⁴HeH⁺核间距的实验测定^{*}

缪竞威 师勉恭 杨百方 唐阿友 N.Cue[†]

(四川大学原子核科学技术研究所,成都 610064)

(1999年11月8日收到)

用 MeV 量级⁴HeH⁺ 在超薄无衬碳膜中的库仑爆炸,获得高频离子源产生⁴HeH⁺ 核间距的实测值为 0.094 ± 0.003 nm.发现⁴HeH⁺ 与 H₂⁺,H₃⁺ 不一样,其核间距大小和离子源种类及离子源参数有密切关系,并从⁴HeH⁺ 的形成机理与形成条件,解释了高频离子源和双等离子源产生⁴HeH⁺ 核间距不同的原因.

PACC: 3640; 3405; 3510; 8230

1 引 言

⁴HeH⁺是由两个最轻的异种元素的原子核和两 个电子组成的离子微团簇.根据天文学家对太阳和 其他较近恒星进行的分光观测及分析表明,组成 ⁴HeH⁺的氢和氦仍是目前宇宙中丰度最高的两种元 素.宇宙中 70%的元素是氢,28%的元素是氦,比氢 和氦重的元素只占 2%(百分比是元素的质量分 数)¹¹.如果宇宙学 大爆炸 (The Big Bang)理论成 立,当今弥漫于宇宙中占主导地位的氢和氦是在大 爆炸的最初 3 秒内,由质子及质子和中子结合形成 的.因此,在实验室研究由它们原子组成的⁴HeH⁺的 形成、结构、性质及与物质相互作用,将可能为宇宙 起源、形成、结构及演变的宇宙学积累一些有用的基 本数据.天文学家也已发现了⁴HeH⁺在星际空间存 在的信息.多年来,物理、化学、天文等领域的科学家 一直从本学科的观点和方法去认识⁴HeH⁺.

⁴HeH⁺研究了它们在 He ,Ne ,Ar 中的碰撞解离 ,获 得多个能点的解离截面.

利用小加速器及核技术,通过 MeV 量级微团 簇在固体极表层 库仑爆炸 产生的时空关联碎片与 固体相互作用 能观测到从前用其他方法不能得到 的离子与固体相互作用产生的新现象、新效应、新信 息,可更精细地阐明离子穿越固体碰撞的微观过程 和运动规律,为其他方法所不能代替,更重要的是, 可以实现人类多年无法达到的,对离子微团簇立体 结构、结合能、键长和键角的测定,值得一提的是, 1978 年 用上述方法实验证实了 H⁺ 是正三角形结 构¹⁶] 澄清了长达 40 年的理论上的一些分岐, 至 今 各国用此方法共测定给出了约 10 种离子微团簇 的立体结构. 我们曾对 H_{2}^{+} H_{3}^{+} D_{2}^{+} D_{3}^{+} HD^{+} 等多 种离子微团簇的立体结构进行过实验研究[17,18],对 ⁴HeH⁺ 键长的实测,仅美国阿贡国家实验室一家^[19] 多次发表过用双等离子源产生 4 HeH ${}^{+}$ 在 2.0 MeV 和 3.0 MeV 的结果.本文将介绍我们用高频离子源 产生⁴HeH⁺ 将其加速到 MeV 量级 ,通过 0°方向库 仑爆炸产物的高分辨能谱测量,获得4HeH+键长的 实测值,据我们所知,目前尚未见高频源产生⁴HeH⁺ 键长的实测值报道,实验表明用高频源(rf)和双等 源产生⁴HeH⁺的键长是不同的.

2 实验方法与装置

用 MeV 量级⁴HeH⁺ 穿越固体薄靶,通过 0°方

^{*}国家自然科学基金(批准号:19735004,19575033)和国家教育部重点科技项目(批准号:1997[129])资助的课题。

^{*}香港科技大学物理系,四川大学名誉教授.

