γ 噪 Blazar 天体的 γ 射线和近红外光辐射研究*

张 $d^{1}(2)^{3}$ 谢光中³ 赵 刚² 马 力¹ 伊继东¹ 白金明³

1(云南师范大学物理系,昆明 650092)

2(中国科学院北京天文台,北京 100081)

3(中国科学院云南天文台,昆明 650011)

(1999年12月13日收到2000年8月7日收到修改稿)

收集了 29 个有 γ 噪的 Blazar 天体(其中有 16 个 BL Lac 天体和 13 个平谱射电类星体)的近红外流量密度和 γ 射线流量密度,获得以下主要结果:1.23 个天体中的 γ 射线流量密度和近红外流量密度在低态时存在较强的相关 性而在高态时有弱的相关性.2.7在 29 个天体中,有 6 个天体只有一个观测数据点,将其认为是高态时, γ 射线流量 密度与近红外光流量密度之间有弱相关性,而认为是低态时有强相关性.3.29 个源的 γ 射线流量密度与 X 射线流 量密度在低态时有相关性,但是 γ 射线流量与光学流量密度, γ 射线流量与射电流量密度均没有相关性.4 7在 16 个 BL Lac 天体中 γ 射线流量与近红外光流量不论在高态还是低态都有相关性,而 13 个平谱射电类星体没有相关性. 讨论了 γ 噪 Blazar 天体的 γ 射线辐射机制,认为 γ 射线的辐射机制主要是同步自康普顿散射.而逆康普顿散射来自 绕中心核且温度约为 2000K 的尘埃,这些尘埃的区域大约有 r = 3 pc 聚束的相对论电子也可能是这种尘埃模型辐 射机制的一个重要补充.平谱射电类星体和 BL Lac 天体的 γ 辐射机制可能有些不同.

关键词:Blazar 天体, 星系- γ 射线观测-辐射机制, 非热辐射 PACC:9760L, 0432

1 引 言

最近几年康普顿 γ 射线天文台(Compton Gamma-Ray Observatory CGRO)的 EGRET(Energetic Gamma-Ray Experiment Telescope)仪器获得了许多 Blazar 天体的重要观测结果.这些 Blazar 天体(约 64 个天体,其中平谱射电类天体 46 个 BL Lac 天体 18 个 在高能 γ 射线波段 E > 100 MeV 有较强 γ 射线 辐射,这一发现不能被现有的天体物理论模型所检 验和预言 由此不少天文学家为此提出了许多新理 论模型来解释这一重要的天文发现。Dondi 等人认 为 Blazar 天体辐射出的大量 y 射线是强光子相互作 用所致^{1]},有的模型则用同步自康谱顿辐射解释这 一现象^[2]也有人认为大量 y 辐射是相对论电子群 的同步辐射所致,近期有的天文学家认为是软光子 被吸积盘逆康谱顿散射或被星云物质,或被绕中心 黑洞的外层物质散射所致[3--6].虽然近年来有大量 的辐射模型来讨论和解释 Blazar 天体辐射高能 γ 射 线这一重要观测结果,但在解释 γ 辐射机制的模型 中,并没有哪一个模型是占主导地位的.众所周知, 辐射模型随不同的波段有不同的变化.由此所获得 的辐射机制有其相对应的解释.Dondi 等人直接用 EGRET 观测数据研究了 γ 射线辐射和射电、光学、 X 射线波段辐射的相关性^[1],他们发现 γ 射线光度 与射电光度的相关性比其与光学光度和 X 射线光度 的相关性好.随 Dondi 之后,我们收集了 16 个有 γ 射线噪的 Blazar 天体的近红外和 γ 射线辐射流 量^[6] 对其辐射机制进行了深入研究,我们发现:1) 近红外光度与近红外光度有较好的相关性.并且 γ 射线光度的相关性好.2) γ 射线光度与近红外光度 的相关系数为 $\gamma = 0.98$,置信度为 $p = 4.675 \times 10^{-10}$.

这个结果表明近红外与γ射线辐射之间的相互 关系十分重要.同时也说明 Blazar 天体光度的强相 关与红移有关,特别是当观测样品分布在较宽的空 间区域时,原来表现出相互之间存在强相关的光度,

^{*}国家自然科学基金(批准号:19963001)和云南省自然科学基金(批准号:97A017M)资助的课题.

