Pb-Sn 合金固一液转变过程的内耗行为*

梁云峰 水嘉鹏 陈 刚 朱震刚

(中国科学院固体物理研究所内耗与固体缺陷开放研究实验室,合肥 230031) (1999年9月22日收到;1999年10月22日收到修改稿)

在连续升温过程中 测量了 Pb-Sn 合金的内耗.实验发现:在共晶成分范围内,伴随着 Pb-Sn 合金的固—液转 变,内耗值出现突然下降.内耗值的下降幅度与 Pb-Sn 合金成分有关.固—液转变过程中的内耗是由材料结构变化 或弛豫时间变化引起的.

关键词:内耗,固—液转变,Pb-Sn合金 PACC:6170L,6470D

1 引 言

自 1948 年 Zener 提出滞弹性概念^[1]以来,内耗 领域的研究得到了迅速发展,在固体材料机械振动 能吸收谱的研究中发挥了很大的作用,一些内耗峰, 如点缺陷引起的 Snoek 峰^[1]机制,已经基本认识清 楚 人们可以根据内耗测量的结果 推断材料内部的 结构和结构变化,最近几年人们又将研究领域扩展 到液态物理领域,现在已经能够根据内耗测量的结 果推知液体的粘滞系数及结构因子[2] 随着内耗技 术的发展 研究人员着手研制了固态和液态材料的 机械振动能吸收谱仪.新近 陈刚首次用双材料试样 方法^{3]}测量了向列相液晶、纯铝等材料的液—固及 固---液转变过程中的内耗行为.在液---固转变领域 中,由于液态材料微观结构的特殊性,诸多研究得出 的物性与结构不甚全面,内耗测量结果的引入丰富 了这一内容 将给液态的结构和结构变化提供某些 定性、定量的信息;同时,固--液转变过程中的一些 信息对深入研究内耗理论将提供有力的证据,为了 进一步研究固—液转变及材料的内耗行为,本文采 用双材料试样方法,对 Ph-Sn 合金固—液转变时的 内耗行为进行了研究.

2 实验条件

合金液—固或固—液转变过程的内耗测量是通 过测量双材料试样的内耗实现的.双材料试样的结 构如图 1 所示. 试样由内部和外部材料组成,内、外部材料的选择应使得在升、降温过程中,内部材料将

图 1 双材料试样的截面示意图

发生固—液转变,而外部材料始终保持为固体,且在 升降温过程中外部材料的内耗变化较平稳.在本实 验中,外部材料选择为不锈钢管(外径为0.9 mm,内 径为0.7 mm),内部材料为不同组分的Pb-Sn合金. Pb-Sn合金的相图^[4]如图2所示,选择的组分位于 相图的点 *C*和点*D*之间,这样组分的材料在高温为 无限互溶液体;当温度下降到183℃以下时发生共 晶反应.除共晶成分外,在固—液转变过程中,存在 固、液相共存的温区.试样制备过程是将不同组分的 液态合金灌入不锈钢管中,待其冷却后制成双材料 试样,这样制备的双材料试样中间没有空隙.

强迫振动倒扭摆装置示意图见图 3. 该仪器主要由自动控制、机械测量和加热炉三大部分组成,其 中机械测量部分由悬线、摆杆、小磁针、激励线圈等

^{*}国家自然科学基金(批准号 :19874067)及中国科学院"九五 "基础研究重大项目基金(批准号 :KJ-952-J1-412)资助的课题.

几部分组成.试样的位置如图 3 所示,固定在摆杆下端.实验是在真空环境下进行的.根据水嘉鹏等人的研究^[5],为减小悬线对实验内耗值的影响,悬线的选择应满足以下几个条件:1)内耗小;2)内耗随频率的变化不大;3)悬丝的储能应远小于试样的储能,以减小悬丝对内耗测量结果的影响.