向出射产物能谱和原始团簇束能量的高分辨测量, 进行⁴HeH⁺ 键长的实测,是一项精细、复杂、难度很 大的实验研究,首先,必须获得 MeV 量级的⁴HeH⁺ 的团簇束,这必然涉及到⁴HeH⁺的形成、引出、加速、 分离(质量、能量和电荷态),准直、纯化等的研究,其 次 必须分辨 10 eV 量级离子微团簇势能 经库仑爆 炸转化成动能,叠加在 MeV 量级碎片上造成的能 量差异.因此.要求原始⁴HeH⁺束具有异常小的能散 度 制备异常薄的无衬超薄固体靶 以降低多次散射 和能损的影响 建立能量分辨异常高的带电粒子能 谱仪, 第三, 由于库仑爆炸碎片全部散落在靶后一个 顶角很小的锥形空间内 其顶角大小决定于入射束 的能量、团簇的势能、碎片的质量和电荷态,通常在 0.05°-0.5°之间,因此,测定0°方向的能谱,要求原 始束具有异常高的平行度,同时要求探测系统具有 异常高的角分辨,第四,由于荷能团簇与固体碰撞的 反应道很多(一般多于5个),加上通常无法分离的 荷质比相同的杂质团簇($\mathbf{1}^{4}$ HeH⁺中的 HD_{7}^{+} 和 ³HeD⁺ 混入 致使产物种类成倍增加,因此 必须对 相关杂质团簇在离子源中的形成机理及形成条件进 行研究 将杂质团簇在束中的影响降至最低,同时, 建立异常复杂的粒子鉴别系统.第五,束及产物整个 路径上残余气体的影响不容忽略 因在此能区团簇 和气体碰撞的离解截面和电荷交换截面很大.90年 代初期,轰动全球的 D-D 核反应截面反常增强 25 个量级的团簇冲击核聚变的错误实验结果,恰好出 自对团簇束路径上的残余气体重视不够,误将部分 团簇与残余气体碰撞形成的,在加速管中又获得了 更高能量的单个原子炮弹,一起当成了团簇炮弹所 致,此外,还必须在离子微团簇与固体、气体相互作 用方面有相应的理论和实验研究基础.

用于本项实验的四川大学高分辨多功能原子碰 撞装置如图1所示,它能满足上述团簇物理实验的 各种特殊要求.

2.1 高品质的⁴HeH⁺束

用国产 2.5 MV 静电加速器,将高频离子源引 出的⁴HeH⁺,加速到 1.4420 MeV.为了进一步改善 原始束的能散度,并为今后获得更多种类、更重、更 复杂的团簇束,新建立了一台高分辨磁分析器.磁分 析器主半径 850 mm,双向 90°,磁场稳定度好于 1.6 $\times 10^{-5}$ /8 h,进出口缝通常小于 1 mm.不破坏真空 可改变缝大小的进口光阑,由内通流动冷却水的两 对偏心转动的不锈钢圆柱组成,以此替换过去的固 定狭缝光阑 这样既可改变缝的宽窄 又可改变缝的 长短 既便于调束 又易于获得细缝 此外 新建立了 一套加速器闭环稳压系统 并通过多种措施 提高了 原始入射束的能量单色性,加速器磁分析器后的准 直系统由一组可不破坏真空调节大小的活动光阑组 成,活动光阑调节杆的真空密封是采用伸缩量最大 的焊接波纹管 而不是用通常的威尔逊橡皮圈 从而 保证了良好的动密封. 孔阑大小可在 10 µm×10 µm 到 8 mm×8 mm 之间连续变化. 准直器长 1.76 m. 为了使进入靶的束是纯净的⁴HeH⁺ ,清除加速器磁 分析器到靶之间约 5 m 长路径上,⁴HeH⁺ 与束流线 上残余气体碰撞可能生成的混入原始束中的⁴He⁺, ⁴He²⁺, ⁴He⁰, ⁴He⁻, H⁺, H⁰和H⁻等杂质粒子, 在准 直器之后 临近靶前 用一静电偏转系统对进入靶的 粒子再进行一次分选,由于尚未在离子源中送入过 ³He 且在作此项实验前长期未向离子源送过氘 离 子源送气管道中绝无残余的氘和³He,因此⁴HeH⁺ 中不应含有 3 HeD ${}^{+}$ 和 HD ${}^{+}$ 杂质团簇.

