非化学计量和掺杂对(Na_{1/2}Bi_{1/2})_{0.92}Ba_{0.08}TiO₃ 陶瓷电性能的影响

初宝进 李国荣 殷庆瑞 张望重 陈大任

(中国科学院上海硅酸盐研究所,无机功能材料开放实验室,上海 200050) (2001年4月23日收到2001年5月13日收到修改稿)

研究了非化学计量和掺杂对无铅压电陶瓷($Na_{1/2} Bi_{1/2} \sum_{0.92} Ba_{0.08} TiO_3$ 的压电性能及去极化温度的影响.研究发现 A 位非化学计量可以提高陶瓷的压电性能; B 位掺杂对材料电学性能的影响规律类似于 Ph(Ti Zr)O_3 系压电陶瓷 的相关规律;由于非化学计量和掺杂会影响到 A 位离子对 B 位离子与氧离子形成的 BO_6 八面体的耦合作用,影响 到畴的稳定性,从而影响到($Na_{1/2} Bi_{1/2} \sum_{0.92} Ba_{0.08} TiO_3$ 陶瓷的去极化温度;所研究的陶瓷样品的去极化温度越低,压电 系数越高.

关键词:无铅压电陶瓷,非化学计量,掺杂,电性能 PACC:7760,7780B

1 引 言

压电陶瓷作为一类重要的功能材料,在机械、电 子、精密控制等领域有着广泛的应用.然而,目前实 用的压电陶瓷主要是以 Pt(Ti Zr)0₃(PZT)为基的材 料,其中氧化铅约占原料总量 70% 左右,在材料的 制备过程中,铅的挥发会给环境带来很大的损害,因 而压电陶瓷无铅化或低铅化成为此类陶瓷发展的趋 势之一,以适应环境保护的要求.

目前,无铅压电陶瓷材料主要有铌酸盐陶瓷(如 Li_xNa_{1-x}NbO₃陶瓷)、钛酸盐陶瓷(如 BaTiO₃,Na_{1/2} Bi_{1/2}TiO₃陶瓷)、铋层状结构的压电陶瓷(如 Bi₄Ti₃O₁₂ 陶瓷)等.Na_{1/2}Bi_{1/2}TiO₃是一种 A 位复合取代的钙钛 矿型结构的铁电材料,在室温下它的剩余极化为 P_r = 38 μ C/cm²,矫顽场为 E_c = 7.3kV/mm,具有很强的 铁电性^[1].自从 1960年 Smolenskii 报道该物质的铁 电性以来,Na_{1/2}Bi_{1/2}TiO₃系材料引起了越来越多研究 者的注意.针对 Na_{1/2}Bi_{1/2}TiO₃及其固溶体陶瓷的压 电性能,王天宝、Takenaka 等人作了大量的研 究^[2-7],它们被认为是一类很有前途的无铅压电 材料.

我们曾详细研究了 Na_{1/2} Bi_{1/2} TiO₃-BaTiO₃ 陶瓷系 统相界附近压电陶瓷的性能^[8],通过 Na_{1/2} Bi_{1/2} TiO₃ 与 BaTiO₃ 固溶,改善了纯 Na_{1/2} Bi_{1/2} TiO₃ 陶瓷矫顽场 高不易极化和不易烧结等缺点.研究比较后认为 相 界附近的(Na_{1/2} Bi_{1/2})_{0.92} Ba_{0.08} TiO₃ 陶瓷具有各项异性 大 频率常数比较高,压电系数比较大等特点,矫顽 场由原来的 7.3kV/mm 降为 3.2kV/mm,是此系统中 综合性能较好的组分.针对此组分,本工作研究了 A位非化学计量和 B 位掺杂对(Na_{1/2} Bi_{1/2})_{0.92} Ba_{0.08} TiO₃ 陶瓷压电性能及退极化温度的影响.

2 实验过程

采用传统的氧化物合成法制备所需的压电陶瓷 样品.以化学纯的 Na₂CO₃,Bi₂O₃,TiO₂,BaCO₃, Nb₂O₅,Co₂O₃为原料 根据下面的化学式进行配料, 基础配方为(Na_{1/2}Bi_{1/2}),₉₂Ba_{0.08}TiO₃; *A*位非化学计 量 的 配 方 为(Na_{1/2}Bi_{1/2}),_{92-x}Ba_{0.08}TiO₃,(Na_{1/2} Bi_{1/2}),_{92+x}Ba_{0.08}TiO₃; *B*位掺杂的配方为(Na_{1/2} Bi_{1/2}),_{92+x}Ba_{0.08}+3Nb₂O₅(Na_{1/2}Bi_{1/2}),₉₂Ba_{0.08}3Co₂O₃,其 中 $x \leq 0.01$.上述配方按以上顺序分别编号为 NBBT,NBBT(1-x),NBBT(1+x),NBBTNb和NBBT-Co.将配好的生料以无水酒精为球磨介质,球磨混合 均匀后在刚玉坩埚中合成,合成温度为900— 1000℃,保温时间为2h.所得的熟料球磨后加黏结 剂,压成直径为15mm,厚度为1mm的圆片素坯.素 坯在空气气氛中,1140—1190℃的温度下保温1h烧 成.将获得的瓷坯磨片后烧渗银电极,然后在 80℃ 的硅油中施加 3—4kV/mm 的直流电场极化.极化后 的样品放置一昼夜后测量电学性能和热激电流.利 用由电容电桥和电炉组成的装置测量未极化样品的 介电系数-温度特性.