换成流量密度后相关性随之消失⁷¹,由此表明在研 究天体的辐射机制时,流量的相关性显得更为重要.

本文收集了 29 个 Blazar 天体的观测数据,研究 了 γ 射线辐射流量密度 F_{γ} 与近红外流量密度 F_{IR} 相关性,为了进行比较,也讨论了 F_{γ} 与射电流量密 度 F_{R} , F_{γ} 与光学流量密度 F_{O} , F_{γ} 与 X 射线流量密 度 F_{X} 相关性.获得 γ 射线的辐射区域.

2 γ射线噪 Blazar 天体的流量密度相 关性

在研究 γ 射线噪 Blazar 天体的流量密度相关性 时,流量密度的观测结果应该是具有同时性观测获 得的结果,但由于具有多波段同时性观测结果的 E-GRET 源数量非常少^[8],在不同波段范围寻找具有 最小流量密度的观测结果就变得非常有用^[9].我们 认为天体具有最小流量密度值时应该是该天体相对 应的宁静态(或称低态),天体具有最大流量密度值 时为该天体的爆发状态(或称高态).根据长期 Blazar 天体的观测,天体处于宁静状态的时间比爆 发状态的时间长得多[10] 在天体物理的基本理论 中 爆发状态的物理过程非常复杂 流量密度变化极 不稳定 因此 在没有多波段同时性观测资料的情况 下 我们研究不同的波段有 γ 射线噪 Blazar 天体宁 静态的流量密度相关性. 根据 EGRET 的观测报 道^{1]}由于γ射线噪 Blazar 天体的γ波段 EGRET 观测数据在低态时,有些源的观测值已经超出了仪 器的极限灵敏度 有较大的观测误差 为此我们同时 收集了 γ 射线噪 Blazar 天体的各波段的高态流量密 度值进行相关分析比较研究 因为现已有部分观测 表明 有些源在 γ 射线爆发时也同时伴随有光学波 段的爆发[5].

表1 各类 Blazar 天体

	Name	Class	$F_{ m K}$		$F_{\rm X}$		F_{γ}		F_{R}		$F_{\rm O}$	
Source	Ζ	type	/mJy	Ref.	∕uJy	Ref.		Ref.	/Jy	Ref.	/mJy	Ref.
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
	4C15.05	RQ			0.35	[31]	5.28 ± 2.64	[38]	3.62	[58]	7.017	[72]
0202 + 149	1.202	HP	0.34	[69]	0.06	[77]	0.87 ± 0.28	[38]	2.4	[31]	0.005	[48]
	3C66A	BL	13.1 ± 0.9	[1]	1.25	[31]	3.42 ± 0.43	[32]	1.04	[43]	16.6	[64]
0219+428	0.444	HP	4.68	[2]	0.16	[26]	1.52 ± 0.41	[32]	0.52	[3]	0.85	[64]
	OD	BL	20	[3]	1.56 ± 0.41	[27]	8.25 ± 0.91	[32]	2.85	[52]	6.6	[3]
0235 + 164	0.940	HP	3.0 ± 0.1	[4]	0.17	[26]	1.13 ± 0.46	[38]	1.03	[4]	0.6	[29]
	PKS	RQ	13.9 ± 0.1	[5]	0.52 ± 0.15	[28]	6.78 ± 3.3	[38]	$\textbf{6.99} \pm \textbf{1.1}$	[57]	0.296	[60]
0420 - 014	0.915	HP	7.0 ± 0.2	[6]	0.38	[26]	1.4 ± 0.72	[38]	3.50	[26]	0.23	[60]
	PKS	RQ	3.56	[7]	0.11 ± 0.03	[3]	1.47 ± 0.42	[38]	2.2	[26]	0.91	[54]
0454 - 234	1.009	HP	2.51	[7]	0.085	[26]	1.4 ± 0.4	[40]	1.86	[53]	0.04	[54]
	PKS	BL	19.39 ± 0.97	[5]	1.78	[27]	3.75 ± 1.12	[38]	9.7	[54]	3.72 ± 0.13	[65]
0521 - 365	0.055	HP	4.79	[8]	0.68	[26]	1.4 ± 0.4	[41]	1.0	[55]	0.72 ± 0.21	[65]
	OQ147	RQ			0.65	[31]	30.76 ± 3.46	[38]	4.3	[58]	0.38	[31]
0528+134	2.07	LP	0.65	[69]	0.19	[77]	2.29 ± 1.23	[38]	2.98 ± 0.03	[57]	0.062	[81]
	PKS	BL	13.29	[9]	$\textbf{0.79} \pm \textbf{0.05}$	[73]	8.98 ± 1.45	[38]	$\textbf{4.81} \pm \textbf{0.04}$	[57]	2.05	[73]
0537 - 441	0.896	HP	5.89	[8]	0.20	[29]	1.74 ± 0.41	[37]	4.00	[52]	0.37	[28]
	S5	BL	11.1 ± 8.9	[10]	3.01	[30]	5 ± 1.2	[41]	1.12	[54]	20.5	[66]
0716 + 714	0.3	HP	11.07 ± 8.9	[10]	1.28	[31]	1.86 ± 0.27	[37]	0.57	[82]	2.46	[26]
	PKS	BL	33.88	[7]	0.33	[26]	8.63	[37]	3.65	[56]	6.90	[3]
0735 + 178	0.424	HP	5.62	[11]	0.22 ± 0.03	[27]	1.29 ± 0.38	[32]	1.99	[3]	0.71	[3]
	OJ049	BL	18.62	[8]	1.07 ± 0.3	[25]	1.9 ± 0.57	[37]	2.105	[57]	3.09 ± 0.07	[65]
0829+049	0.18	HP	2.86	[11]	0.19	[26]	1.4 ± 0.5	[41]	0.47	[3]	0.62 ± 0.01	[65]