2.2 超薄无衬碳膜靶

这类实验对靶有一系列特殊要求,为了使获得 的高分辨能谱更真实地反映入射原始团簇的特性, 要求尽量降低与靶原子碰撞带来的影响,因此靶材 应选用原子质量尽可能小的轻元素:为了减少多次 散射的影响 靶厚度应尽可能薄 ,且均匀无针孔 ;为 了得到自支撑无衬靶 要求超薄靶应具有良好的机 械性能:为了使超薄靶在 MeV 量级束流轰击下.不 因能量沉积而烧毁 要求靶材应具有良好的耐热性; 为了避免电荷在靶上堆积,造成靶因静电力而破裂, 要求靶材应具有良好的导电性,基于上述要求,碳自 然成了靶材的最佳选择.实验中 靶表面吸附油分子 后 在束的轰击下 ,油会碳化造成靶被粘污 . 选用碳 靶的优点还在于,这种粘污不会使靶的成分发生变 化.此外 油粘污碳化能造成靶的厚度随轰击时间增 加而逐渐变厚,为消除这种影响,我们在靶架外装有 一圆筒形的紫铜罩, \$30 mm 的紫铜棒一端插入真 空靶室外的液氮容器内 ,一端与真空室内的紫铜罩 相连,利用不锈钢导热不良的特性,与不锈钢法兰和 与铜棒焊接的薄壁不锈钢圆筒,大大降低了紫铜棒 与金属靶室之间的热传递 从而使上述靶外的紫铜 罩上的温度的实测值达 – 73°. 实验证明:加上冷却 罩后,在测量误差范围内,经几小时束轰击,未发现

图 1 高分辨多功能原子碰撞装置示意图

碳膜厚度发生变化,而目前一轮实验通常都在一小时以内.另一方面,束轰击的溅射又可能使膜变薄,因此测量过程中必须对靶厚变化进行监控.在数据分析和处理中,靶厚的准确实测值通常也是重要的.我们用对称安装在靶后 $\theta = 15^{\circ}$ 处的两只金硅面垒探测器,通过卢瑟福散射法对靶厚进行监测.此实验中,无衬薄碳靶的厚度经测试为 $3 \mu g/cm^2$.上述靶后的对称双探测器的使用,还可以保证调束时,束真正通过靶室的几何中心,使实验的 θ 值和安装时的 θ 值一致,以保证靶厚测量的准确性,因卢瑟福散射截面和 $sin\left(\frac{\theta}{2}\right)^4$ 成反比.当然,通过双探测器计数比的变化,还可监测束流线是否发生漂移.

2.3 高分辨带电粒子能谱仪

高分辨能谱仪由一台专用的高分辨静电分析器 和微机四参数在线数据获取及控制系统组成.静电 分析器的电极由两块 90°扇形柱面的不锈钢构成, 主半径 800 mm,缝宽为 8 mm,加工精度 7 μm.加在 电极上的一台 0—50 kV和一台 0— - 30 kV的高压 电源的纹波小于 2×10⁻⁵,测量期间的稳定度为 10⁻⁵.当然,高分辨的带电粒子能谱仪也可采用磁 谱仪,但选用静电分析器能谱仪有如下优点:它能直 接获得产物的能量谱而不是动量谱;直接对能量进 行绝对测量,能量和所加电压是成线性变化的.

用高分辨带电粒子能谱仪测量的 1.9338 MeV H₂⁺ 入射束的能谱如图 2 所示. 它说明高分辨多功 能原子碰撞装置的总能量分辨 $\Delta E/E$ 为 \pm 1.5 × 10^{-4} ,其中包括原始束的能散度、带电粒子能谱仪 及所有电子和电气设备的贡献.