3 实验结果

3.1 X射线衍射分析

图 1 是所研究的 Na_{1/2} Bi_{1/2} TiO₃-BaTiO₃ 陶瓷的 X 射线衍射图谱.从图 1 可以看到,所研究的陶瓷都形 成了纯的钙钛矿结构.我们已经知道^[8],NBBT 陶瓷 处于相界的四方相区一侧,为四方结构.从图上可看 到,非化学计量和掺杂的陶瓷样品没有改变基础配 方 NBBT 陶瓷的结构,都为四方结构;值得注意的 是 *B* 位掺杂钴的 NBBTCo 陶瓷的衍射图谱的第一个 衍射峰发生了明显的分裂,根据四方相的晶面面距 公式

 $1/d^2 = (h^2 + k^2)/a^2 + l^2/c^2$,

由于四方相的 *a* 轴和 *c* 轴是不相等的 ,所以实际上 第一个衍射峰是(100)面和(001)面的衍射峰叠加而 成的^[9] ,只不过其他陶瓷样品 *c* 和 *a* 相差比较小 ,因 而没有出现明显的分峰现象 .X 射线衍射的结果表 明 *B* 位掺杂低价的钴提高了结构的畸变程度 ,这主 要是由于掺杂形成的氧空位引起晶胞的收缩和 歪曲^[10].

3.2 A 位非化学计量和 B 位掺杂对材料压电性能 的影响

表 1 列出了所研究的五种压电陶瓷的部分压电 性能.从表中可看到,NBBT(1 – x),NBBT(1 + x)和 NBBTNb 陶瓷的压电常数 d_{33} 比基础配方 NBBT 陶瓷 都有所增大,特别是的 B 位掺杂高价铌的 NBBTNb 陶瓷的压电常数 d_{33} 达到 149pC/N,这可能是目前 Na_{1/2} Bi_{1/2} TiO₃ 系压电陶瓷的最大值. A 位多加 (BiNa)²⁺和少加(BiNa)²⁺都会提高 NBBT 陶瓷的压 电常数,这为提高 Na_{1/2} Bi_{1/2} TiO₃ 系陶瓷的压电性能 提供一个新的途径.

从表 1 中还可以看到,与 NBBT 陶瓷相比, B 位 掺杂五价铌的 NBBTNb 陶瓷的 d₃₃增大,介电系数增 大,损耗增大,而 B 位掺杂三价钴的 NBBTCo 陶瓷的 d₃₃减小,介电系数减小,损耗减小,这个规律与 PZT

图 1 Na_{1/2} Bi_{1/2} TiO₃-BaTiO₃ 陶瓷的衍射图谱

系压电陶瓷的掺杂对压电性能的影响规律十分 类似.

3.3 去极化温度与介电峰值温度的相互关系

图 2,3 分别是所研究样品的热激电流与温度的 关系曲线和介电系数-温度的关系曲线 相应的去极 化温度和介电峰值温度列于表 1 中.对于 NBBTCo 的介电系数与温度的关系曲线,我们发现在高温下 还存在另一个介电峰,这个介电峰可能是由于其他 弛豫过程引起的,其机理有待于进一步的研究.由于 此现象与本文所讨论的内容无太多的联系,故本文 对此现象不作讨论.由于高温介电峰的存在,使得 T_m并不明显,因此表中没有给出 NBBTCo的 T_m值, 从图上可看到,T_m大约在245℃附近的平台处.从 上述图表可看到,这些陶瓷中都存在去极化温度远 低于介电系数-温度曲线的峰值温度的现象,我们认 为这种现象是由于样品在远低于介电峰值温度的温 度下发生宏畴-微畴或宏畴-微小畴的转变引 起的^[8].

