分形粗糙面双站散射的快速前后向 迭代法数值模拟*

李中新 金亚秋*

(复旦大学波散射与遥感中心,上海 200433) (2000年11月20日收到)

为模拟复杂分形表面特别是在低掠角入射条件下的双站散射,发展了一种结合前后向迭代方法(FBM)与谱加速算法(SAA)快速求解散射场的 Monte Carlo 数值方法,计算了在 TE,TM 锥形波入射在一维分形导体粗糙面的双站 散射以及有规则异物存在时的双站散射,讨论了分形粗糙面双站散射的角度性分布与其分数维的关系。

关键词:GFBM/SAA,分形粗糙面,双站散射 PACC:0270,4110,4752

1 引 言

粗糙面散射在光学、电磁学与声学等领域均有 十分重要的研究与应用,比如光学界面特性,电磁散 射与波传播,海底声波探测等.描述粗糙面通常采用 的是周期函数和随机函数,如正弦函数和 Gauss 分 布随机函数.然而,实际的粗糙面往往并不是如此. 近年出现的分形几何学,讨论分形结构的自相似性 分布,兼顾了随机粗糙面多尺度无序的特点,往往更 接近实际的粗糙面.分形函数在周期函数和随机函 数之间建立了一种联系桥梁,它的几何廓线分布由 分形函数的几个参量来支配.

现有的分形粗糙面的散射求解大多也基于一定 的近似条件,如大尺度起伏的 Kirchhoff 近似^[1]、小尺 度微扰法^[2]、一般 Rayleigh 方法^[3]和扩展边界条件 方法^[4]等.这些近似条件不但对粗糙面的参数有一 定的限制,而且无法应用于在低掠角入射条件下必 须要考虑的多次散射与多路径传播、边缘衍射、遮蔽 效应等.

计算机数值计算技术的发展,促使复杂形体散射的快速准确的数值计算研究,比如矩量法 MoM⁵¹,有限元法⁶¹等.与近似解析方法相比,数值 方法对粗糙面参量一般不作特定的限定.由于计算

*通讯联系人.

粗糙面的范围有限,为求得精确的电磁散射截面,必 须考虑边缘电流的影响,大致上采用这样四种方法, 即1)准形入射波,2)周期边界条件,3)吸收边界条 件,4)准形阻抗片^[7].其中1)2)4)常被 MoM 采用, 2)可被有限元法采用,3)常为时域有限差分方法 FDTD 采用.由于 MoM 要求解相当大的全矩阵方程, 难以实现 Monte Carlo 散射解的多次实现,而有限元 法在计算上虽然比 MoM 较为有效^[6],但仍然不能快 速地实现 Monte Carlo 的多次计算.尤其在低掠角入 射条件下,这些数值方法要求取相当长的粗糙面,从 而在剖分粗糙面后产生极多的未知量,其计算量为 $O(N^3)(未知量个数N),这使得数值求解成为十分$ 繁重而难以完成的工作.

以 MoM 为基础,并设法减少计算量的快速计算 数值方法得到了进一步的研究发展.其中一种新的 数值方法是前后向迭代法(Forward Backward Method, FBM)⁸¹.该方法将粗糙表面每个离散单元的感应电 流对散射场的贡献分为前向与后向两个部分:由入 射电磁波和在该接收场单元前面的源单元感应电流 共同产生的前向贡献,以及在该接收场单元后面的 源单元感应电流产生的后向贡献.首先通过整个粗 糙面计算得到前向贡献,然后用来确定后向贡献,通 过多次迭代直到收敛为止.这种方法具有很快的收 敛性,使得计算速度加快,其计算量为 O(N²).文献

^{*} 国家自然科学基金(批准号 :49831060)资助的课题.

[9]將 Green 函数谱积分加速方法(Spectral Acceleration Algorithm, SAA)应用于电场积分方程(EFIE)的 FBM 计算,计算量和内存可再减少为 O(N).因此, FBM 适用于快速模拟计算包含低掠角入射时粗糙 表面的散射问题,但是 EFIE 数值计算的不稳定性会 导致该方法的收敛速度较慢¹⁰¹.