2.4 清洁的高真空系统

经加速器磁分析器分选后的团簇束到产物探测

图 2 用静电分析器测量 1.9380 MeV H₂⁺ 入射束的能谱

器,要经过 12 个 20 µm 到 1 mm 量级大小的孔阑, 以保证入射到靶上束的平行度、探测器的角分辨及 束的纯度.光阑由固定孔阑和可调节孔阑大小的活 动光阑组成.所有活动光阑可在不破坏真空的条件 下调节孔阑的大小.多个孔阑的使用除给调束带来 一定难度外,也给整个束流线上保持良好的真空造 成一定困难.为此,在束流线上设置多台真空机组, 在孔阑处设计安装旁路真空管道是必要的.

束流线上有 7 台 1500 L/s 的高真空机组 ,除靶 室的一台为分子泵外 ,其余均为超高真空油扩散泵. 每台油扩散泵上均有液氮冷阱 ,以保证整个束流线 上的真空是清洁的.在液氮的条件下 ,整个束流线上 的真空度好于 2×10⁻⁵─7×10⁻⁵ Pa.

2.5 高分辨装置的主要技术指标

静电分析器的能量分辨 $< \pm 1.5 \times 10^{-4}$

- 1	α	61
J	יט	υı

分辨	$< 0.75 \times 10^{-4} r$	ad
$< \pm 1.$	5×10^{-4}	
$<\pm 4.$	5×10^{-5} rad	
=	$\pm1.5{\times}10^{-4}$	
	分辨 <±1. <±4. =	分辨 $< 0.75 \times 10^{-4}$ r $< \pm 1.5 \times 10^{-4}$ $< \pm 4.5 \times 10^{-5}$ rad $= \pm 1.5 \times 10^{-4}$

3 结果和讨论

3.1 ⁴HeH⁺的形成机理

进行⁴HeH⁺ 键长的实测,需有高品质的 MeV 量级的⁴HeH⁺束,因此,首先必须研究高频离子源中 ⁴HeH⁺的形成机理,根据形成机理控制离子源参数, 引出提供加速的⁴HeH⁺.

 H_2^+ 与⁴He 能通过以下反应迅速形成⁴HeH⁺:

 $H_2^+ + {}^4He \longrightarrow {}^4HeH^+ + H.$ (1) 此外,通过 H⁺和⁴He 的反应也可形成⁴HeH⁺,

H⁺+ ⁴He → ⁴HeH⁺ + *h*ν. (2) 但是,过程(2)式的截面较小,进行得比较缓慢.然 而,由(1)和(2)式形成的⁴HeH⁺也可通过与H碰撞 而损失:

⁴HeH⁺ + H → H² + ⁴He. (3) ⁴HeH⁺ 的形成涉及到 H₂⁺ 和 H⁺ 的存在 ,尤其 是振动能级 ν≥3 的 H₂⁺ ,而⁴HeH⁺ 的消亡又取决于 H 的多少.

根据上述⁴HeH⁺ 的形成机制,对 rf 离子源的结构、材料、参数进行了仔细研究和实验.我们认为:在 众多离子源参数中,控制离子源中的气压,是获得高 品质束的重要关键.在较低的气压下, H_2^+ 的产额能 达到多于 H⁺,且 H 最少,满足(1)(2)式反应形成 ⁴HeH⁺的条件,同时抑制(3)式反应⁴HeH⁺消亡的条 件,因此,⁴HeH⁺引出的流强最大.此时,从离子源引 出的总束中 $I_{H_2^+}/I_{H^+}$ 最大,有时甚至比1大很多;而 $I_{H_3^+}/I_{H^+}$ 最小,甚至趋于零.我们经常以此作为检验 ⁴HeH⁺最佳形成条件是否满足的主要标准.通过控 制离子源的进气量,以此控制离子源的工作气压,是 能获得高品质的满足实验要求强度的⁴HeH⁺束的.

实验中,我们还对离子源中⁴He 和 H₂ 的不同混 合比进行了研究. 实验表明,在我们的条件下,选用 4 He:H₂为9.5:0.5比9:1引出的⁴HeH⁺流强更大.

