利用小波分析计算离散动力系统的 最大 Lyapunov 指数*

刘海峰 赵艳艳 代正华 龚 欣 于遵宏

(华东理工大学资源与环境工程学院,上海 200237) (2001年6月6日收到,2001年7月10日收到修改搞)

最大 Lyapunov 指数是诊断和描述动力系统混沌的重要参数.在仿真计算的基础上,发现小尺度的小波变换模数的最大 Lyapunov 指数与离散动力系统本身是一致的.同时仿真计算还表明,由于小尺度小波变换的高通滤波性质,利用小波变换模数计算最大 Lyapunov 指数可有效克服极强的大尺度噪声的干扰.

关键词:混沌,Lyapunvo指数,小波分析 PACC:0545,0540

1 引 言

近几年来,混沌信号的时间序列分析研究是目 前非线性科学的前沿课题之一^[1-3].在诊断和描述 混沌信号时,最大 Lyapunov 指数(λ_1)不仅是一个很 重要的不变量,而且是判断混沌存在的一个重要依 据.目前,利用 λ_1 去诊断和描述混沌仍然是一种主 要方法.估计 λ_1 的方法主要有两种:一种是分析法 (analytic approach),一种是轨道跟踪法(trajectory tracing method).前者是用一个函数(如局部多项式 或神经网络等)来建立系统模型,然后估计系统的雅 可比矩阵,进而求取 λ_1 ;后者是直接从 λ_1 的定义出 发跟踪系统的两条轨道,获取 λ_1 .由于轨道跟踪法 不像分析法那样易受系统拓扑结构的影响,因而受 到许多学者的高度重视.

自从 1985 年 Wolf 等^[4]提出轨道跟踪法以来,这 种方法得到了较大的改进^[5-7].最有代表性的是 Kantz^[5]和 Rosenstein 等^[6]的工作,他们给出了一种比 较优化的算法^[3].对于 *m* 维相空间 $x_i = (x_i, x_{i+1}, \dots, x_{i+m-1})$,该法定义

dis($x_i, x_i \Delta t$) = $|x_{i+m-1+\Delta t} - x_{i+m-1+\Delta t}|$. (1) 同时 U_t 是 x_t 的半径为 ε 的邻域.计算

$$S(\Delta t) = \frac{1}{T} \sum_{i=1}^{T} \ln \left(\frac{1}{|U_i|} \sum_{\mathbf{x}_i \in U_i} \operatorname{dis}(\mathbf{x}_i \mid \mathbf{x}_i \mid \Delta t) \right).$$

(2)

当 $S(\Delta t)$ 随 Δt 线性增加时,其斜率就是最大 Lyapunov 指数.

小波变换^[8]是目前许多科学和工程技术领域研 究中极为活跃的热门问题之一,已在诸如湍流^[9,10]、 分形^[11,12]、信号处理^[13,14]、混沌^[15—18]等各种应用领 域获得了广泛的应用.它既可以作为表示函数的一 种基底,也可以作为时间 – 频率分析的一种技术.本 文提出利用信号的小波变换模数代替信号本身,在 *m* 维相空间中计算其最大 Lyapunov 指数.

2 小波分析

在
$$L^{2}(\mathbf{R})$$
上的一维连续小波变换为
 $\tilde{f}(b,a) = \frac{1}{|a|^{1/2}} \int_{-\infty}^{\infty} f(x) \psi \overline{\left(\frac{x-b}{a}\right)} dx$
 $= \int_{-\infty}^{\infty} f(x) \overline{W_{a,b}(x)} dx$, $f \in L^{2}(\mathbf{R})$ (3)

其中 $a, b \in R$ 而 $a \neq 0$, $W_{a,b}(x) = \frac{1}{|a|^{1/2}} \psi\left(\frac{x-b}{a}\right)$, $\psi \in L^2(\mathbf{R})$,满足"容许性"条件.

本文探讨离散动力系统小波变换后的最大 Lya-

^{*}国家重点基础研究发展规划(批准号:G1999022103)教育部骨干教师基金资助的课题.

punov 指数.