356

	Name	Class	F_{K}		$F_{\rm X}$		F_{γ}		F_{R}		$F_{\rm O}$	
Source	Ζ	type	/mJy	Ref.	∕uJy	Ref.		Ref.	∕Jy	Ref.	/mJy	Ref.
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
	OJ287	BL	18.96	[10]	$\textbf{2.16} \pm \textbf{0.15}$	[33]	2.9	[42]	2.85	[26]	1.37	[18]
0851 + 202	0.306	HP	7.1 ± 0.2	[4]	0.62	[31]	1.22 ± 0.4	[47]	2.2	[23]	1.26	[18]
	MrK421	BL	21.6 ± 0.05	[12]	36.13	[31]	$\textbf{4.94} \pm \textbf{0.76}$	[32]	0.73	[54]	7.1	[26]
1101 + 384	0.031	HP	9.75	[9]	10	[83]	1.57 ± 0.24	[32]	0.49	[26]	5.1	[26]
	4C29	RQ	74.8 ± 1.5	[13]	0.8	[34]	22.84 ± 5.48	[32]	1.65	[54]	5.10	[3]
1156 + 295	0.729	HP	2.6 ± 0.2	[14]	0.62 ± 0.06	[33]	2.12	[32]	1.4	[3]	0.59	[3]
	ON231	BL	12.85	[15]	0.21	[3]	$\textbf{2.84} \pm \textbf{0.92}$	[43]	2.3	[26]	4.58	[67]
1219 + 285	0.102	HP	1.28 ± 0.01	[16]	0.03	[80]	0.69 ± 0.02	[43]	0.968	[57]	0.1	[67]
	3C273	RQ	134.8 ± 4.0	[17]	12.05	[25]	4.65 ± 0.45	[37]	44.6	[54]	24.6	[54]
1226 + 023	0.158	LP	24.5	[2]	11.15	[25]	2.1 ± 0.26	[41]	4	[59]	10	[68]
	3C279	RQ	108.8 ± 3.3	[17]	1.34 ± 0.02	[31]	28.7 ± 1.09	[32]	16.6	[54]	15.1	[67]
1253 - 055	0.538	HP	3.6 ± 0.2	[4]	0.78	[26]	1.34 ± 0.44	[37]	9.90	[26]	0.29	[53]
	PKS	RQ	23.09	[18]	0.84 ± 0.7	[33]	2.7 ± 0.6	[36]	3.35	[54]	1.18	[60]
1510 - 089	0.361	HP	2.95	[19]	0.44	[26]	1.8 ± 0.7	[41]	3.2	[26]	0.9	[60]
	DA406	RQ			0.24	[31]	7.32 ± 1.56	[38]	3.08	[54]	0.39	[54]
1611 + 343	1.404	LP	0.68 ± 0.02	[20]	0.08	[75]	1.28 ± 0.11	[48]	2.48	[57]	0.36	[70]