经过离子源参数的反复调整,气压的仔细选择, 及引出 H_2^+ , H^+ 和 H_3^+ 比例的检验,在主半径为 850 mm 的加速器磁分析器入口缝和出口缝为 1 mm 的条 件下 获得能量为 1.4420 MeV ⁴HeH⁺的流强在0.40.8 μA 之间.这证明了上述对⁴HeH⁺形成机理的分析 是正确的 同时也说明用高频离子源产生⁴HeH⁺还是 困难的.在此之前 尚未见高频离子源形成机理 及如 何控制离子源参数获得⁴HeH⁺的论文报道.

3.2 ⁴HeH⁺在碳膜中的库仑爆炸

我们已测量了 1.4420 MeV 4 HeH ${}^{+}$ 穿越厚度为 3 μ g/cm² 的无衬超薄碳膜靶,在入射束方向出射 H ${}^{+}$ 的能谱如图 3 所示.

图 3 1.4420 MeV ⁴HeH⁺ 穿越 3 μg/cm² 碳膜在入射束方向出 射的 H⁺能谱

入射到碳靶的⁴HeH⁺是由⁴He 和 H 原子及 2 个 电子组成的离子微团簇.由于在此能区,电子的损失 截面比俘获截面约大 4 个量级,⁴HeH⁺的两个束缚电 子被很快剥离.⁴HeH⁺变成了两个带正电荷的⁴He²⁺ 和 H⁺裸核组成的集团.⁴He²⁺和 H⁺在库仑斥力作用 下迅速分开,这就是通常所称的团簇的库仑爆炸. ⁴HeH⁺的势能变成了爆炸产物⁴He²⁺和 H⁺的动能.从 而使入射到靶时,⁴HeH⁺核间距矢量与入射束方向一 致 而 H 在⁴He 前的那些 H⁺的能量增加,而使 H 在 ⁴He 后的那些 H⁺的能量减少.用高分辨的能谱仪测 定的 H⁺能谱(图 3),高能峰代表在质心系中向前方 爆炸的 H⁺,低能峰代表向后方向爆炸的 H⁺,从而证 实了在碳膜中团簇⁴HeH⁺库仑爆炸的存在.

3.3 正离子穿越固体的'尾流效应'

1948 年 Bohr 预言^{20]} 带正电荷的粒子穿越固体时 將使路径附近介质的相关电子发生取向路径

49 卷

的位移,使路径附近的电子密度增加,从而影响其后 通过的带电粒子的运动,有如船在水中行驶在船后 形成的尾流一样,这就是正离子穿越固体的'尾流效 应".

如前所述 图 3 中低能峰是 4 He 在前 H 在后的 ⁴HeH⁺ 经库仑爆炸形成的 :而高能峰是入射时 H 在 前⁴He在后的⁴HeH⁺ 经库仑爆炸形成的,如果这样, 低能峰和高能峰的产额应是一样的,双峰的高度也 应一样,但实测能谱中,为什么低能峰会比高能峰高 出很多呢?这正是" 尾流效应 "的影响, 对那些核间 距矢量稍偏离 0° 的⁴He 在前 H 在后的⁴HeH⁺, 经库 仑爆炸后 在探测器角分辨很好的条件下 爆炸生成 的 ${}^{4}\text{He}^{2+}$ 和H ${}^{+}$ 本应都不能进入探测系统被探测.如 果尾流效应存在,紧邻 ${}^{4}\text{He}^{2+}$ 之后的 ${}^{H^{+}}$,由于受 ${}^{4}\text{He}^{2+}$ 尾流场的影响 将本不在 0° 方向的相关 H⁺拉 $\Lambda 0^{\circ}$ 从而增加了 0°方向低能 H⁺ 的计数. 而核间距 矢量稍偏离 0° 的 H 在前⁴He 在后的⁴HeH⁺ .爆炸后 的 H⁺ 不会受相关的尾随于后的⁴He²⁺ 在其后形成 的尾流场的影响,因此这类 H⁺ 是不应进入探测系 统被探测,因此,高能峰计数不会增加,从图3中低 能峰的产额高于高能峰的产额有力的证实了 1948 年 Bohr 预言的正离子穿越固体的尾流效应的存在. H^{4} HeH⁺库仑爆炸的 0°方向 H⁺双峰谱和我们从前 测量的 H⁺ 的 0°库仑爆炸谱⁶1比较,前者比后者的 低能峰要高得多,这说明由于电荷态不同,⁴He²⁺形 成的尾流场比 H⁺形成的尾流场要强得多。