图 2 Pb-Sn 合金相图 未写单位的数字为合金中 Sn 的 含量百分比 L E 和 S 分别为液相、共晶成分和固相

内耗是材料阻尼的一种量度,内耗的基本定义 是 $Q^{-1} = \frac{1}{2\pi} \frac{\Delta W}{W}$,式中 ΔW 和 W 分别为试样材料 振动一周损耗的能量和试样的储能,在这个定义中, 对材料没有具体的限制,因此,内耗研究方法既可以 适用于固体,也可以适用于液体,液晶的内耗研究就 是内耗方法用于液态研究的一个很好例子.过去,内 耗研究主要集中在固体上,这是历史的局限性,随着 材料科学的不断发展,新型材料的不断涌现,内耗的 研究领域也将不断地开拓.

图 3 倒扭摆装置示意图

3 实验结果与分析

图 4 为升温速率为 2.5℃/min ,测量频率为 2.0 Hz 的外部材料空心不锈钢管的内耗-温度曲线 ,可 以看出 :在我们测量的温度范围内 ,这个材料内耗几 乎不随温度变化而变化 ,在误差范围内近似呈一条 水平线 ,因此 ,在进行双材料试样内耗测量时 ,外部 材料的这个内耗可以看成是保持不变的背底内耗.

图 4 升温速率为 2.5℃ /min、测量频率为 2.0 Hz 的外部材料 空心不锈钢管的内耗-温度曲线

作为例子 图 5 给出升温速率为 2.5℃/min、测

图 5 Pb 30%-Sn 70% 合金在升温速率为 2.5℃/min、测量 频率为 2.0 Hz 情况下的双材料试样的内耗-温度曲线

量频率为 2.0 Hz 的双材料试样的内耗-温度曲线, 双材料试样的外部材料仍然是不锈钢管,内部材料 是 Pb 30%-Sn 70%合金,从图 5 可以看到,随着温 度升高,内耗值逐渐升高,但是,在固—液转变温度 范围附近内耗值出现突然下降,这个现象在不同成 分的 Pb-Sn 合金的内耗测量中都已观察到,我们认 为这个现象与合金的固—液转变有关.在一次升温 测量过程中,内耗测量的频率是恒定的.因此,在测 量过程中内耗的变化是由材料的弛豫时间变化引起 的,换言之,是由材料的结构变化引起的.因此,在固 一液转变温区的内耗值突然下降,反映了材料结构 的突然改变,从阻尼较大的固体材料变成阻尼较小 的液体.由于没有其他因素的影响,在内耗突然变化 过程中,内耗值可以表示为

 $Q^{-1} = x Q_{
m L}^{-1}$ + (1 - x) $Q_{
m S}^{-1}$,

式中 Q_{L}^{-1} 和 Q_{S}^{-1} 分别为液态和固体的内耗 ,x 为 固—液转变分数.

表 1 列出 5 种组分 Pb-Sn 合金内耗开始下降的 温度 *PT* 和内耗值 Q_{mix}^{-1} 、下降结束的温度 *BT* 和内 耗值 Q_{max}^{-1} 、开始下降和下降结束温度之差 *RT* 和内 耗值之差 ΔQ^{-1} ,以及它们的比值 $\Delta Q^{-1}/RT$.从下 降温区,即开始下降和下降结束温度之差 RT 值可 以看出:在本实验测量的范围内,RT 值随着 Pb 的 重量百分比含量的增加而减小,到共晶点时 RT 值 达到最小,随后 RT 值又随着 Pb 的重量百分比含 量的增加而增大.从相图来看:在实验测量范围内, 固液共存温区也随着 Pb 的重量百分比含量的增加 而减小,到共晶点时固液共存温区取最小值零,之后 又随着 Pb 的质量百分比含量的增加而增大.上述 两现象基本类同,这个结果进一步证明了固—液转 变引起了内耗突然下降的结论.