	4C38	RQ			0.42	[31]	10.54 ± 0.94	[37]	4.08	[60]	0.25	[60]
1633 + 382	1.814	LP	1.95 ± 0.07	[20]	0.08	[76]	1.36 ± 0.34	[47]	1.79	[50]	0.23	[70]
	3C345	RQ	18.3 ± 0.5	[17]	8.3	[27]	2.5	[44]	12.4	[4]	3.90 ± 0.3	[4]
1641 + 339	0.595	HP	3 ± 0.5	[21]	0.61 ± 0.12	[34]	1.30 ± 0.60	[46]	7.20	[26]	0.80 ± 0.1	[4]
	Mkr501	BL	41.8 ± 0.8	[22]	9.37 ± 0.46	[33]	3.6	[42]	1.28	[61]	3.80	[71]
1652 + 398	0.033	HP	14.7	[23]	5.88	[3]	3.2	[78]	1.26	[3]	3.30	[3]
	PKS	BL	33.11±1.66	[5]	5.30	[31]	6.3	[39]	1.5	[3]	30	[3]
2005 - 489	0.071	HP	26.01 ± 1.04	[5]	2.21 ± 0.02	[31]	1.8 ± 0.5	[41]	1.23	[52]	2.82	[3]
	PKS	BL			1.22	[25]	2.442 ± 1.02	[38]	0.77	[26]	2.05	[31]
2032 + 107	0.601	HP	5.01	[7]	0.10	[31]	1.34 ± 0.77	[38]	0.04	[79]	0.14	[26]
	PKS	BL	31.2	[3]	16.47	[25]	4.25 ± 1.36	[39]	0.34	[62]	28.31 ± 0.5	[65]
2155 - 304	0.116	HP	22.9	[8]	5.98	[25]	2.62 ± 1.20	[38]	0.26	[3]	8.15 ± 0.11	[65]
	BL Lac	BL	165.0 ± 4.9	[17]	4.32	[25]	7.81 ± 3.83	[45]	3.27	[3]	10.68	[63]
2200 + 420	0.069	HP	25.3	[22]	0.53	[3]	1.84 ± 0.97	[38]	2.96	[63]	0.95 ± 0.09	[18]
	CTA102	RQ			0.75	74	5.16 ± 1.5	[49]	4.1	[35]	0.7	[71]
2230 + 114	1.037	HP	1.2	[17]	0.30	[73]	0.74 ± 0.40	[49]	3.5	[3]	0.47	[35]
	3C454	RQ	8.1 ± 0.8	[14]	$5.5\!\pm\!1.65$	[34]	13.74 ± 2.07	[37]	23.3	[60]	1.42	[54]
2251 + 158	0.859	HP	2.82	[7]	0.56	[12]	1.4 ± 0.4	[51]	0.9	[12]	0.85	[18]
	PKS	BL	7.1 ± 0.4	[22]	0.15	[36]	2.7 ± 0.400	[36]	1.19	[36]	1.05	[3]
2254 + 074	0.190	HP	3.37	[24]	0.049	[3]	0.8	[36]	0.52	[3]	0.78	[53]