本文用磁场积分方程(MFIE)将 FBM 与 SAA 结 合起来,快速有效地数值计算 TE,TM 锥形波入射在 复杂分形粗糙面上的双站散射.

2 FBM/SAA 方法

2.1 FBM

考虑沿水平 x 轴展开的一维随机完纯导体粗 糙面 z = f(x),且有 f(x) = 0.由 TE 波和 TM 波入 射,分别有 MFIE 为

$$\frac{\partial E_{y}^{\text{inc}}(r)}{\partial n} = \frac{1}{2} \frac{\partial E_{y}(r)}{\partial n} + \int_{S'} \frac{\partial Q(r,r')}{\partial n} \frac{\partial E_{y}(r')}{\partial n'} dS' , (1)$$

$$H_{y}^{\text{inc}}(r) = \frac{1}{2} H_{y}(r) - \int_{S'} \frac{\partial Q(r,r')}{\partial n'} H_{y}(r') dS'.$$
(2)

将粗糙面沿 x 方向均匀离散,应用点匹配 MoM¹¹¹,由以上的 MFIE 可写成矩阵形式的方程

$$\mathbf{Z} \cdot \boldsymbol{I} = \boldsymbol{V} , \qquad (3)$$

其中 Z 为阻抗矩阵 ,V 为入射波 ,I 为粗糙面感应电 流.Z 矩阵元素的表达式^[8]为

TE 波入射:

$$Z_{nn} = \frac{1}{2} + \frac{f_{xx}(x_n)\Delta x}{4\pi(1 + f_x^2(x_n))}, \qquad (4)$$

$$Z_{nm} = \frac{1k\Delta x}{4} \frac{H_1(x + r_n - r_m + 1)}{|r_n - r_m|}$$

$$\cdot (z_n - z_m + f_x(x_n)(x_n - x_m))$$

$$\cdot \frac{\sqrt{1 + f_x^2(x_m)}}{\sqrt{1 + f_x^2(x_n)}} (n \neq m). \quad (5)$$

TM 波入射:

$$Z_{nn} = \frac{1}{2} - \frac{f_{xx}(x_n)\Delta x}{4\pi(1+f_x^2(x_n))}, \qquad (6)$$

$$Z_{nm} = -\frac{ik\Delta x}{4} \frac{H_{1}^{l}(k + r_{n} - r_{m} + 1)}{|r_{n} - r_{m}|} \cdot (z_{n} - z_{m} - f_{x}(x_{m})(x_{n} - x_{m})) (n \neq m).$$
(7)

在 FBM 中,将电流矢量与阻抗矩阵进行如下分解:

$$\boldsymbol{I} = \boldsymbol{I}_{f} + \boldsymbol{I}_{b} , \qquad (8)$$

$$\mathbf{Z} = \mathbf{Z}_{\mathrm{f}} + \mathbf{Z}_{\mathrm{s}} + \mathbf{Z}_{\mathrm{b}} , \qquad (9)$$

其中 I_{f} 是对电磁波向前(f)传播有贡献的粗糙面上 的部分感应电流 , I_{b} 是电磁波后向(b)传播的进行 修正的粗糙面上的部分感应电流 . Z_{f} , Z_{s} 和 Z_{b} 分别 是矩阵 Z 的下三角形矩阵、对角线矩阵和上三角形 矩阵 .这样有

$$\mathbf{Z}_{s} \cdot \mathbf{I}_{f} = \mathbf{V} - \mathbf{Z}_{r} \cdot (\mathbf{I}_{f} + \mathbf{I}_{b}),$$
 (10)

$$\mathbf{Z}_{s} \cdot \mathbf{I}_{b} = -\mathbf{Z}_{b} \cdot (\mathbf{I}_{f} + \mathbf{I}_{b}). \quad (11)$$

由上两式可看出,方程(10)描述前向传播,方程 (11)描述后向传播.

