 在研究中也发现,虽然某些单晶结构,如 Fe/ Fe₃O₄^[5],Fe/FeF₂^[6],其界面粗糙度相当小,然而系 统的矫顽力较之于纯铁磁层依然大幅增加.因此,结 合本文对于系统各向异性的研究,认为 FM/AF 系 统矫顽力增加的另一重要原因是由 FM-AF 交换耦 合作用引起的高阶各向异性的存在.这里,为正确理 解高阶各向异性和矫顽力的关系,利用 Mauri 的模 型²¹,在 FM/AF 界面的总的自由能 F 中引入立方 各向异性自由能项:

 $F = 2\sqrt{AK}(1 - \cos\alpha) + A_{12}/\xi$ $\cdot [1 - \cos(\alpha - \beta)] + K_{\rm F}t\cos^2\beta$

+ $K_{\rm H} \cos^2\beta \sin^2\beta$ + $HM_{\rm s}t(1-\cos\beta)$, (2) 其中,第一项是反铁磁层磁畴的能量,A,K分别是 反铁磁层的交换系数和各向异性常数 ;第二项为铁 磁层和反铁磁层在界面的交换耦合能量,A12为界 面交换常数 & 为界面厚度;第三、四项分别是单轴 (K)和立方(K)的合同异性能量;第五项是静磁能。 H为外磁场, M_s 为饱和磁化强度,t为铁磁层厚 度 α 和 β 分别是界面的反铁磁层和铁磁层的自旋 与易磁化方向的夹角,建立该模型时假定,铁磁层的 厚度 t 远远小于铁磁层畴壁的厚度 因此铁磁层中 的自旋具有相同的极化角 β.(2)式可以用数值法求 解,获得系统的磁化曲线^{11]}.如果又假定,A₁₂/ $\epsilon_2 \sqrt{AK} \ll 1$ 即铁磁层与反铁磁层在界面的交换耦 合能远大于反铁磁层畴壁的能量,则 $\alpha \approx \beta$. 这样,对 于外加场平行于薄膜的易磁化方向时,以上式计算 获得的薄膜的磁化曲线为方形 同时 其交换偏置场 Hex和矫顽力 H。解析式分别为

 $H_{\rm ex} = (H_{\rm c1} + H_{\rm c2}) = -2\sqrt{AK} / M_{\rm s}t ,$ $H_{\rm c} = (H_{\rm c1} - H_{\rm c2}) = (2K_{\rm H} - 2K_{\rm F}t) M_{\rm s}t ,$ (3)

其中,H_{cl}和H_{c2}分别为磁滞回线的右、左矫顽力.很 显然,以该模型计算获得的交换偏置场H_{ex}与Mauri 的模型所得的结果完全相同.然而,矫顽力却大不相 同.计算结果表明,矫顽力与铁磁层厚度成反比关 系,这与我们的实验结果和其他的研究报道相吻合. 其次(3)式的矫顽力可以分为两项,一项为没有交换偏置作用的纯铁磁层的矫顽力 – $2K_{\rm F}/M_{\rm s}$,另一项可以认为是由于交换偏置作用引起的矫顽力 $2K_{\rm H}/M_{\rm s}t$.用该公式拟合实验数据,发现对于纯铁磁层的矫顽力 $H_{\rm c}\approx14$ Oe,这与我们在实验中获得的纯铁的矫顽力的值相吻合.

4 结 论

本文表明,以 MnPd 为反铁磁层的新的 FM/AF 结构的交换偏置效应的大小与目前常用的以 FeMn,NiMn 等为反铁磁层的结构的交换偏置效应 相当或更优,是很有希望的用于 FM/AF 结构的候 选材料之一.本文进一步阐明,在 FM/AF 结构中, FM 层和 AF 层的交换耦合作用会诱导系统产生高 阶各向异性,在 Fe/MnPd 结构中我们获得的单轴和 立方各向异性的大小同单轴各向异性与铁磁层的厚 度成反比关系一样.通过建立唯象的理论模型和计 算表明,系统中高阶各向异性的存在是使 FM/AF 结构矫顽力增加的重要原因之一.