長1	Na _{1/2} 1	Bi1/2	ΓiO ₃ -	BaTiO ₃	陶瓷的	性质

Ę

	NBBT	NBBT($1 - x$)	NBBT($1 + x$)	NBBTNb	NBBTCo
d_{33} /pC/N	112	140	125	149	108
$\varepsilon_{33}^T/\varepsilon_0$	841	870	740	1230	450
$\mathrm{tg}\delta$	0.0204	0.0281	0.0212	0.0390	0.0150
$T_{\rm m}$ /°C	250	210	215	250	
$T_{ m d}$ /°C	140	125	135	70	155

图 2 Na_{1/2} Bi_{1/2} TiO₃-BaTiO₃ 陶瓷的热激电流曲线

图 3 Na_{1/2} Bi_{1/2} TiO₃-BaTiO₃ 陶瓷介电系数与温度的关系

4 讨 论

对于在居里温度以下结构为四方相的压电陶 瓷,它们在极化时发生180°和90°铁电畴的转向,而 更主要的是180°畴的转向,原因是90°畴的转向比较 困难.如果非化学计量和掺杂使90°畴的转向更加容 易 那么就会充分挖掘压电陶瓷的潜力 提高压电性 能 使压电系数增大.对于 A 位非化学计量的陶瓷 样品 ,A 位少加(Bi1/2 Na1/2)⁺ 产生 A 位空位 ,晶格松 弛缓冲了90°畴转向造成的应力,易于90°畴的转 向 导致压电系数增大 ;对于 A 位多加($Bi_{10}Na_{10}$)⁺ 的 NBBT(1+x) 陶瓷,由于空气中的氧会进入晶格 补偿多加的($Bi_{1/2} Na_{1/2}$)⁺ 的电价,从而产生 B 位的 空 ϕ_A 位的空 $\phi_b = A$ 位空 ϕ_b 位 空 位 相 类 似 , 它 会 使 晶 格 松弛,有利于提高压电系数,但同时它也会削弱 B 位对自发极化的贡献 不利于提高压电系数 因此它 对压电系数的影响是不确定的,从我们的实验结果 看 A 位多加(BiNa)⁺ 有利于 90°畴的转向 这种效 应起主要作用,提高了压电系数,至于 B 位掺杂对 压电系数的影响 "NBBT 陶瓷的 B 位掺杂高价的 Nb5+相当于软性添加物,而掺杂低价 Co3+则相当于 硬性添加物,硬性添加物和软性添加物对 Ph(Zr ,Ti) O. 压电陶瓷压电性能的影响规律已有比较成熟的 讨论 本文对此不再赘述.

Cochran 认为^[11],钙钛矿结构的 *AB*O₃ 铁电体可 以看成是由 *B*O₆ 八面体形成的网络结构 ,具有铁电 活性的 *B*O₆ 八面体是通过 *B*O₆ 八面体间的 *A* 位阳 离子耦合在一起的 ,形成铁电畴.对于 *AB*O₃ 铁电 体 ,*B*O₆ 八面体大的偶极矩及 *A* 位阳离子与 *B*O₆ 八 面体间较强的耦合作用有利于铁电畴的稳定^[12].如 果由于某种原因 *A* 位阳离子与 *B*O₆ 八面体的耦合 作用降低 ,将会降低铁电畴的稳定程度 ,导致去极化 温度的降低.

对于 *A* 位少加(Bi_{1/2} Na_{1/2})^{↑+} 的 NBBT8(1 − *x*)陶 瓷 ,大量 *A* 空位的产生降低了 *A* 位与具有铁电活性 的 TiO₆ 八面体间的耦合作用 ,降低了铁电畴的稳定 程度,从而导致了去极化温度的降低.NBBT 陶瓷中 多加($Bi_{1/2} Na_{1/2} J^+$ 产生的 *B* 位空位与 *A* 位空位相 似,会削弱 *A* 位与具有铁电活性的 *B*O₆ 八面体间的 相互耦合作用,也导致了去极化温度的降低.对于 *B* 位掺杂高价铌的样品, Nb^{5+} 取代 Ti^{4+} 形成 Nb_{Ti} 缺陷, 同时产生 *A* 位的空位以补偿这种作用,*A* 位空位的 产生导致去极化温度的降低;*B* 位掺杂钴产生氧空 位的作用正好与此相反^[9].