3 小波变换模数的最大 Lyapunov 指数

对一由离散混沌系统产生的序列{ x_k :k = 1 ,2 , … ,N)进行小波变换(尺度 a = 1 ,为采样间隔)得到 一相应的由小波变换模数构成的序列{ \tilde{x}_k :k = 1 ,2 , … ,N }.为避免边缘效应 ,可将该序列的首尾几个点 去掉.对其利用由 Kantz^[5]提出的算法计算最大 Lyapunov 指数.即在 m 维相空间 $\tilde{x}_i = (\tilde{x}_i, \tilde{x}_{i+1}, ..., \tilde{x}_{i+m-1})$,定义

dis($\tilde{x}_{i}, \tilde{x}_{i}, \Delta t$) = $|\tilde{x}_{i+m-1+\Delta t} - \tilde{x}_{i+m-1+\Delta t}|$ (4) 同时 U_{t} 是 \tilde{x}_{t} 的直径为 ε 的邻域.计算

$$S(\Delta t) = \frac{1}{N} \sum_{i=1}^{T} \ln \left(\frac{1}{|U_i|} \sum_{\tilde{\boldsymbol{x}}_i \in U_i} \operatorname{dis}(\tilde{\boldsymbol{x}}_i | \tilde{\boldsymbol{x}}_i | \Delta t) \right).$$

当 $\mathcal{S} \Delta t$)随 Δt 线性增加时 ,其斜率就是 { \tilde{x}_k :k = 1 , 2 ,... ,N)的最大 Lyapunov 指数.

4 仿真结果与分析

4.1 混沌系统

我们以 Logistic ,Hénon 和 Ikeda^[5]系统(计算中选 y 变量)为例,采用 Matlab5.3 及其小波工具包进行 了仿真计算.表1列出了这三种混沌系统的有关 参数.

表 1 离散混沌动力系统及其最大 Lyapunov 指数

混沌系统	方程	λ_1
Logistic	$x_{i+1} = 4.0x_i(1 - x_i)$	0.693 ^[6]
Hénon	$x_{i+1} = 1 - 1.4x_i^2 + 0.3x_{i-1}$	0.4169 ^[5]
Ikeda	$\varphi = 0.4 - 6 (1 + x_i^2 + y_i^2)$	0.505 ^[5]
	$x_{i+1}=1+0.$ ($x_i\cos\varphi-y_i\sin\varphi$)	
	$y_{i+1} = 0.9(x_i \sin \varphi + y_i \cos \varphi)$	

计算结果呈现在表 2 和图 1 中.表 2 中 λ_{1d} 表示 由混沌序列本身计算的最大 Lyapunov 指数 λ_{1w} 表示 由混沌序列的 Morlet 小波^[7]变换模数(尺度 *a* = 1) 计算的最大 Lyapunov 指数.从表 2 中可以发现 λ_{1w} 与 λ_{1d} 基本相同 ,并具有基本上相当的计算精度.

混沌系统 λ1, 的相对误差/% λι"的相对误差/% N λ_{1d} λ_{1w} m2 Logistic 2000 0.6915 -0.22 0.6865 -0.943 -0.480.6980 0.72 0.6897 4 0.6982 0.75 0.7086 2.25 5 0.6871 -0.85 0.7063 1.92 2 0.4163 -0.14 -2.23 Hénon 2000 0.4076 3 0.4163 -0.14 0.4139 -0.72 0.4090 - 1.89 0.4190 0.50 4 5 0.4052 -2.81 0.4201 0.77 5000 3 0.4794 -5.07 0.4791 Ikeda -5.13 4 0.4834 -4.280.4806 -4.83 5 0.4963 -1.72 0.5009 -0.816 0.4914 -2.69 0.4992 -1.15 7 0.4896 -3.05 0.5052 0.04 8 0.4958 -1.82 0.5033 -0.34 9 -0.87 0.4993 - 1.13 0.5006

表 2 仿真计算结果

(5)

图 1 最大 Lyapunov 指数仿真计算收敛图 图中虚线斜率为 λ_1

4.2 尺度的影响

计算结果表明,小波变换时的尺度对最大 Lyapunov 指数的计算结果有显著影响.以 Hénon 系统为 例,同时还采用 Morlet 小波分别计算了 *a* = 2—5 时 的最大 Lyapunov 指数,结果见表 3 及图 2.随尺度的 增大,由小波变换模数计算的最大 Lyapunov 指数逐 渐减小,并且计算时线性关系逐渐变差,从图 1 和图 2 中可以发现,*a* = 1 的计算结果最好.计算结果还 清楚表明,随 *m* 的增大,尺度的影响逐渐减弱.