3.4 ⁴HeH⁺的核间距

根据能量守恒和动量守恒原理,在忽略炮弹中 原子核与超薄靶相互作用的条件下,不难得出双原 子组成的离子微团簇的平均核间距 7₀ 为

$$\overline{\gamma}_0 = \frac{16Z_2Z_3e^2m_2m_3}{m_1^2} \cdot \frac{E_1}{(\Delta E_{\max})^2}. \quad (4)$$

其中 m_1 和 E_1 为入射离子微团簇的质量和能量 Z_2 和 Z_3 分别为库仑爆炸生成的质量为 m_2 和 m_3 的两碎片所带的电荷 ΔE_{max} 是经库仑爆炸后在 0°方向出射的两种碎片的能量差.

对⁴HeH⁺,根据图 3 H⁺的高分辨能谱, ΔE_{max} 为 10. 23 keV. 用高分辨静电分析器测得入射 ⁴HeH⁺的能量 E_1 为 1.4420 MeV. 其速度为 0.745 ×10⁻⁹ cm/s,穿越厚度为 3 μ g/cm² 碳膜的时间为 2.4 fs,当碳膜厚度采用 1.65 g/cm³ 时(金刚石的密 度为 3 g/cm³,石墨为 2.25 g/cm³). 假定库仑爆炸是 在前表层发生,⁴HeH⁺ 的势能转化为动能几乎全部 是在碳膜中完成的,因此,H⁺和⁴He²⁺碎片在膜中 的电荷不能用1和2,应用其有效电荷.从JosepH^{21]} 查得 0.2884 MeV H⁺ 穿越碳膜的有效电荷为 0.994,不难得出 0.2884 MeV/amu 的⁴He²⁺在穿越 超薄碳膜中的有效电荷为 1.865.忽略很小的尾流 效应,前后峰的能损差异及多次散射对 ΔE_{max} 的修 正,我们获得⁴HeH⁺ 平均核间距的实测值为 0.094 ±0.003 nm.

将我们的实测值和 Kolos^[3]计算的⁴HeH⁺基态 核间距理论值 0.0774 nm 相比,我们的实测值要比 理论值大得多,这说明我们实验研究的⁴HeH⁺是处 于基态的振动激发态.和理论计算的⁴HeH⁺的振动 能谱比较,发现用我们测定获得的⁴HeH⁺的大多数 是处在基态的第三和第二振动激发态.

过去,我们和美国阿贡国家实验室都曾对 H_2^+ 和 H_3^+ 的键长进行过实测.对 H_2^+ ,我们和阿贡的实 测值分别为 0.119 ± 0.003 nm 和0.117 nm,对 H_3^+ , 我们和阿贡的实测值分别为 0.098 ± 0.002 nm 和 0.097 ± 0.003 nm.彼此在误差范围内符合很好.然 而,将两家的⁴HeH⁺键长实测值比较,却差异很大. 我们的为 0.094 ± 0.003 nm,阿贡的为0.079 nm.为 什么呢?原因可能来自离子源效应.我们用的是高 频源,阿贡用的是双等源.他们在论文中也曾提到: 用高频源形成的⁴HeH⁺可能比双等源中形成的 ⁴HeH⁺处于"更热"的振动状态.但未进一步探索"更 热"的原因,也未曾给出用高频源所得⁴HeH⁺键长的 实测值.