上述两方程可以迭代计算,当迭代次数为i时, ($I_{i}^{(i)}, I_{i}^{(i)}$)可以通过下两式取得

$$(\mathbf{Z}_{s} + \mathbf{Z}_{f}) \cdot \mathbf{I}_{f}^{(i)} = \mathbf{V} - \mathbf{Z}_{f} \cdot \mathbf{I}_{b}^{(i-1)}$$
, (12)

 $(\mathbf{Z}_{s} + \mathbf{Z}_{b}) \cdot \mathbf{I}_{b}^{(i)} = -\mathbf{Z}_{b} \cdot \mathbf{I}_{f}^{(i)}. \quad (13)$

方程以 $I_{b}^{(0)} = 0$ 开始计算,直到收敛到指定收敛 精度为止.对于一般粗糙面而言,迭代次数不超过6 次.

2.2 Green SAA

由(12)式得到方程(12,13)式的 ∂*C*(r,r')/∂*n* 和 ∂*C*(r,r')/∂*n*',在 FBM 中要重复计算前向和后 向场贡献:

$$V_{1}(r_{nm}) = \sum_{m=1}^{n-1} Z_{nm}^{f} I_{m}$$
, (14)

$$V_{\rm b}(r_{\rm nm}) = \sum_{m=n+1}^{N} Z_{nm}^{\rm b} I_m$$
 , (15)

 $| I + r_{nm} = |r_n - r_m| = \sqrt{(x_n - x_m)^2 + (z_n - z_m)^2}.$

无论是前向或后向迭代计算中,散射场总可以 划分为远场和近场,从而相应的源点单元 r_m 对场点 单元 r_n 的贡献作用可以分为强作用贡献 V_s 和弱作 用贡献 V_w 写为

$$V_{\rm I}(r_{\rm nm}) = V_{\rm s} + V_{\rm w} = \sum_{m=n-N_{\rm s}-1}^{n-1} Z_{nm}^{\rm f} I_{m} + \sum_{m=1}^{n-N_{\rm s}-1} Z_{nm}^{\rm f} I_{m}.$$
(16)

对 r_n 处的强贡献 V_s ,是由在 r_n 处接收场单元 附近距离 L_s 以内的 N_s 个源单元对其共同产生的贡 献 本文仍采用精确的 MoM 计算.

对于源点单元远场的弱贡献 V_{w} ,是由在 r_{n} 处 接收场单元距离 L_{s} 以外的 $n - N_{s} - 1$ 个源单元对其 共同产生的贡献,可以通过 SAA 加快计算速度.距 离 L_{s} 通常是整个计算场域的很小一部分,一般由粗 糙面的粗糙程度来确定.

本文讨论前向传播的弱贡献的 SAA 算法,对于 后向传播的弱贡献也同样适用.

对于 TE 锥形波入射,有

$$V_{w}(r_{nm}) = \sum_{m=1}^{n-N_{s}-1} Z_{nm}^{f} I_{m}$$
$$= \sum_{m=1}^{n-N_{s}-1} \frac{i\Delta x}{4} \frac{\partial H_{0}^{l}(k + r_{n} - r_{m} + 1)}{\partial n} \sqrt{1 + f_{x_{m}}^{2}} \cdot I_{m}.$$
(17)

由文献 4 方 Green 函数的谱积分形式

$$\frac{\partial G(r, r')}{\partial n} = \frac{i}{4} \frac{\partial H_0^{l}(k + r - r' +)}{\partial n}$$
$$= \frac{i}{4\pi} \int_{C_{\theta}} e^{ik[(x - x')\cos\theta + (z - z')\sin\theta]}$$
$$\cdot \frac{ik(\sin\theta + f_x \cos\theta)}{\sqrt{1 + f_x^2}} \sqrt{1 + f_{x'}^2} d\theta ,$$
(18)

代入(17) 武中 则有

$$V_{w}(r_{nm}) = \frac{i\Delta x}{4\pi} \int_{C_{\theta}} \sum_{m=1}^{n-N_{s}-1} I_{m} e^{i\theta [(x_{n}-x_{m})\cos\theta - z_{m}\sin\theta]}$$
$$\cdot ik(\sin\theta + f_{x_{n}}\cos\theta) \frac{\sqrt{1+f_{x_{m}}^{2}}}{\sqrt{1+f_{x_{n}}^{2}}} e^{ikz_{n}\sin\theta} d\theta$$
$$= \frac{i\Delta x}{4\pi} \int_{C_{\theta}} F_{n}(\theta) e^{ikz_{n}\sin\theta} d\theta , \qquad (19)$$