表1的文献 [1] Worrall et al., 1984 [2] Takalo et al., 1992 [3] Ghisellini et al., 1986 [4] Brown et al., 1989 [5] Bersanelli et al., 1992; [6] Gear et al., 1995 [7] Allen et al., 1982 [8] Falomo et al., 1993 [9] Gruz-Gonzales et al., 1984 [10] Bambruna et al., 1996 [11] Massaro et al., 1995 [12] Makino et al., 1987 [13] Glassgold et al., 1983 [14] Bmith et al., 1987 [15] Lorenzetti et al., 1990 [16] Worrall et al., 1986; [17] Litchfield et al., 1994 [18] Mead et al. [19] Hyland et al., 1982 [20] Bloom et al., 1994 [21] Stevens et al., 1994 [22] Bregman et al., 1990 [23]Kidger et al., 1992 [24]Stickel et al., 1988 [25]Worrall & Wilkes, 1990 [26]Ledden O. Dell et al., 1985 [27]Urry et al., 1996 ; [28]Maraschi et al., 1986 [29]Wolter et al., 1994 [30]Cappi et al., 1994 [31]Comastri et al., 1997 [32]Thompson et al., 1995 [33]Sambruna et al., 1994 [34]Makion et al., 1989 [35]Makion et al., 1992 [36]Villata et al., 1997 [37]Thompson et al., 1995 [38]Mukherjee et al., 1999 [39]Lin et al., 1996 [40]Thompson et al., 1995 [41]Fichtel et al., 1994 [42]Shrader et al., 1994 [43]Thompson et al., 1996 [44]Von Montigny et al., 1995 [45]Mattox et al., 1993 [46]Von Montigny et al., 1993 [47]Hartman et al., 1999 [48]Chiang et al., 1995 [44]Von Mukherjrr et al., 1997 [50]Kuhr et al., 1981 [51]Hartman et al., 1993 [52]Stickel et al., 1991 [53]Veran-Cetty & Veroh, 1996 [54]Impy et al., 1988 [55]Giommiet et al., 1990 [56]Gear et al., 1994 [57]Mattox et al., 1997 [58]Perley et al., 1982 [59]Fabbiano et al., 1984 [60] Wall & peacock et al., 1985 [61]Schwattz et al., 1988 [62]Stocke et al., 1985 [63]Webb et al., 1988 [64]Madau & Persic, 1987 [65]Fslomo & Scarpa, 1994 [66]Boznyan et al., 1990 [67]James et al., 1988 [68]Unwin et al., 1985 [69]Burbidge & Hewitt, 1987 [70]Veron-Cetty et al., 1991 [71]Hewitl & Burbidge, 1993 [72]Impey & Tapia, 1990 [73]Treves et al., 1993 [74]Wilkes et al., 1994 [75]Neumann et al., 1994 ; [76]Bloom et al., 1991 [77]Bregman et al., 1985 [78]Brinkmann et al., 1994 [79]Antonucci et al., 1985 [80]Giommi et al., 1995 [81]Wall & Peacock, 1985 [82]Becker et al., 1991 [83]Madeiski & Schwartz, 1983.

我们从 83 篇参考文献中收集了 29 源的多波段 观测数据 详细的参考文献 若有需要者可根据表 1 参考文献上网查找,也可向本文作者索取),在我们 收集的 29 个有 γ 射线噪 Blazar 天体中,有 16 个源 的近红外和 γ 射线流量来自文献 61 新增加的源有 14个,所有数据被列在表1中,在表1中(1)为源 名 (2) 为源的其他名和红移 Z (3) 天体的属性 BL 为 BL Lac 天体 RQ 为平谱射电类星体 HP 为高偏 振类星体,LP为低偏振类星体(4)在近红外 K 波 段的流量密度 F_K,上面一行是高态流量,下面一行 是低态流量,单位为 mJy (5)近红外 K 波段数据的 参考文献 (6)1keV 处 X 射线流量密度 F_x . 单位为 uJy,上面一行是高态流量,下面一行是低态流量; (7)X射线流量密度参考文献 (8)100MeV 处 γ射 线流量密度,单位为 10^{-7} photons·cm⁻²·s,上面一 行是高态流量,下面一行是低态流量(9)γ射线流 量密度的参考文献 (10) 射电(5GHz) 的流量密度, 单位是 Jy ,上面一行是高态 ,下面一行是低态 (11) 为射电波段密度的参考文献 (12) 光学 V 波段流量 密度 ,单位为 mJy ,上面一行是高态 ,下面一行是低 态 (13) 光学 V 波段流量密度数据的参考文献.

