用格子 Boltzmann 方法模拟高雷诺数下的热空腔黏性流*

吕晓阳

(华南师范大学行政学院 广州 510631)

李华兵

(桂林电子工业学院基础部 桂林 541004) (2000年9月22日收到)

对 13 速六方格子 Bhatnagar-Gross-Krook 模型进行改进,适当地选取弛豫时间 τ 和 k ,使得热流体的切黏滞系数 μ 与热导系数 λ 只与内能有关,流体的 Prandtl 数可调,用该模型模拟了高雷诺数下的各种边界空腔流,

关键词:格子 Boltzmann 方法, Bhatnagar-Gross-Krook 模型, Prandtl 数, 空腔流

PACC: 0540 0357

1 引 言

格子 Boltzmann (LB)方法已成功地用于对等温 流体的模拟研究 1-3]. 该方法在热流体领域的应用 也得到了较广泛的重视[4-6],但在大多数热流体模 型中、Prandtl 数都取为 0.5. Prandtl 数是表征热传 导的贡献与黏性的贡献相对重要性的量度,因此 Prandtl 数为定值的模型不能模拟许多实际的热流 体.文献 7 在平衡分布函数中引入了参数 σ ,使得 Prandtl 数可连续改变,但在热流矢量中却产生一个 非物理项,为此,必须限制参数的取值,从而只许 Prandtl 数在小范围内变化. 文献 8 通过在碰撞矩 阵中引进一个不为零的可变参数 θ 而引入多弛豫 θ 也得到了 Prandtl 数任意可选的 LB 模型 ,但同时增 加了碰撞项的复杂程度, 文献 9 采用单弛豫 Bhatnagar-Gross-Krook BGK 模型 在导出 Fourier 热传 导定律时引入一个 k 通过调节该参数 ,可获得不同 值的 Prandtl 热流体.

本文在文献[9]的基础上,对13速六方格子 BGK模型加以改进,使得该模型具有单弛豫时间的 简单性,Prandtl数可调及输运系数只与内能有关, 进一步扩展该模型的应用范围.

2 13 速六方格子 BGK 模型的改进

模型如图 1 所示. 单粒子密度分布函数 $f_{pa}(\mathbf{r}, \mathbf{r})$ t)满足单弛豫演化方程

图 1 13 速六方格子

$$f_{pa}(\mathbf{r} + \mathbf{e}_{pa}, t + 1) - f_{pa}(\mathbf{r}, t)$$

$$= -\frac{1}{\tau} (f_{pa}(\mathbf{r}, t) - f_{pa}^{eq}(\mathbf{r}, t)), \qquad (1)$$

式中 p=0 ,1 ,2 表示速度大小为 0 ,1 $\sqrt{3}$, $\alpha=1$,2 , 3 A 5 6 表示速度方向 ,约定 p=0 , $\alpha=0$ 时 $e_{00}=0$, τ 为弛豫时间. 粒子密度、动量密度和能量密度按下式计算:

^{*}国家自然科学基金(批准号 :19762001)及广西壮族自治区自然科学基金(批准号 20007017)资助的课题.

$$\rho = \sum_{p\alpha} f_{p\alpha} \rho u = \sum_{p\alpha} f_{p\alpha} e_{p\alpha} \rho \varepsilon = \frac{1}{2} \sum_{p\alpha} f_{p\alpha} (e_{p\alpha} - u)^{\alpha}.$$
(2)

设局域平衡分布函数具有如下形式:

$$f_{p\alpha}^{eq} = A_p + B_p \mathbf{e}_{p\alpha} \cdot \mathbf{u} + C_p \mathbf{u}^2 + D_p (\mathbf{e}_{p\alpha} \cdot \mathbf{u})^2 + E_p (\mathbf{e}_{p\alpha} \cdot \mathbf{u})^3 + F_p \mathbf{e}_{p\alpha} \cdot \mathbf{u}^3 + O(\mathbf{u}^4), \quad (3)$$

式中各系数的求解及流体的宏观连续方程、动量与能量方程的推导,用到 Chapman-Enskog 多尺度展开技术、质量、动量守恒及伽利略不变性. 在由热流矢量 $q^{(1)}$ 表达式确定 Fourier 热传导定律 $q^{(1)} = -\lambda \nabla \varepsilon$ 过程中,得到

$$A_2 = \frac{1}{18} \rho \epsilon (4\epsilon - 1) + f(\epsilon), \qquad (4)$$

$$\lambda = (\tau - \frac{1}{2})(2\rho\varepsilon + 9f'(\varepsilon))$$
 (5)