- W. H. Meiklejohn ,C. P. Bean , Phys. Rev. ,102(1956),1413;
 105(1957),904.
- [2] C. Mauri ,H. C. Siegmann ,P. S. Bagus ,E. Kay ,J. Appl. Phy. , 62 (1987) 3047.
- [3] A. P. Malozemoff, Phys. Rev., B35(1987), 3679; J. Appl. Phys. 63(1988) 3874; Phys. Rev., B37(1988), 7673.
- [4] N.C.Koon , Phy. Rev. Lett. , 78(1997) , 4865.
- [5] Y. Ijri J. A. Borchers R. W. Erwin S. H. Lee P. J. van der Zaag R. M. Wolf Phys. Rev. Lett. 80(1998) 608.
- [6] T. J. Moran, J. Nogues, D. Lederman, I. K. Schuller, Appl. Phys. Lett. 72 (1998) 617.
- [7] T. Ambrose, R. L. Sommer, C. L. Chien, Phys. Rev., B56 (1997) 83.
- [8] T.C. Schulthess, W. H. Butler, Phys. Rev. Lett., 81(1998), 4516.
- [9] C. Tsang, N. Heiman, K. Lee, J. Appl. Phys., 52(1981), 2471.
- [10] R. Jungblut, R. Coehoorn, M. T. Johnson, J. aan de Stegge, A. Reinders J. Appl. Phys. 75 (1994) 6659.
- [11] Y. J. Tang ,B. F. P. Roos ,T. Mewes ,S. O. Demokritov ,B. Hillebrands ,to be published.
- [12] J. Nogues , Ivan K. Schuller , J. Magn. Magn. Mater. , 192 (1999) 203.
- [13] H. Kishi, Y. Kitade, Y. Miyake, A. Tanaka, K. Kobayashi, *IEEE Trans. Magn.* **32** (1996) 3380.
- [14] R.F.C. Farrow ,R. F. Marks ,S. Gider ,A. C. Marley ,S. S. P. Parkin J. Appl. Phys. 81(1997) 4986.

5 期

- [15] H. P. J. Wijn , Magnetic Properties of Metals , in Data in Science and Technology , editor in Chief : R. Poerschke (Springer-Verlag , Berlin Heidelberg , 1991), p. 81.
- [16] T. Mewes , Diploma Thesis , Universität Kaiserslautern (1998).
- [17] D. V. Dimitrov Shufeng Zhang J. Q. Xiao G. C. Hadjipanayis, C. Prados ,*Phys. Rev.* ,**B58**(1998),12090.
- [18] S. Riedling , M. Bauer , C. Mathieu , B. Hillebrands , R. Jungblut , J. Kohlhepp , A. Reinders J. Appl. Phys. in press.
- [19] C. Mathieu , M. Bauer , B. Hillebrands , J. Fassbender , G. Guntherodt , R. Junbblut J. Kohlhepp , A. Reinders , J. Appl. Phys. , 83 (1998) 2863.
- [20] R. P. Michel , A. Chaiken , C. T. Wang , L. E. Johnson , Phys. Rev. B58 (1998) 8566.
- [21] Zhenghong Qian , John M. Sivertsen , Jack H. Judy , J. Appl. Phys. 83 (1998) 6825.

ANISOTROPY AND COERCIVITY ANALYSIS OF Fe/MnPd BILAYERS

TANG YUN-JUN¹) B. F. P. ROOS²) B. HILLEBRANDS²) ZHAO HONG-WU¹) ZHAN WEN-SHAN¹)

¹ (State Key Laboratory for Magnetism ,Institute of Physics & National Center of Solid State Physics , Chinese Academy of Sciences ,Beijing 100080 ,China)
² (Physics Department , University Kaiserslautern ,Kaiserslautern 67663 ,Germany)

(Received 26 April 1999)

ABSTRACT

We present the detailed studies of the exchange bias effect, the coercivity and the enhanced coercivity of exchange bias bilayer Fe/MnPd both experimentally and theoretically. We have so far as we know for the first time demonstrated that the existence of large higher order anisotropies due to exchange coupling between different Fe and MnPd layers can account for the large increase of coercivity in Fe/MnPd system. The linear dependence of coercivity on inverse Fe thickness can be well explained by a phenomenological model by introducing higher order anisotropy term into the total free energy of the system.

PACC: 7570; 7560E; 7530G; 7530E