从表 1 中我们可以看出所有源都具有高态和低态的 γ 射线 ,X 射线 ,5GHz 射电 ,光学 V 波段的流量 ,有 5 个源(0202 + 149 ,0528 + 134 ,1611 + 343 , 1633 + 382 ,2032 + 107)的近红外观测数据过少 ,仅 有一个观测值 ,在回归分析中我们将其视为低态 ,因 为天体处于宁静态(低态)的时间比其处于爆发态的 时间要长 ,为了和低态比较 ,我们也假设其为高态. 使用表 1 中的数据 ,做各波段的相关分析¹¹¹,获得 如下结果:

1.23 个天体中 γ 射线流量密度和近红外流量 密度 ,在低态时有较强的相关性(见图 1),其回归方 程的相关系数为 γ = 0.6619,剩余方差为 S = 0.029 ,置信度(显著性水平) $P = 4.2 \times 10^{-4}$,在高态 时有相对弱些的相关性,其回归方程的相关系数 γ = 0.5343 ,剩余方差 S = 0.036.

图 1 在 23 个源中 F_r 和 F_k 的低态有相关性

2.29 个源中,有 6 个源只有一个近红外流量的 观测值,如果认为它们是高态,其 γ 射线流量密度和 近红外流量密度有弱相关性,认为它们是低态时有 强相关性(见图 2),在高态时回归方程的相关系数 γ =0.562,剩余方差 S = 0.046,置信度 P = 0.0019. 在低态时回归方程的相关系数 γ = 0.7275,剩余方 差 S = 0.047,置信度 P = 3.9×10⁻⁶.

3.29 个源的 γ 射线流量密度(F_{γ})与 X 射线流 量密度(F_{X})在高态时没有相关性,在低态时有相关 性, F_{γ} 与 F_{O} 和 F_{γ} 与 F_{R} 都没有相关性. F_{γ} 与 F_{x} 在低态时回归方程的相关系数为 γ =0.675176,剩 余方差 S=0.051,置信度 P=4.4×10⁻⁵.

4. 在 16 个 BL Lac 天体中 F_{γ} 与 F_{k} 不论在高态还是低态都有较强的相关性,在低态时回归方程的相关系数 $\gamma = 0.80689$,剩余方差S = 0.02,置信

图 2 在 29 个源中 F_r 和 F_k 的低态也有较强相关性

度 $P = 2.8 \times 10^{-5}$.在高态时回归方程的相关系数 γ = 0.56226 ,剩余方差 S = 0.03 ,置信度 P = 0.023. 而 13 个平谱射电类星体 F_{γ} 与 F_{k} 没有相关性.

3 辐射区域的估算

我们所获得的 F_{γ} 与 F_{IR} 有强相关性 ,为 γ 射线 爆发是近红外光子被相对论电子束逆康普顿散射所 产生 ,提供了一个新的最直接的证据. 最初 ,近红外 光子的逆康普顿散射有两个模型 ,一个是绕热中心 核旋转的尘埃模型^[12],另一个是同步辐射模型^[5]. 我们知道如果绕核尘埃的光学波段辐射是球对称分 布 ,则温度 T_{g} 与辐射区域 r 的关系为^[12]

$$\frac{\pi a^3}{4\pi r^2} \int I_v e^{-kvr} Q_{uv}(v) dv = 4\pi a^2 \int Q_{\gamma} B(v) T_g dr ,$$

式中 *a* 是尘埃的半径 , I_v 是源的辐射强度 , Q_{uv} 是光 学波段的吸积率 , K_v 是超紫外吸积系数 , $B(v, T_g)$ 是普朗克辐射函数 , Q_r 是盘的吸积率.使用这个尘 埃模型 ,我们在上述频率范围内取 $Q_{uv} = 1$,这时天 体的辐射能量最大 ,由此解方程(1)可以得到

$$\frac{\pi a^{3}L}{4\pi r^{2}}e^{-kvr} = 4\pi a^{2} \int Q_{r}B(v, T_{g})dv. \quad (2)$$

