小角 X 射线散射法测定溶胶平均界面厚度*

李志宏 巩雁军 吴 东 孙予罕*

(中国科学院山西煤炭化学研究所煤转化国家重点实验室,太原 030001)

王 俊 柳 义 董宝中

(中国科学院高能物理研究所同步辐射实验室,北京 100039)

(2000年11月1日收到 2000年12月7日收到修改稿)

溶胶界面层厚度通常是用 Porod 法对高角区负偏离的 Porod 曲线进行拟合求算,但本文研究表明还可通过分别 测定 Porod 负偏离校正前后体系粒子的平均半径之差而获得平均界面厚度.应用上述方法测定了在不同制备条件 下制备的二氧化硅溶胶的平均界面厚度.

关键词:小角 X 射线散射,溶胶,平均界面厚度 PACC:6110,8270

1 引 言

胶体是一种重要的纳米粒子分散体系^[1],小角 X 射线散射(SAXS)是表征这种体系结构的一种重 要手段^[2],可以得到许多定性和定量的结构信息,这 对于了解和控制体系的物理化学特征具有重要意 义.本文探讨 SAXS 在测定溶胶平均界面层厚度上 的应用,以获得其他测试方法难以得到的信息.

2 平均界面层厚度测定方法

2.1 Porod 法

Porod 法是测定平均界面厚度的传统方法^[3].根据 Porod 定理,对于具有明锐界面的理想两相体系,在长狭缝准直条件下, $\ln[q^3_1(q)]-q^2$ 曲线在高角区应趋于一定值,即

 $\lim\{\ln[q^3 f(q)]\} = \ln K'$, (1) 其中 q 为散射矢量, $q = 4\pi \sin\theta/\lambda$, 2θ 为散射角度, λ 为入射 X 射线波长, 模糊散射强度为 f(q), K' 为 Porod 常数. 当两相间界面模糊, 存在弥散的过渡层 时, 散射强度将不遵守 Porod 定理, 在高角区

$$\ln[q^3 f(q)] q^2$$
曲线将形成负偏离,即

$$\ln [q^{3} f(q)] = \ln K' - \sigma^{2} q^{2} , \qquad (2)$$

$$E = (2\pi)^{1/2} \sigma.$$
 (3)

以上 σ 为界面厚度参数, E 为界面厚度.

2.2 平均粒度法

对于胶体体系,纳米尺度的溶胶胶核是主要的 散射体,胶核周围的双电层的存在则减弱了主散射 体胶核的散射,从而导致 Porod 负偏离的形成.因此 由负偏离的散射强度而导出的平均半径是胶团(由 胶核和它周围的双电层组成)的平均半径,而由校正 负偏离后所得散射强度导出的平均半径则是胶核的 平均半径,二者相减则为平均界面厚度.平均半径一 般由粒度分布而导出.

3 实 验

采用如下方法制备溶胶:将一定量的表面活性 剂——壬基酚聚氧乙烯醚(Tx-10)溶于乙醇溶液形 成溶液 [,按一定比例将正硅酸乙酯(TEOS)和有机 硅氧烷(RTES)温和均匀形成溶液 [],搅拌下将溶液 Ⅱ加入溶液 [,然后加入一定量的去离子水,继续搅 拌 30min 后,加入 6mol/L 的 NH₄OH (其摩尔比为:

[†]联系人 ,E-mail ;yhsun@sxicc.ac.cn

^{*} 国家杰出青年科学基金(批准号 29625307),国家自然科学基金(批准号 29973057)和国家重点基础研究专项基金(批准号 :G20000480)资助的课题。

总 SiO₂:H₂O:乙醇:NH₄OH = 1:2:40:0.03) 搅拌一定 时间,将混合物于一定温度静置陈化.烷基有机硅氧 烷具体指甲基三乙氧基硅烷(MTES),苯基三乙氧基 硅烷(PTES),乙烯基三乙氧基硅烷(VTES).制备条 件见表1.

SAXS 测试是在北京同步辐射装置(BSRF)的

4B9A 光束线上的小角散射实验站上进行的.贮存环的电子能量为 2.2GeV,平均束流强度为 60mA,长狭缝准直系统,入射 X 射线波长为 0.154nm,采用成像板法检测散射强度.散射强度进行背景和样品吸收的校正,但不进行狭缝准直的校正.