其中

$$F_{n}(\theta) = F_{n-1}(\theta) e^{ik\Delta x\cos\theta} + I_{n-N_{s}-1}$$

$$\cdot ik(-\sin\theta + f_{x_{n}}\cos\theta) \frac{\sqrt{1+f_{x_{m}}^{2}}}{\sqrt{1+f_{x_{n}}^{2}}}$$

$$\cdot e^{ik(N_{s}+1)\Delta x\cos\theta} e^{-ikz_{n-N_{s}}-1}\sin\theta. \quad (20)$$

对于 TM 锥形波入射,同样有

$$V_{w}(r_{nm}) = \sum_{m=1}^{n-N_{s}-1} Z_{nm}^{f} I_{m}$$
$$= \sum_{m=1}^{n-N_{s}-1} - \frac{ik\Delta x}{4} \frac{H_{1}^{1}(k+r_{n}-r_{m}+1)}{|r_{n}-r_{m}|}$$

代入(21) 式中 同样有

$$V_{\rm w}(r_{nm}) = -\frac{\mathrm{i}\Delta x}{4\pi} \int_{C_{\theta}} F_n(\theta) e^{\mathrm{i}kz_n \sin\theta} \mathrm{d}\theta , \quad (23)$$

其中

$$F_{n}(\theta) = F_{n-1}(\theta) e^{ik\Delta x\cos\theta} + I_{n-N_{s}-1}ik(-\sin\theta + f_{x_{m}}\cos\theta) + e^{ik(N_{s}+1)\Delta x\cos\theta} e^{-ikz_{n-N_{s}}-1}\sin\theta. \quad (24)$$

(20.24)式表明远场单元组的弱贡献可以通过 递推方式进行计算,这样就大大地加速了计算。

考虑到在复 θ 平面上的谱积分路线的选择,由 于在较长粗糙面上远场弱贡献的 $F_n(\theta)$ 在实 θ 轴空 间趋于有一个狭窄的主瓣和许多狭窄的旁瓣,将实 θ 轴空间的积分路径 C_θ 改选为复 θ 空间上的 C_δ ,而 使弱贡献的 $F_n(\theta)$ 在积分路径 C_δ 上有缓慢变化模 式.SAA 的高效就在于这种远场缓慢变化模式,选择 C_δ 的判椐以及谱积分的实现在文献 9 冲有论述.

3 分形粗糙面模型

本文采用带限 Weierstrass-Mandelbrot 分形函 数^[4],该函数具有带限空间频率,并在相应有限分辨 率内表现自相似性,该函数的分数维的测定值在平 滑周期曲线至粗糙填充面积曲线¹¹之间,分形函数 由加权周期函数的代数和表达为

 $f(x) = \delta \cdot C \sum_{m=0}^{M-1} b^{(D-2)m} \sin(k_0 b^m x + \varphi_m) (25)$ 其中 D 是分数维(1 < D < 2), φ_m 是每一谐波的随机 初相位,b(>1)是尺度因子, $k_0 = 2\pi/\Lambda_0$ 是空间基波 数, $C = \sqrt{2(1 - b^{2(D-2)})(1 - b^{2M(D-2)})}$ 是幅值控制 因子, δ 为均方根高度.b(25)式可以看出,随着周 期函数空间频率的增加,通过这些周期函数的叠加 来描述粗糙面精细结构.(25)式的自相似性或对称 性放大可以通过下式反映:

$$f(x) \approx \frac{1}{b^{(D-2)}} f(bx).$$
 (26)

(26) 式表明该分形曲线如果在 x 轴放大 b 倍、在 y 轴放大 $1/b^{(b-2)}$ 倍 则和变化前的曲线是相似的.

从(25)式可以看到,分形粗糙面是由参量 ǎ(均 方高度),D(分数维),b(频率尺度),k₀(基本波常 数)和 M(最高谐波数)来确定.而传统的随机粗糙 面模型的参量是 ǎ(均方高度)和 ((相关长度).