表 1 Pb-Sn 合金固-液转变数据

Pb 含量/ %	<i>PT</i> / ℃	BT ∕ °C	<i>RT</i> /℃	$oldsymbol{Q}_{ ext{max}}^{-1}$	$oldsymbol{Q}_{\min}^{-1}$	ΔQ^{-1}	$(\Delta Q^{-1}/RT)/10^{-4}$
10	207	268	61	0.1212	0.1161	0.0051	0.8361
30	204	226	24	0.1231	0.1172	0.0059	2.458
38.1	205	221	16	0.1203	0.1157	0.0046	2.875
70	186	211	25	0.1185	0.1146	0.0039	1.56
80	218	301	83	0.1171	0.1140	0.0031	0.3735

在本实验测量范围内,内耗下降前后的内耗值 之差 ΔQ^{-1} 与下降温区的 RT 值的比值 $\Delta Q^{-1}/RT$ 随着 Pb 的重量百分比含量的增加而增大,到共晶 点时比值达到最大,随后比值又随着 Pb 的重量百 分比含量的增加而减小.这一现象也可从相图得到 解释 :固液共存温区越长,在固—液转变过程中内耗 值下降得越慢,即比值 $\Delta Q^{-1}/RT$ 越小;固液共存 区越短,固—液转变时的内耗值下降得越快,即比值 $\Delta Q^{-1}/RT$ 越大.在共晶点处,固液共存温区取最小 值零,所以固—液转变时的内耗变化得也最快.

在测量的内耗中,两种材料的界面内耗和材料 的晶界内耗同时被测量,但是,两种材料界面的面积 与晶界的面积相比较,界面的面积很小,因此界面的 作用可以忽略.从测量的结果看到,10⁻¹量级的内 耗变化是通常晶界内耗也难于达到的,而结构变化 引起的内耗是由材料的整体变化引起,因此,这种内 耗的变化较大,与此相比较,界面和晶界内耗可以忽 略.当然,我们假设熔化的液体与固体是侵润的,否 则,液体不能产生内耗. 测到在液—固转变时内耗值的突然下降,这个结果 不同于陈刚³¹在液晶相变过程中观测的结果.他们 观测到伴随相变的内耗峰,而我们只观测到伴随固 一液转变的内耗突然下降.

2.Pb-Sn 合金固—液转变过程中的内耗变化主要是在升温过程中材料结构变化引起的,测量频率只是一个外部参量影响内耗值,本文的实验结果提供了结构变化引起内耗变化的有力证据.

- [1] A. S. Norwick ,B. S. Berry ,Anelastic Relaxation in Crystalline Solids (Academic Press ,New York ,1972), p. 1.
- [2] G. Chen Z. G. Zhu J. P. Shui, *Acta Physica Sinica* **48**(1999), 421(in Chinese)[陈 刚、朱震刚、水嘉鹏,物理学报,**48** (1999), 421].
- [3] G. Chen ,Z. G. Zhu ,J. P. Shui , Chin. Phys. Lett. ,16(1999), 589.
- [4] T. B. Massalski et al., Binary Alloy Phase Diagrams, 2 (1986),1848.
- [5] J. P. Shui, Physical Testing and Chemical Analysis, Part A, Physical Testing 28(1992), No. 4, p. 32(in Chinese]水嘉鹏, 理化检验——物理分册, 28(1992),第4期,第32页].

4 结 论

1. 从 Pb-Sb 合金液—固转变时的内耗测量观

INTERNAL FRICTION BEHAVIOUR OF THE SOLID – LIQUID TRANSITION IN THE Pb-Sn ALLOYS^{*}

LIANG YUN-FENG SHUI JIA-PENG CHEN GANG ZHU ZHEN-GANG

 (Laboratory of Internal Friction and Defects in Solids ,Institute of Solid State Physics , Chinese Academy of Sciences ,Hefei 230031 , China)
 (Received 22 September 1999 ; revised manuscript received 22 October 1999)

Abstract

The internal friction of the Pb-Sn alloys was measured during heating process from room temperature to high temperature. It is reported that there is a sudden drop in the internal friction curves of the vibration systems with the presence of solid-liquid transition of the Pb-Sn alloys. The decrement of the internal friction varies with the content of tin. It is proposed that these variations are related with the structure variation of the Pb-Sn alloys during solid – liquid transition.

Keywords : internal friction , solid – liquid transition , Pb-Sn alloy PACC : 6170L , 6470D

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 19874067), and the Science Foundation for Great Significant Items in the "9th 5-Year Plan" from Chinese Academy of Sciences (Grant No. KJ-952-J1-412).