表1 二氧化硅溶胶的制备条件

样品	前驱体	表面活性剂	催化剂	陈化时间/day	温度/℃
G1	TEOS 100%	-	$\rm NH_4OH$	22	25
G4	TEOS 100%	Tx - 10 5%	NH ₄ OH	22	25
G14	TEOS 90% + PTES 10%	-	NH ₄ OH	19	25
G15	TEOS 90% + VTES 10%	-	NH ₄ OH	19	25
G16	TEOS 80% + MTES 20%	-	NH ₄ OH	19	25
G19	TEOS 90% + MTES 10%	-	$\rm NH_4OH$	12	25
G26	TEOS 90% + MTES 10%	-	NH ₄ OH	7	25
G29	TEOS 90% + VTES 10%	Tx - 10 ,10%	$\rm NH_4OH$	7	25
A25	TEOS 100%	Tx - 10 5%	NH ₄ OH	7	50
A28	TEOS 90% + PTES 10%	Tx - 10 ,10%	NH ₄ OH	7	50

4 结果和讨论

在胶体化学中^[4],构成胶粒的分子和原子的聚 集体称为胶核.由于分散胶核粒子很小,比表面积很 大,比表面自由焓很高,因此物系处于热力学不稳定 状态,小粒子能够自发地相互聚结成大粒子,大粒子 易于沉降而与分散介质分离,然而,根据吸附和漫散 双电层理论,也正是由于高的比表面自由焓,所以在 一定条件下,粒子也能自发地、选择性地吸附某种离 子,而形成相对稳定的溶剂化的双电层,因而保护了 相互碰撞的粒子而不发生聚结.胶核和它周围的双 电层(界面层)所组成的整体称为胶团.整个胶团是 电中性的.平均界面层厚度的测定对于了解胶体的 结构具有重要意义,然而用一般测试方法却是比较 困难的,SAXS则提供了一种方便而有效的测试手 段.

如果没有界面层的存在,则胶核和分散介质就 形成 SAXS 可测定的理想的两相体系;如上所述溶 胶界面层是必然存在的,它是溶胶在一定程度上得 以暂时稳定的主要原因之一,它的存在将减弱胶核 的 SAXS 散射强度(尤其是对高角区强度的影响较 大),因而导致体系成为非理想的偏离 Porod 定理的 体系,如图1中的曲线 I 所示,散射在高角区形成了 负偏离.应用(2)式拟合负偏离,结合(3)式即可求出 平均界面层厚度.如表2所示.

表 2 不同制备条件下二氧化硅溶胶的平均半径(nm)及平均界面厚度(nm)

样品	Porod 法平	Shull-Roess 法平均半径及界面厚度			多级斜线法平均半径及界面厚度		
	均界面厚度	胶团半径	胶核半径	界面厚度	胶团半径	胶核半径	界面厚度
G1	4.58	13.46	8.12	5.34	13.38	8.11	5.27
G4	3.21	18.17	14.82	3.35	19.99	17.02	2.97
G14	4.34	12.91	8.29	4.62	14.30	9.61	4.69
G15	4.03	13.20	8.84	4.36	12.79	8.10	4.69
G16	4.46	14.31	9.77	4.54	13.35	9.23	4.12
G19	4.52	13.40	8.94	4.46	14.80	9.76	5.04
G26	4.98	12.66	7.74	4.92	13.81	9.51	4.30
G29	5.23	14.52	9.01	5.51	17.69	12.62	5.07
A25	5.44	16.77	10.99	5.78	17.55	11.14	6.41
A28	5.50	17.00	11.15	5.85	16.84	11.24	5.60

在碱性催化条件下,前驱体的水解慢而缩聚则 相对较快,在成核生长的同时,新核还在不断地产 生,因而形成的溶胶是多分散的^[1].图1中的曲线 [是胶团的 Porod 曲线,曲线 [] 是校正负偏离后所得 胶核的无偏离的 Porod 曲线.胶团和胶核的半径分 布则可分别由图1中的曲线 [和曲线 [] 所对应的散 射强度而导出,具体导出方法有多种^[5],本文采用 Shull-Roess 方法^[6]和多级斜线法^[7].图2半径分布曲 线是采用 Shull-Roess 方法所得,其中曲线 [] 和曲线 [] 分别代表胶团和胶核的半径分布,由它们分别导 出胶团和胶核的平均半径^[5,7],二者相减即得平均界 面厚度.表2示出了由 Shull-Roess 法和多级斜线法 所得各个样品的平均胶团半径、胶核半径和界面厚 度,可以看出溶胶粒子处于纳米量级,这两种方法所