在上式中 L 是天体的总光度. 如果我们假设经典的 Blazar 天体的光度 $L = 3 \times 10^{40}$ J·s^{-1[6]},完成方程 (2)的积分,我们发现在 r = 3 pc 范围的尘埃其温度 为 $T_g = 2000$ K,温度 T = 2000K 的尘埃的普朗克函 数其峰值位于近红外区域,其频率 $\tau_m = 1.18 \times 10^{14}$ Hz,由此热尘埃主要辐射近红外和远红外光,这里 尘埃的辐射场为逆康普顿散射提供了一个产生光子 的源,这是一个非常有趣的现象,在另一文献中^[13], 我们发现了 EGRET 直接获得的 17 个 Blazar 天体 的γ射线光度与远红外光度有强的相关性,只是其 相关性比γ射线流量与近红外流量的相关性差些. 但γ射线光度与远红外光度相关这一结果仍支持了 温度为 *T* = 2000K 的热尘埃模型,γ射线噪的流量 是红外光子被相对论电子束逆康普顿散射产生,热 尘埃的作用是为逆康普顿散射提供大量的光子.由 于能供研究近红外和远红外 Blazar 天体的源很少, 且 Blazar 天体在这两个波段的观测资料也十分有 限,由此讨论其辐射模型就显得非常有意义了.

4 讨 论

在 29 个有 γ 射线噪 Blazar 天体中 其 γ 射线和 近红外的流量密度不论在高态还是在低态都有相关 性 并且低态的相关性比高态的相关性强 这一结论 可能是具有 γ射线噪 Blazar 天体的一个共性,这为 将来进一步深入观测有 γ 射线噪的 Blazar 天体的近 红外波段 提供了一个重要的检验依据 同时选取低 态流量密度作为准同时性观测数据的假设也是正确 的.实际上 F_{γ} 与 F_{IR} 存在强相关 , F_{γ} 与 F_{x} 也存在 有弱相关性,但 F_{γ} 与 F_{R} , F_{γ} 与 F_{O} 不论在高态还 是低态都没有相关性 ,由此限制了产生 γ 射线辐射 机制的模型 我们知道聚束效应可以解释光度之间 的负相关^{14]},γ射线辐射可能直接和近红外辐射有 关,尘埃可能有为逆康普顿散射过程提供光子源的 重要作用 所获得的相关性分析结果与辐射机制模 型是一致的,并且尘埃模型也被非常好的用去研究 γ射线噪 Blazar 天体 3C 279 中 近红外和 GeV 能量 的相关变化[15]

从相关分析中我们得知 16 个 BL Lac 天体的 F_{γ} 与 F_{IR} 有相关性存在,但 13 个类星体则没有相 关性.由此也为 Blazar 天体的高能 γ 射线辐射提供 了一个非常好的尘埃辐射模型的最新证明.在 Blazar 天体中的 BL Lac 天体,长期以来在观测上表 现出有非常少的绕核尘埃,光谱观测为无发射线或 仅有非常弱的宽发射线谱,一般认为这是缺乏发射 线气体或缺乏电离光子.我们也注意到在近几年来 的观测中,许多 BL Lac 天体的观测存在有窄发射线 和强的宽发射线谱报道,Vermenlen 和 Sitk 等解释 了在 BL Lac 和 OJ287 观测中找到的宽而明离的 H_{α} 线^{16,17]},XIE 等解释了在 PKS0306 + 102 和 PKS0735 + 178 中发现的 Mg II 线^{18]}.从而证实了 Stickel 等随着光学波段 BL Lac 型天体的光谱观测 的增加,其结果中将大量发现有窄的弱发射线和强 而宽的发射线的推论^[19],一种可能的解释是 BL Lac 天体的发射线气体是内禀弱的,可能由于缺乏 电离气体或电离光子.我们相关分析的结论, F_{γ} 与 $F_{\rm IR}$ 之间的相关性比 F_{γ} 与 F_{x} 好这一事实,可以表 明在 $T_{\rm g}$ =2000K 的热尘埃位于 r=3pc 的区域是一 个重要的软光子源区域. 最后,我们有以下几点结论:

1. 从温度为 $T_g = 2000 \text{K}$,位于 r = 3 pc 的区域 被逆康普顿散射的绕核旋转的热尘埃及相对论电子 束是乎为一种重要的 γ 辐射机制;

2.BL Lac 天体和平谱射电类星体的 γ 辐射机 制有些不同;

 3. 我们的统计分析结果支持了 BL Lac 天体的 γ射线爆发和近红外爆发表现为准同时性发生这一 设想.