从上面的讨论可以看到,非化学计量和掺杂对 压电系数和去极化温度的影响反映了材料性能对微 观结构的依赖关系;压电系数和去极化温度的变化 是材料微观结构变化的不同表现形式,它们之间存 在着一定的联系.对于 Na_{1/2} Bi_{1/2} TiO₃-BaTiO₃ 陶瓷,由 于在介电峰值温度以下存在着宏畴-微畴的转变,所

图 4 Na_{1/2} Bi_{1/2} TiO₃-BaTiO₃ 陶瓷压电系数与去极化温度的关系

- [1] G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, N. N. Krainik, Fizika. Tverd. Tela. 2 (1960), 2982.
- [2] T. Takenaka, A. Huzumi, T. Hata et al., Silicates Industrials, 7-8(1993), 136.
- [3] T. Takenaka , K. Sakata , K. Toda , Ferroelectrics , 106(1990), 375.
- [4] T. Takenaka, T. Okuda, K. Takegahara, Ferroelectrics, 196 (1997), 175.
- [5] H. Nagata , T. Takenaka , Jpn. J. Appl. Phys. , 36 1997), 6055.
- [6] A. Herabut, A. Safari, J. Am. Ceram. Soc., 80(1997), 2954.
- [7] Tian-bao Wang, Min Gao et al., Journal of Inorganic Materials 2 (1987), 233(in Chinese)[王天宝、高敏等,无机材料学报,2 (1987), 223].

以去极化温度在一定程度上反映了铁电畴的稳定程度,去极化温度越低,畴的稳定程度越低,在施加电场极化时更易于 90°畴的转向,压电系数就会越高. 图 4 是所研究的 Na_{1/2} Bi_{1/2} TiO₃-BaTiO₃ 陶瓷去极化温度与压电系数的关系,实验结果反映出了上述现象, 去极化温度越低,压电系数越高.

5 结 论

本工作研究了非化学计量和掺杂对(Na_{1/2} Bi_{1/2})_{0.92}Ba_{0.08}TiO₃ 陶瓷压电性能和去极化温度的影 响,主要得到以下结论:

1. 对于(Na_{1/2}Bi_{1/2}),₉₂Ba_{0.08}TiO₃陶瓷,A 位多加 或少加(Bi_{1/2}Na_{1/2})⁺和 B 位掺杂高价铌都会提高材 料的压电性能.

 PZT 系压电陶瓷的掺杂规律类似(Na_{1/2} Bi_{1/2}),₉₂ Ba_{0.08} TiO₃ 陶瓷 *B* 位掺杂高价的 Nb⁵⁺ 相当于 软性添加物,可使 d₃₃ 增大,介电系数增大,损耗增 大,而掺杂低价的 Co³⁺ 相当于硬性添加物,结果与 掺杂 Nb⁵⁺ 相反.

3. 非化学计量或掺杂对 A 位离子与 BO₆ 八面 体的耦合作用的影响导致了材料去极化温度的升高 或降低.

4. 所研究陶瓷材料的去极化温度越低,压电系 数越高.

- [8] Bao-jin Chu, Guo-rong Li *et al*., Journal of Inorganic Materials, 15 (2000), 815(in Chinese] 初宝进、李国荣等,无机材料学报, 15(2000), 815].
- [9] Xiang-ping Jang, Doctoral Dissertation of Shanghai Institute of Ceramics, Chinese Academy of Sciences(2000)[江向平,博士论文 (2000)].
- [10] Huanan Institute of Technology, Tianjing University, Piezoelectric Ceramics (Press of National Defense Industry, 1979), p.73(in Chinese [华南工学院,天津大学,压电陶瓷(国防工业出版社, 1979), p. 73].
- [11] W. Cochran, Adv. Phys., 9(1987), 387.
- [12] X. Dai, A. Digiovanni, D. Viehland, J. Appl. Phys., 74 (1993), 3399.

INFLUENCE OF NONSTOICHIOMETRY AND DOPING ON ELECTRICAL PROPERTIES OF (Na_{1/2}Bi_{1/2})_{0.92}Ba_{0.08}TiO₃ CERAMICS

CHU BAO-JIN LI GUO-RONG YIN QING-RUI ZHANG WANG-ZHONG CHEN DA-REN

(Lab of Functional Inorganic Materials , Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China)
 (Received 23 April 2001 ; revised manuscript received 13 May 2001)

ABSTRACT

Influence of nonstoichiometry and doping on piezoelectric properties and depolarization temperature of lead-free piezoelectric ceramics ($Na_{1/2} Bi_{1/2} D_{0.92} Ba_{0.08} TiO_3$ [NBBT] was studied. Nonstoichiometry of A-site can improve their piezoelectric properties. Doping in B-site has great influence on electric properties , which is similar to the corresponding rules of Ph Ti Zr O_3 -based ceramics. Variation of coupling effect of A-site cation on BO_6 octahedra as results of nonstoichiometry , and the doping in NBBT ceramics leads to variations of the depolarization temperature. The higher the depolarization temperature of $Na_{1/2} Bi_{1/2} TiO_3$ -BaTiO₃ ceramics studied the lower the piezoelectric constant.

Keywords : lead-free piezoelectric ceramics , nonstoichiometry , doping , electrical properties PACC : 7760 , 7780B