及

$$A_{1} = \frac{1}{6} \rho \varepsilon (3 - 4\varepsilon) - 3f(\varepsilon),$$

$$A_{0} = \rho - \frac{8}{3} \rho \varepsilon (1 - \varepsilon) + 12f(\varepsilon). \tag{6}$$

(3)式中其他几个系数分别为

$$B_{1} = \frac{1}{2} \alpha (1 - \frac{4}{3} \epsilon), \quad B_{2} = \frac{1}{18} \alpha (4\epsilon - 1),$$

$$C_{0} = \frac{4}{3} \alpha (2\epsilon - 1), \quad C_{1} = \frac{1}{3} \alpha (\epsilon - \frac{3}{4}),$$

$$C_{2} = \frac{1}{18} \alpha (\frac{1}{2} - 2\epsilon), \quad D_{1} = \alpha (1 - 2\epsilon),$$

$$D_{2} = \frac{1}{27} \alpha (6\epsilon - 1), \quad E_{1} = -\frac{2}{9} \rho,$$

$$E_{2} = \frac{2}{81} \rho, \quad F_{1} = F_{2} = 0.$$
(7)

同时可导出文献[9]中的流体本构方程、Navier-Stokes 方程和热传导方程. 流体的有效压力为 $p = \rho \epsilon$, 切黏滞系数 μ 、热传导系数 λ 分别为

$$\mu = \rho \varepsilon (\tau - \frac{1}{2}),$$

$$\lambda = (2\rho \varepsilon + 9f'(\varepsilon))(\tau - \frac{1}{2}),$$

$$\xi (the point the point$$

热流体的 Prandtl 数定义为

$$Pr = \frac{\mu}{\lambda}.$$
 (9)

自由函数 $f(\epsilon)$ 的选取将从两个方面影响模型的性能,一是改变静止粒子数与运动粒子数的相对比例,二是使得导热系数可调整,从而改变流体的Prandtl数.

文献 9 中取 $f(\epsilon) = k\epsilon$,并对 k 的意义作了较详细的论述 ,文献 10 利用此模型在 64×64 格子上

模拟了雷诺数 Re = 3000 的空腔流. 本文取 $f(\varepsilon) = k\varepsilon^2$. 令 $\tau = \mu_0 / \rho + 1/2$ 得 $\mu = \mu_0 \varepsilon$, μ_0 为常数 ,即只要在每一步演化过程中 ,不同格子的碰撞选取不同的弛豫时间 ,就可以得到与流体密度无关 ,只与能量成正比的黏滞系数 . 而由热导系数 λ 的表达式 ,可得

$$\lambda = (2\rho + 18k)\epsilon(\tau - 1/2) = \lambda_0\epsilon$$
,式中 $\lambda_0 = 2\mu_0(1 + 9k/\rho)$,对于密度变化很小的流体,由于 k 是与密度无关的常数,因此,形式上热传导系数与能量成正比,这与传统的 Maxwell 分子理论一致[11]

由(9)式 "Prandtl 数为

$$Pr = \frac{\rho}{2\rho + 18k} \begin{cases} > \frac{1}{2} & -\rho/9 < k < 0, \\ = \frac{1}{2} & k = 0, \\ < \frac{1}{2} & k > 0. \end{cases}$$

(10)

影响静止粒子与运动粒子相对比例的三个系数 分别为

$$A_{0} = \rho - \frac{8}{3}\rho\epsilon(1 - \epsilon) + 12k\epsilon^{2},$$

$$A_{1} = \frac{1}{6}\rho\epsilon(3 - 4\epsilon) - 3k\epsilon^{2},$$

$$A_{2} = \frac{1}{18}\rho\epsilon(4\epsilon - 1) + k\epsilon^{2}.$$
(11)

在演化过程中 ,为使流场静止时粒子的密度分布有意义 ,要求 $A_0>0$, $A_1>0$, $A_2>0$,即对初始能量的限制为 $1/4<\epsilon<3/4$. 因此与文献[9]相比 ,本文 $f(\epsilon)$ 的选取 ,使参数 k 对 A_0 , A_1 , A_2 的作用强度有所降低. 根据静止粒子数应满足 $A_0<\rho$ 条件及(10)式 ,得到参数 k 的取值范围为

$$-\frac{\rho}{9} < k < \frac{\rho}{9} \cdot \frac{2(1-\varepsilon)}{\varepsilon}. \tag{12}$$