(25)式的分形函数是归一化函数 因此 粗糙面 起伏 f(x)的均方根高度为 δ.相关长度 l 可以由分 形粗糙面相关函数 c(τ)来确定 即

$$p(\tau) = \langle f(x)f(x + \tau) \rangle = (1 - b^{\mathcal{L}D-2})f(x + \tau) \rangle$$

$$(1 - b^{2M(D-2)}) \sum_{m=0}^{M-1} b^{\mathcal{L}D-2m} \cos(k_0 b^m \tau) . (27)$$

注意相关函数仍为带限 Weierstrass-Mandelbrot 分形函数 ,l 通过 (c, l) = 1/e 数值计算来确定.

对于粗糙面散射,入射波长作为衡量粗糙面粗 糙特性的一种尺度.因此,当入射波长变化时,分形 粗糙的尺度在变化.随着入射波长的减小,分形粗糙 面的可视细节增加.如果粗糙面包含的精细结构尺 度和入射波长相同,则会出现谐振现象.因此,入射 波长是研究粗糙面散射和度量粗糙度的合适尺度. 因此,*M* 可以由入射波的频率来确定,即

 $k_0 b^{M-1} = k$, (28) 其中 $k(=2\pi/\lambda)$ 是入射波波数,这样可以保证空间 最高谐波波长 λ_M 小于入射电磁波波长 λ .

因此,这个分形粗糙面模型包含有限范围的空间频率.它的谱分布由 k_0 ,b和M决定.这种分形粗糙面的粗糙度由其分数维D控制,其均方高度为 δ .

4 双站散射数值模拟结果与分析

4.1 FBM 方法的有效性

为验证 FBM/SAA 程序的精确性以及 SAA 谱加 速效率 ,用 FBM/SAA 和 MoM 同时计算一分形粗糙 面的双站散射和面感应电流.计算中分形粗糙面取 长度 $L = 47.64\lambda$,TE ,TM 锥形入射波的宽度控制因 子 $g = 7.94\lambda$,入射角 $\theta_{inc} = 30^\circ$,入射波波长 $\lambda = 1$ (m).分形粗糙面参量为 :D = 1.3 ,b = e/2.0 ,M =10 , $\Lambda_0 = 10\lambda$, $\delta = 0.05\lambda$,离散密度取为 $10/\lambda$.两种计 算完全吻合表明 FBM/SAA 程序的正确 ,而 MoM 要 耗费十多倍的计算时间.此外 ,FBM/SAA 计算的散 射场的能量守恒分别为 :TE 波为 0.9997 ,TM 波为 0.9998,表明足够的精确.FBM/SAA 与 MoM 计算时 间比较,如表 1.

表1 FBM/SAA 与 MoM 计算时间比较

	TE	TM
MoM	1.386(min)	1.719(min)
FBM/SAA	7.19(s)	6.70(s)

FBM/SAA 与 FBM 的计算时间比较如表 χ 此时 离散密度取为 20/ λ).

表 2 FBM/SAA 与 FBM 计算时间比较

	TE	TM	
FBM	29.88(s)	45.04(s)	
FBM/SAA	18.63(s)	26.85(s)	

带限分形函数的最高谐波上限按(28)式来截 取,以保证最高谐波波长小于入射波长,从而保证入 射波的分辨率.为验证(28)式的正确性,若取最高谐 波上限分别为 *M* = 10,15,用 FBM/SAA 数值计算 50 条随机分形粗糙面双站散射的平均,两者几乎完全 重合,因此,按(28)式选取最高谐波次数 *M* 完全可 满足入射波的分辨率.

本文对离散密度取 10/λ 和 20/λ 对 50 条随机 分形粗糙面双站散射的平均作了比较,两者也完全 重合,因此,离散密度 20/λ 可保证计算精度.

同样 本文用离散密度 20/λ 计算 Monte Carlo 实现的 50 条与 80 条随机分形粗糙面双站散射的平均,两者结果也几乎完全一致,因此,计算 50 条随机分形粗糙面来完成 Monte Carlo 方法的数值结果的平均可以满足计算需要.