4.3 小波函数的影响

以 Hénon 系统为例,对混沌信号选择 Morlet, Mexican hat ,Gauss1,Haar和 Db4^[8]等5种(后两种是 正交小波)不同的小波进行小波变换,最大 Lyapunov 指数(*a*=1)的计算结果见表4及图3.计算结果表 明,小波函数对最大 Lyapunov 指数计算结果的影响 不大,小波的正交性对计算结果的影响也不大. 由此可以得出,对离散动力系统而言,小尺度的 小波变换模数的最大 Lyapunov 指数与系统本身是 一致的。

4.4 噪声的影响

小波具有带通滤波器的性质^[19],尺度为采样间 隔的小波变换则具有高通滤波器的功能.因此上述 利用小波变换模数计算最大 Lyapunov 指数的算法 可有效地克服大尺度噪声信号的影响.我们以 Hénon 系统为例,在混沌信号上分别叠加具有一定 振幅的正弦信号、振幅变化的正弦信号和线性偏移 信号,比较直接采用信号计算最大 Lyapunov 指数及 采用其小波变换模数(*a* = 1,Morlet 小波)计算最大 Lyapunov 指数的差异.

首先,在混沌信号上叠加振幅为 100 的正弦信 号,即 100sin(π/200t),信噪比(混沌信号与正弦信号 能量之比)约为 0.0001.计算结果见图 4.从图 4 中 可以发现,当 m > 3 时,两种方法均能给出精度相当 准确(相对误差均小于 3%)的计算结果,但直接采用信号计算最大 Lyapunov 指数受正弦信号的影响较大.

|--|

	表 3	尺度对最大 Lyapunov 指数的影响	
a	М	λ_{1w}	λ_{1w} 的相对误差/%
1	2	0.4076	- 2.23
	3	0.4139	-0.72
	4	0.4190	0.50
	5	0.4201	0.77
2	2	0.3933	- 5.66
	3	0.4165	-0.10
	4	0.3999	- 4.08
	5	0.4077	- 2.21
			10.04
3	2	0.3341	- 19.86
	3	0.3957	- 5.09
	4	0.4114	- 1.32
	5	0.4187	0.43
4	2	0.2919	- 29.98
	3	0.3293	- 21.01
	4	0.3391	- 18.66
	5	0.3787	-9.16
5	2	0.2563	- 38.52
	3	0.2536	- 39.17
	4	0.2695	- 35.36
	5	0.2714	- 34.90

小波	m	λ_{1w}	λ_{1w} 的相对误差/%
Morlet	2	0.4076	- 2.23
	3	0.4139	-0.72
	4	0.4190	0.50
	5	0.4201	0.77
Mexican	2	0.4025	- 3.45
hat	3	0.4060	- 2.61
	4	0.4218	1.18
	5	0.4134	-0.84
Gauss1	2	0.4081	-2.11
	3	0.4021	- 3.55
	4	0.4076	- 2.23
	5	0.4062	- 2.57
Haar	2	0.4244	1.80
	3	0.4169	0.00
	4	0.4190	0.50
	5	0.4155	-0.34
Db4	2	0.4095	- 1.78
	3	0.4175	0.14
	4	0.4205	0.86
	5	0.4137	-0.77

m = 3

m = 5

m = 3

 \mathbf{x} m = 5

20

20

图 2 尺度对最大 Lyapunov 指数的影响 图中虚线斜率为 λ_1

图 3 小波函数对最大 Lyapunov 指数的影响 图中虚线斜率为 λ₁

图 4 正弦信号对最大 Lyapunov 指数的影响 图中虚线斜率为 λ_1

计算中还发现 由于随时间的推移 整个信号的

取值范围迅速增大,对于一定的阈值,当 i 较大时,

U₁ 基本上是空的,即此时的信号对计算结果基本没

有贡献,而利用小波变换模数计算时,这一缺陷得到

了显著改善,可以比较充分地利用全部数据.

其次,在混沌信号上叠加振幅变化的正弦信号,即 100(*t*/2000)³sin(π/200*t*),信噪比约为 0.0005.计算结果见图 5.从图 5 中可以发现,直接采用信号已无法计算出最大 Lyapunov 指数,而利用小波变换模数则可以得到较好的计算结果,当 *m* > 3 时,计算结果的相对误差小于 3%.