我们认为 :⁴HeH⁺ 在高频源和双等源中 ;⁴HeH⁺ 主要是通过上述离子分子反应(1)式经 H₂⁺ 与⁴He 碰撞形成的.但是两种离子源的形成条件是完全不 同的.如上所述,我们是在高频离子源的条件下,且 将离子源的气压控制在很低范围,而双等源是处于 高气压下工作的另一种类型的离子源.因此高频源 中的 H₂⁺ 将比双等源中的 H₂⁺ 处于更高的振动激发 态,从而在发生分子离子反应(1)时,将可能形成更 高振动激发态的⁴HeH⁺.这可能是两种离子源获得 不同⁴HeH⁺ 键长的真正原因.

在产生高品质 MeV 量级⁴HeH⁺ 束的过程中,高小观、江 忠友、代云方、袁其清、李道德、李宗培同志给予大力帮助,在 整个研究中得到著名物理学家 清泉教授的指导,在此表示 衷心的感谢.

- C. M. Allen ,Astrophysical Quantities ,Athlone Press ,London , 3rd ed. (1973).
- [2] S. Peyerimhoff J. Chem , Phys. A3 (1965), 998.
- [3] W. Kolos et al., Chem. Phys., 12 (1976), 381.
- [4] T.A. Green et al. J. Chem. Phys. 61(1974) 5186.
- [5] A. Macias et al., Phys. Rev. A27 (1983) 286.
- [6] W. A. Chupka et al. J. Chem. Phys. 49 (1968) 5426.
- [7] T.R.Govers et al. , Chem. Phys. ,113(1987),677.
- [8] W. Roberge et al. , Astrophysical J. , 255(1982) 489.
- [9] F.B. Yousif et al. , Phys. Rev. , A40(1989) A318.
- [10] T. Tanabe et al. , Phys. Rev. Lett. ,70(1993) A22.
- [11] P.Forck et al. Phys. Rev. Lett. **70**(1994) 2002.
- [12] D. Zajfman et al. , Phys. Rev. Lett. ,75(1995) 814.

- [13] J. Schopman et al. , Physica 63 (1973) 518.
- [14] J.Kantor et al. Nucl. Instr and Meth. 171(1980) 377.
- [15] L.F.S.Coelho et al. J. Phys. **B29** (1996),733.
- [16] M.J.Caillard et al. , Phys. Rev. , A17 (1978), 1797.
- [17] J.W. Miao et al., Nucl. Instr. and Meth. B13 (1986), 181.
- [18] Mian-gong Shi et al., Nuclear Science and Techniques, 10(2) (1999), 74.
- [19] E.P.Kanter et al., Nucl. Instr. and Meth., 170(1980) 87.
- [20] N. Bohr, K. Dan. Vidensk. Selsk. Mat. -Fys. Medd ,18(1948) (8).
- [21] F. J. Joseph, Atomic Data and Nuclear Data Tables, 27 (1982),147.

EXPERIMENTAL DETERMINATION FOR ⁴HeH⁺ INTERNUCLEAR SEPARATION^{*}

MIAO JING-WEI SHI MIAN-GONG YANG BAI-FANG TANG A-YOU N. CUE[†]

(Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China)

(Received 8 November 1999)

ABSTRACT

Through the Coulormb-Explosion of MeV ion microcluster in self-supported superthin carbon foil, the determined value of ${}^{4}\text{HeH}^{+}$ internuclear separation, generated by rf ion source, is obtained to be 0.094 ± 0.003 nm. It is found that ${}^{4}\text{HeH}^{+}$ is different from H_{2}^{+} and H_{3}^{+} , and their internuclear separations are closely related to the species and parameters of ion source. By means of the mechanism and condition of ${}^{4}\text{HeH}^{+}$ formation, the difference of internuclear separation for ${}^{4}\text{HeH}^{+}$ produced in the rf and deuplasmatron ion source was discussed.

PACC: 3640; 3405; 3510; 8230

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 19735004 and 19575033) and by the Ministry of State Education of China on the major project of Science and Technology (Grant No. 1997 129]).

[†]Department of physics of Hongkong University of Science and Technology. Honorary professor of Sichuan University.