4.2 双站散射数值模拟结果与分析

在下列计算中 取入射波长 $\lambda = 1(m)$,用 Monte Carlo 方法实现 50 次随机分形粗糙面双站散射实现 平均.

锥形入射波的夹角选定为 $2\alpha = 9^{\circ}$,入射角分别 为 30° 与 80°.粗糙面照亮长度与入射角关系为 $L = L_0 \times cos(80 + \alpha)/cos(\theta + \alpha)$,这样,分形粗糙面长度 80° 时取 $L_0 = 409.6\lambda$,则在 30° 时 $L = 47.64\lambda$,相应的 锥形入射波的宽度控制因子为 g = L/6.0.

4.2.1 分形粗糙面的双站散射

对每一种入射角情况,计算三种分数维的分形 粗糙面:D = 1.1,1.6,1.9.分形粗糙面的频率尺度 为b = e/2.分形粗糙面的均方高度变化分别为 $\delta =$ 0.05 λ 0.4 λ .分形粗糙面的空间基波波长为 $\Lambda_0 =$ 10.0 λ .

801

由图 1 2 可以看出:入射角较小时(比如 $\theta_{ine} =$ 30°)随着均方高度 δ 增大,双站散射从接近于镜向(30°)的散射,而逐步增强角度性的漫散射,后向散射得到增强.而当低掠射时(比如 $\theta_{ine} = 80°$),虽然在镜向反射方向上仍保持较大的前向散射,但有强烈的漫散射角度性起伏震荡,分形表面在低入射时强

烈的散射角度性起伏与以往的 Gauss 粗糙面有着明显的不同.图 3 给出 TE ,TM 波在 80°入射时 Gauss 粗糙面的双站散射 ,作为一种对比(此时 , $\delta = 0.4\lambda$,相关长度分别为 $l = 1.22\lambda$, 0.80λ ,对应于 D = 1.1, 1.6情况).

图 1 TE 波入射三种分数维的分形粗糙面的双站散射($\theta_{inc} = 30^\circ, \theta_{inc} = 80^\circ$)

同时,由图 1(a), ((a), ((a))可以看出,在镜向散射方 向的两侧角起伏小波峰的高低随着分数维的增大而 增高,同时各波峰峰点的拟合直线或任意两峰点连 线的斜率,随着分数维的增大而减小.TE 波的双站 散射波峰连线斜率与 D 有近似线性关系为

 $s \approx f(\delta, \theta_{in}, k_0, b)(2 - D).$ (29) TM 波的双站散射波峰连线斜率与 D 有类似的关系为

 $s \approx f(\delta, \theta_{\rm in}, k_0, b) (2 - D) + f_{\rm TM}(\delta, \theta_{\rm in}, k_0, b),$ (30)

其中 $f(\delta, \theta_{in}, b_0, b)$ 和 $f_{TM}(\delta, \theta_{in}, k_0, b)$ 均为分形面

的均方高度 ∂_x 入射角 θ_{in} 、最大基波数 k_0 以及频率 尺度 b 等参量的函数.当 ∂ 增大 ,漫散射条件下这 一线性关系不存在(如图 1(b) χ b)).

本文对 $D \ {\rm M}$ 1.001 到 1.999 共有 11 种不同的 分数维的表面进行了 TE ,TM 波在 $\theta_{\rm inc}$ = 30°时双站 散射计算 ,并给出的波峰连线斜率(29,30)与 D 的 关系 .十分有趣的是它们表现了十分良好的线性关 系 ,TE 与 TM 的斜率相同(如图 4 所示),但 TM 波的 斜率可有负值 ,即连线可以向上翘起.

对于图 1(a)中的 TE 波,有 $s \approx 0.28 \cdot (2 - D)$, 而图 $\chi(a)$ 中的 TM 波则有 $s \approx 0.28 \cdot (2 - D) + 0.1$.