- L. Dondi, G. Ghisellini, Monthly Notices of the Royal Astronomical Society 273 (1995) 583.
- [2] L. Maraschi G. Ghisellini , Astrophysical Journal 397 (1992), L5.
- [3] S. M. Begelman, C. Mitchell, Astrophysical Journal, 421 (1994),153.
- [4] R. D. Blandford, A. Levinson, Astrophysical Journal, 441 (1995), 79.
- [5] S.J. Wagner , Astrophysical Journal , 298 (1995), 688.
- [6] G.Z. Xie, Y. H. Zhang J. H. Fan , Astrophysical Journal ,447 (1997),114.
- [7] A. Muecke , M. Pohl , P. Reich , Astronomy and Astrophysics , 320(1997) 33.
- [8] Montigny ,P. V. Ramanamurthy ,S. D. Dingus ,PSR 1951 + 32. IAUC ,1995.

- [9] G. Burbidge , Astronomy Journal 93 (1987), 1.
- [10] G.Z.Xie , Astrophysical Journal 80(1992), 683.
- [11] T.P.Li Data Manage For Experiment (Science Press ,Beijing , 1980) in Chinese] 李惕培,实验的数学处理(科学出版社,北 京,1980)].
- [12] M. Rowan-Robinson, J. Negroponte, Silk J. Nature, 281 (1979) 635.
- [13] Y. H. Zhang, G. Z. Xie, Astronomy and Astrophysics, 312 (1996),9.
- [14] A. Mcke Astronomy and Astropysics 320(1997) 33.
- [15] L. Maraschi , Astrophysical Journal 397 (1992), L5.
- [16] R.C. Vermeulen , Astrophysical Journal 457 (1995), 65.
- [17] M. L. Sitko , V. T. Junkkarinen , PASP , 97 (1985), 1158.
- [18] G. H. Xie *Astronomy and Astrophysics* **508**(1998),180.
- [19] M. Stickel , Astrophysical Journal , 374(1991)431.

STUDY OF GAMMA-RAY AND NEAR-INFRARED EMISSION OF GAMMA-RAY-LOUD BLAZARS OBJECT*

ZHANG XIONG^{1,2,3)} XIE GUANG-ZHONG³⁾ ZHAO GANG²⁾ MA LI¹⁾ YI JI-DONG¹⁾ BAI JIN-MING³⁾

¹ (Department of Physics, Yunnan Normal University, Kunming 650092, China)

² (Beijing Astronomical observatory, Chinese Academy of Sciences, Beijing 100081, China)

³ (Yunnan Astronomical observatory, Chinese Academy of Sciences, Kunming 650011, China)

(Received 13 December 1999; revised manuscript received 7 August 2000)

Abstract

We have collected 29 gamma-ray-loud blazars (16 BL Lac objects and 13 flat-spectrum radio quasars) with both observed near-IR and γ -ray flux densitees, with the following main results (1) there is a very strong correlation between F_{γ} and F_{IR} in the low state, and a weaker but also significant correlation between F_{γ} and F_{IR} in the high state for 23 objects with both high and low state fluxes; (2) there is a very significant correlation between F_{γ} and F_{IR} in the low state , and a weak correlation between F_{γ} and F_{IR} in the high state for 29 sources; (3) there is a correlation between F_{γ} and F_{χ} , but not between F_{γ} and F_{R} for both the low and high state of 26 sources; (4) there is a strong correlation between F_{γ} and F_{IR} in the low and high states for 15 BL Lac objects, but not for 11 flat-spectrum radio quasars. Possible constraints on the γ -ray emission mechanism are discussed. We suggest that the main gamma-ray radiation mechanism is probably the synchrotron self-Compton process. The inverse Compton scattering of the radiation from hot circumnuclear dust with $T_g = 2000$ K, which is located within the region of $r \approx 3$ pc, by beamed ultrarelativistic electrons is likely to be an important complementary mechanism. In addition, the γ -ray emission may be somewhat different for BL Lac objects and flat-spectrum radio quasars.

Keywords: BL Lacertae objects, general-gamma rays observations-radiation mechanisms, nonthermal PACC: 9760L, 0432

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 19963001) and the Natural Science Foundation of Yunnan Province, China (Grant No. 97A017M).