图 1 G1 胶团(Ⅰ)和胶核(Ⅱ)的 Porod 曲线

得平均界面厚度均与 Porod 法所得结果接近.这里 需注意的是同一样品的胶团和胶核的粒度分布应该 用同一方法计算.

图 2 G1 胶团(])和胶核(]])的粒度分布曲线

5 结 论

溶胶体系的 Porod 负偏离表明溶胶中界面层的存在.平均界面厚度可用拟合负偏离的方法求出,也可在基于负偏离校正前后的散射强度测定出胶团和 胶核半径分布的同时,求出它们的平均半径,然后相减即得平均界面厚度.SAXS 是测定溶胶界面层几何 尺度的一种有效方法.溶胶界面的化学成分及形成 机理有待进一步研究.

- [1] C.J. Brinker, G. W. Scherer., Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, CA, 1990).
- [2] Zhi-Hong Li, Ji-hong Sun, Jun-Ping Zhao, Dong Wu, Yu-Han Sun et al., Acta Physica Sinica A9(2000),775(in Chinese]李志宏、 孙继红、赵军平、吴东、孙予罕等物理学报 A9(2000),775].
- [3] T. Hashimoto , M. Fujimura , H. Kawai , Macromolecules , 13(1980), 1660.
- [4] Edited by Tianjin University, Physical Chemistry (Secondary Edition, Volume [] X Higher Education Press, Beijing, 1987), p. 363 (in Chinese]天津大学物理化学教研室编,物理化学(第二)

版 (下册) 高等教育出版社, 1987), p. 363].

- [5] Zhi-Hong Li, Dong Wu, Yu-Han Sun, Coal Conversion, 22Sup (1999),88(in Chinese)[李志宏、吴东、孙予罕,煤炭转化, 1999 22(增刊)88].
- [6] Zhao-Fu Meng, Theory and Application of Small Angle X-ray Scattering (Jilin Science and Technology Press, Changchun, 1996), p. 29 (in Chinese] 孟昭富,小角 X 射线散射理论及应用(吉林科学 技术出版社, 1996), p. 29].
- [7] Chang-lin Guo, Yue-hong Huang, *Journal of Inorganic Materials*, 61(1991)336(in Chinese] 郭常霖、黄月鸿,无机材料学报,6 (3)[1991)336].

LI ZHI-HONG GONG YAN-JUN WU DONG SUN YU-HAN[†]

(State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China)

WANG JUN LIU YI DONG BAO-ZHONG

(Laboratory of Synchrotron Radiation, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China) (Received 1 November 2000; revised manuscript received 7 December 2000)

ABSTRACT

The average thickness of the interface layer wrapped about sols usually is determined by fitting the Porod curve that shows a negative deviation from Porod's law. In this paper we show that it could also be determined by a new method that includes the following steps (1) determining the average radius R_1 of the sol particles including interface layer from the small angle X-ray scattering data in which shows negative deviation from Porod's law (2) determining the average radius R_2 of the sol particles not including the interface layer from the scattering data in which has been corrected the negative deviation from Porod's law (3) the difference ΔR between R_1 and R_2 , i.e. $\Delta R = R_1 - R_2$, is just the average thickness of the interface layer wrapped about sols. By using the above method, the average thickness of the interface layer wrapped about SiO₂ sols prepared under different conditions were determined.

Keywords : small angle X-ray scattering , sols , the average thickness of interface layer PACC : 6110 , 8270

^{*} Project supported by the National Natural Science Foundation (Grant No. 29625307 and No. 29973057) and the National Key Basic Research Special Foundation (Grant No. G20000480).

[†]Corresponding author ,Tel (0351)4049859 ;Fax (0351)4041153 ;E-mail :yhsun@sxicc.ac.cn