3 空腔流的模拟

3.1 边界条件

采用六方格子模拟矩形空腔流时,水平边界为 直线,垂直边界为锯齿形,因此,水平方向把边界定 义在链上,垂直方向把边界定义在格点上,边界上的 格点与流体内格点一样经历碰撞与传输两个过程. 边界点在 t+1 时刻的分布函数 f 与 t 时刻已经历过碰撞的分布函数 f 的关系为:

对于下边界 ,分布函数 f_0 , f_{11} , f_{14} , f_{15} , f_{16} , f_{24} , f_{25} , f_{26} 可由本层或第一层或第二层格点相同方向的分布函数确定 ;其他几个方向的分布函数 ,由简单无滑反射条件确定为 $f_{12}=f_{15}$, $f_{13}=f_{16}$, $f_{21}=f_{24}$, $f_{22}=f_{25}$, $f_{23}=f_{26}$.

图 2 垂直左边界格子

对于垂直左边界 ,边界格点分为 I 与 II 两种情况 如图 2 所示 ,在边界格点 I 上 ,由无滑反射条件确定的分布函数为 $f_{11} = f_{14}$, $f_{21} = f_{24}$, $f_{26} = f_{23}$. 在边界格点 II 上 ,由无滑反射条件确定的分布函数为 $f_{11} = f_{14}$, $f_{12} = f_{15}$, $f_{16} = f_{13}$, $f_{21} = f_{24}$, $f_{22} = f_{25}$, $f_{25} = f_{22}$, $f_{26} = f_{23}$.

对上边界和垂直右边界作同样的处理.

为使边界格点保持恒温与恒速,在进行下一步 碰撞前,边界格点强制施加局域平衡条件:

$$f'_{p\alpha} = f'_{p\alpha}^{eq}(\rho_{\rm B}, \epsilon_{\rm B}, u_{\rm B}),$$
 (13)
式中 $\rho_{\rm B} = \sum f'_{p\alpha}, \epsilon_{\rm B}$ 为边界温度 $\mu_{\rm B}$ 为边界速度 ,
对于空腔流 ,垂直左右边界的 $\mu_{\rm B} = 0.f'_{p\alpha}$ 即为边界格点下一步参加碰撞的分布函数 ,由它将边界影响扩展到整个流场。

3.2 边界类型

根据空腔上下边界速度大小和方向,存在三种类型的边界,如图 3 所示.

图 3 三种边界类型

空腔的边界温度 ε_B 可选择高于、等于或低于腔内的 初始温度 ε_0 . 雷诺数定义为

$$Re = \frac{\rho V'H'}{\mu} \cdot \frac{H}{W}$$
, $H' = \frac{\sqrt{3}}{2}H$, (14)

式中 H 为空腔高度 ,W 为空腔宽度 ,对第一种边界 , $V'=\mid V_T\mid$,对第二、三种边界 , $V'=(\mid V_T\mid +\mid V_B\mid \mathcal{Y}2$, V_T 和 V_B 分别为上边界和下边界速度.

3.3 模拟结果

图 4 为空腔格子大小为 128×128 ,参数选取为 ρ =0.26 ,Re=10000 ,k=-0.15 ,Pr=1.04 , V_T =0.05 , V_B =0 ,开始温度、边界温度均为 0.5 ,运行 15 万步得到的稳定的流场图.图 5 为相应的温度分布和压强分布图.图 6(a)—(c)为相同参数 ,格子大小为 64×128 ,Re=20000 ,运行 30 万步后得到的稳定流场图.

图 4 空腔格子为 128×128 流场图

4 讨 论

本文的模型中,参数 k 的引入使得局域平衡分布函数的系数 A_p 不再与密度成正比 [12] ,这是与文献 7 最大的差别,而可模拟的热流体范围有很大的扩展,在某些 k 值下,雷诺数达到很高的值仍可以得到稳定的流场分布。但是随着 k 的增加,热流体的稳定性受到很大的影响。表 1 列出由(12)式确定的在 k 值变化范围为 -0.288—0.578 内,得到稳定热流体的最大雷诺数的变化情况,同时还列出相应的静止粒子所占比例数。

由表 1 可以看到 $_{k}$ 接近 $-\rho/9$ 或 $_{\rho}/9 \times 2(1-\epsilon)$ $_{\epsilon}$))) 。)) 次 时 ,要得到稳定的热流体 ,雷诺数必须取得很