 $S(\tau)$

图 5 振幅变化的正弦信号对最大 Lyapunov 指数的影响 图中虚线斜率为 λ_1

最后,在混沌信号上叠加一线性增加信号,即 10(*t*-1000)/1000,信噪比约为0.016.计算结果见图 6.从图6中可以发现,直接采用信号已无法准确计

 $\begin{array}{c} 0\\ -1\\ -2\\ -3\\ -3\\ -4\\ -5\\ 0\\ 5\\ 10\\ 15\\ 20\\ \\ \tau\\ \lambda_{1d}\end{array}$

算出最大 Lyapunov 指数,而利用小波变换模数则可 以得到较好的计算结果.当 *m* = 2—5 时,后者的计 算结果分别为 0.4010,0.4096,0.4140,0.4188,相对

50 卷

图 6 叠加线性增加信号对最大 Lyapunov 指数的影响 图中虚线斜率为 λ_1

误差为 – 3.81% , – 1.75% , – 0.70% , 0.46% .

5 结 论

本文通过仿真计算发现,小尺度的小波变换模 数的最大 Lyapunov 指数与系统本身是一致的,并具 力系统而言,进行小尺度小波变换时,最大 Lyapunov 指数基本不变.同时仿真计算还表明,由于小尺度小 波变换的高通滤波性质,利用小波变换模数计算最 大 Lyapunov 指数可有效克服极强的大尺度噪声的 干扰.

有基本相同的计算精度,由此可初步推断,对离散动

- P. Berge et al., Order Within Chaos (John Wiley & Sons Inc., 1984), p. 279.
- [2] G. L. Baker et al., Chaotic Dynamics: an Introduction (Cambridge University Press, 1996), p. 84.
- [3] H. Kantz et al., Nonlinear Time Series Analysis (Cambridge University Press, 1997), p. 58.
- [4] A. Wolf et al., Physica, 16D(1985), 285.
- [5] H. Kantz, Phys. Lett., A185(1994), 77.
- [6] M. T. Rosenstein et al., Physica, D65(1993), 117.
- [7] Shao-qing Yang *et al*., *Acta Phys*. *Sin*., **49** (2000), 636(in Chinese)[杨绍清等,物理学报, **49** (2000), 636].
- [8] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Reg Conf Ser Appl Math (Philadelphia : SIAM Press, 1992), p.17.
- [9] M. Farge , Annu. Rev. Fluid Mech. , 24(1992), 395.
- [10] M. Farge et al., Proc. IEEE, 84(1996), 639.
- [11] S. Jaffard , Some Mathematical Results about the Multifractal For-

malism for Function, in Wavelet : Theory, Algorithms, and Applications (Academic Press, 1994), p. 325.

- [12] C. Karanikas, Chaos, Solitons and Fractals, 11(2000), 275.
- [13] P. Guillemain et al., Proc. IEEE, 84(1996), 561.
- [14] K. Forinash et al., Physica, D123(1998), 123.
- [15] L. G. Garmero et al., Physica, A246(1997), 487.
- [16] X.G.Huang *et al.*, *Acta Phys. Sin.*, **48**(1999), 1810(in Chinese)[黄显高等,物理学报, **48**(1999), 1810].
- [17] J.Q.Fang et al., Acta Phys. Sin., 50(2001), 435(in Chinese) [方锦清等,物理学报, 50(2001), 435].
- [18] Z.Y.Wang et al., Acta Phys. Sin., 48(1999), 206(in Chinese) [王忠勇等,物理学报,48(1999), 206].
- [19] C. K. Chui, An Introduction to Wavelets (Xi 'an Jiaotong University Press, Xi 'an 1995), p. 82 in Chinese J 崔锦泰,小波分析导 论(西安交通大学出版社,西安,1992),第82页].

CALCULATION OF THE LARGEST LYAPUNOV EXPONENT IN THE DISCRETE DYNAMICAL SYSTEM WITH WAVELET ANALYSIS^{*}

LIU HAI-FENG ZHAO YAN-YAN DAI ZHENG-HUA GONG XIN YU ZUN-HONG

(College of Resource and Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , China)
 (Received 9 June 2001 ; revised manuscript received 10 July 2001)

ABSTRACT

The largest Lyapunov exponent is an important parameter of detecting and characterizing chaos produced from a dynamical system. Based on simulative calculation, it has been found that the largest Lyapunov exponent of the small-scale wavelet transform modulus of a discrete dynamical system is the same as the system 's. At the same time, the calculated results show that calculating the largest Lyapunov exponent with the small-scale wavelet transform modulus can efficiently eliminate the effect of strong large-scale noise because of the high-pass filtering characteristic of small-scale wavelet transform.

Keywords : chaos , Lyapunov exponent , wavelet analysis PACC : 0545 , 0540

^{*} Project supported by the State Key Development Program for Basic Research of China (Grant No. G1999022103), and by the Foundation for University Key Teachers by the Ministry of Education, China.