测量双站散射的各峰点连线斜率可能用来近似推知

图 3 Gauss 粗糙面的双站散射($\theta_{inc} = 80^\circ$)

图 4 双站散射角度性峰点连线斜率与分数维 D 的关系

4.2.2 分形粗糙面上有规则几何体时双站散射 不妨设想分形面上有一规则几何体(比如三角 形)破坏了粗糙面的均匀分形特征.假设在分形粗糙 面中部有一宽为 2λ,高为 1λ 的规则三角形.图 5 (a)(b)分别给出 TE 和 TM 波在有无三角形时的双 站散射,可以看出,三角形目标的存在明显地消除了

图 5 分形面上有无三角形异物的双站散射

分形粗糙面双站散射的角起伏震荡特征,但其中明显的起伏尖峰仍然存在.因此,峰点连线斜率关系(29,30)仍可能存在.

本文又计算了同样 L 长度的光滑平面上有相 同大小三角形的双站散射,并与上分形粗糙面的结 果作了比较.如图 ((a)(b)所示.可以看出,分形粗

糙面的贡献表现在连续排列的尖峰.

5 结 论

本文将前后向迭代法与谱积分加速结合起来 (FBM/SAA),用 Monte Carlo数值模拟一维分形导体 粗糙面上的双站散射,可以看出:

 1. 谱积分加速的前后向迭代法能够准确快速 地数值模拟在任意入射角条件下分形粗糙面双站散 射.

 2. 在小角度条件下,随着均方高度的增加,双 站散射从镜向散射为主变化为角度性漫射,并增强 了后向散射.但在低掠入射时,双站散射表现为角度 性强烈震荡,后向散射不一定增强.而与 Gauss 粗糙 面明显不同.

 3. 双站散射角起伏的波峰连线斜率随着分数 维增大而减小,斜率与 D 之间存在线性关系,TE 与 TM 波的这种连线斜率相同. 4. 若有规则几何体存在分形粗糙面当中,则双 站散射角度性起伏明显减少,相应的双站散射自然 会增大.而角度性起伏的尖峰连线斜率与分数维的 线性关系仍可能存在.

- [1] D. L. Jaggard, X. Sun, Journal of the Optical Society of American, A7(6) 1990),1055.
- [2] C. A. Guerin, M. Holschneider, M. Saillard, Waves in Random Media 7 (3) 1997), 331.
- [3] D. L. Jaggard, X. Sun, Journal of Applied Physics, 68(11) (1990), 5456.
- [4] S. Savailis, P. Frangos, D. L. Jaggard, et al., Journal of the Optical Society of American., A14 (2) 1997), 475.
- [5] S. Rouvier, I. Chenerie, Radio Science, 32(2)(1997) 285.
- [6] Y.Q.Jin ,G.Li , Waves in Random Media ,10(2000), 273.

- [7] Y. Oh, K. Sarabandi, IEE of Proceeding, Microwave, antennas Propagation 144(4) 1997), 256.
- [8] D, Holliday, L. L. DeRaad, G. J. St-Cyr, IEEE Transactions on Antennas Propagation, 44(1996), 722.
- [9] H. T. Chan , J. T. Johnson , Radio Science 33 (5) 1998), 1277.
- [10] R. J. Adams, G. S. Brown, Electronics Letters, 35(23) 1999), 2015.
- [11] R. F. Harrington, Field Computation by Moment Method (IEEE Press, New York, 1993).

NUMERICAL SIMULATION OF BISTATIC SCATTERING FROM FRACTAL ROUGH SURFACE BY FAST FORWARD-BACKWARD METHOD^{*}

LI ZHONG-XIN JIN YA-QIU

(Center for Wave Scattering and Remote Sensing ,Fudan University ,Shanghai 200433 ,China) (Received 20 November 2000)

ABSTRACT

In order to numerically simulate bistatic scattering from fractal rough surface at low grazing angle incidence, a hybrid approach of the forward – backward method (FBM) with spectral-accelerated algorithm (SAA) is developed to solve the magnetic field integral equation. Numerical bistatic scattering from one-dimensional perfect conducting fractal rough surface realized by the Monte Carlo method with and without the presence of a regular object is accomplished, Linear relationship between the envelope slope of bistatic scattering pattern and the fractal dimension is discussed.

Keywords : FBM/SAA , fractal rough surface , bistatic scattering **PACC** : 0270 , 4110 , 4752

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 49831060).