图 5 空腔格子为 128×128 运行 15 万步的温度分布(a)和压强分布(b)图

图 6 空腔格子为 64×128 运行 30 万步的流场图

表 1 空腔格子大小为 256×256 ρ = 2.6 ϵ_0 = ϵ_B = 0.5 V_T = 0.05

k	-0.28	-0.27	-0.26	-0.25	-0.2	-0.18	-0.17	-0.16	-0.15	-0.14
Pr	16.25	7.65	5.0	3.71	1.63	1.33	1.22	1.12	1.04	0.97
(A_0 / ρ)×100	1.0	2.2	3.3	4.5	10.3	12.6	13.7	14.8	16.0	17.2
Re	0	20	288	320	680	1240	2400	12800	28000	24000
k	-0.13	-0.12	-0.11	-0.1	0	0.1	0.2	0.3	0.4	0.5
Pr	0.91	0.86	0.81	0.77	0.5	0.37	0.29	0.25	0.21	0.18
(A_0 / ρ)×100	18.3	19.5	20.6	21.8	33.3	44.9	56.4	67.9	79.5	91.0
Re	12000	4880	2480	1320	128	84	14	6	5.2	3.2

低 ,尤其在 $-\rho/9$ 附近 ,还必须减小边界流速 ,即降低流体的马赫数 ,才能模拟稳定的热流体 ,而在 Pr=1 附近 ,模拟高雷诺数下的热流体较成功 ,这说明雷诺数与马赫数都对热流体的行为产生影响.

另外 高雷诺数下模拟出的流场与低雷诺数有较大差别. 首先 高雷诺数下要达到稳定的流场需要运行更多的时间步数 ;其次 ,流场分布也有较大不同. 在图 7 中 \mathbb{R} \mathbb{R}

在文献 9]中 ,Prandtl 数与流体的密度和温度 有关 ,本文中 Prandtl 数与流体的密度有关 ,即都不是与状态参数无关的常数 ,关于这一问题的解决还需要进一步的探讨.

图 7 空腔格子为 64×128 运行 5 万步的流场图 $V_T = 0.05$, $V_B = 0$, $R_e = 2000$

- [1] Y. H. Qian ,D. d 'Humieres ,P. Lallemand ,Euro . Phys . Lett . , 17 (1992) 479.
- [2] H. Chen ,S. Chen ,W. H. Matthaeus ,Phys. Rev. ,A45(1992), 5339.
- [3] H. P. Fang Z. F. Lin R. B. Tao , Chin . Phys. Lett. ,14 (1997), 912.
- [4] F. J. Alexander , S. Chen , J. D. Sterling , Phys. Rev. , E47 (1993) R2249.
- [5] Y. Chen , H. Ohashi , M. Akiyama , J. Stat . Phys. , 81 (1/2) (1995) , 71.
- [6] G. He ,K. H. Zhao ,Commun . Theor . Phys. , 29 (1998) 623.

- [7] Y. Chen , H. Ohashi , M. Akiyama , Phys. Fluids , 7(1995), 2280.
- [8] M. Soe G. Vahala et al. , Phys. Rev. , E57 (1998) 4227.
- [9] H.B. Li *et al.*, Acta Physica Sinica A9(2000),392(in Chinese] 李华兵等 物理学报 A9(2000),392].
- [10] R.H.Chen et al., Acta Physica Sinica A9(2000) 631(in Chinese] 陈若航等 物理学报 A9(2000) 631].
- [11] L.C. Woods ,An Introduction to the Kinetic Theory of Gasses and Plasma Oxford University Press Oxford 1993).
- [12] Y. Chen , H. Ohashi , M. Akiyama , Phys. Rev. , E50 (1994) , 2776.

SIMULATION OF THERMAL VISCOUS CAVITY FLOW IN HIGH REYNOLD NUMBER BY THE LATTICE BOLTZMANN METHOD*

LÜ XIAO-YANG

(Public Administration Institute South China Normal University Guangzhou 510631 China)

LI HUA-BING

(Basic Department ,Guilin Electronic Industry Institute ,Guilin 541004 ,China) (Received 22 September 2000)

ABSTRACT

A modification to the 13-speed lattice Bhatnagar-Gross-Krook model is presented. The single relaxation time τ and the free parameter k are suitably chosen so that the transport coefficients become energy-dependent only and the Prandtl number is tunable. Simulations for various boundary cavities under high Reynold number are presented with the model.

Keywords: lattice Boltzmann method Bhatnagar-Gross-Krook model, Prandtl number cavity flow

PACC: 0540, 0357

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 19762001), and the Natural Science Foundation of Guangxi Zhuang Autonomous Region China (Grant No. 20007017).