Pu, 体系的结构与势能函数

蒙大桥^{1 2}) 蒋 刚¹) 刘晓亚^{1 2}) 罗德礼^{1 2}) 张万箱²) 朱正和¹) ¹(四川大学原子分子物理研究所 成都 610065)

²(中国工程物理研究院 绵阳 621900) (2000年9月24日收到 2000年12月16日收到修改稿)

用相对论有效原子实势(RECP)和密度泛函(B3LYP)方法对 Pu_n(n = 2,3)体系的结构进行了优化 得到了 Pu₂和 Pu₃分子的几何构型分别为 $D_{\infty h}$, D_{3h} ,其基态分别为 13和 19重态.在 B3LYP/RECP 水平上得到 Pu₂分子的光谱常数 $\omega_e = 52.3845 \text{ cm}^{-1}$, $\omega_e \chi_e = 0.0201 \text{ cm}^{-1}$ 和 Pu₃分子的谐振频率($\nu_1 = 56.9007 \text{ cm}^{-1}$, $\nu_2 = 57.1816 \text{ cm}^{-1}$, $\nu_3 = 64.0785 \text{ cm}^{-1}$)等性质,并通过正规方程组和多体展式理论,得到了 Pu₂, Pu₃的分析势能函数.

关键词:Pu₂,Pu₃,分析势能函数 PACC:3120E,3130,3420,3520D

1 引 言

计算 Pu₂、Pu₃ 的结构、性质和导出它们势能函数 对了解 Pu 晶体的性质是非常必要和重要的.由于锕 系元素的同核双原子分子间存在 f-f 轨道的相互作 用 ,它们之间的金属键的理论计算具有重要意义 ,其 结构和性质的研究受到广泛关注 ,非相对论的 MS- X_a 和相对论有效原子实势(RECP ,relativistic effective core potential)方法已用于研究 U₂ 和 Np₂ 分子的电子状 态^[12] 并已得到较好的应用.

锕系元素不仅存在 σ_{π} 和 δ 对称性,还出现了 ϕ 轨道,而且相对论效应十分明显,作用机理比较复杂, 全电子计算需要大得几乎不可能的计算量.即使克服 了这些计算困难,一般的 Hartree-Fock 方程和有关的 波函数,由于未考虑相对论效应,也必将导致错误.鉴 于原子性质主要决定于价层电子 将固体物理学的有 效原子实理论,推广到分子的量子力学,形成了分子 的有效原子实势(ECP)及 RECP 理论.该理论采用 RECP 取代核与电子之间静电势能和核的正交效应, 并考虑轨道扩展和收缩的相对论效应,ECP 重新产生 价轨道的本征能量和形状.原子实和价电子轨道由 Cowan-Griffin Hartree-Fock 方程加相对论修正获得,考 虑了"mass-velocity '和'Darwin '项以及自旋-轨道耦合 效应^[3-5],这样,利用比全电子计算少得多的计算时 间 能恰当地说明相对论效应的重要性,应用 RECP 计算含重元素的分子(UO₂,PuO 等)的结构与性质已 取得较满意的结果⁶⁷¹,而应用于计算Pu₂,Pu₃等分 子团族还未见报道.

本文采用 Gaussian 98 程序^[8],在 Pu 原子 RECP 近似下,用 B3LYP(Becke 三参数交换函数与 Lee-Yang-Parr 相关函数组成的杂化密度泛函理论(DFT) 方法 对 Pu₂, Pu₃ 分子体系的结构和性质进行了理论 计算,得到了 Pu₂ 和 Pu₃ 分子的几何构型分别为 $D_{\infty h}$, D_{3h} ,其基态分别为 13 和 19 重态,并通过正规 方程组和多体展式理论^[9],得到了 Pu₂, Pu₃ 的分析势 能函数.这对于了解固体 Pu 中的 Pu 原子与 Pu 原子 之间的相互作用势具有重要的参考价值.

2 理论方法与计算结果

2.1 理论方法

密度泛函理论(density functional theory .DFT)方法 就是通过构造电子密度的泛函来模拟电子相关的一 种近似方法 将电子能量分成动能、电子-核吸引能和 Coulomb 排斥能以及交换-相关项几部分分别计算,即 电子的能量可分成

 $E = E^{T} + E^{V} + E^{J} + E^{xc}$, (1) 其中 E^{T} 为电子运动的动能 E^{V} 包括核与电子的吸引 势和核与核的排斥势 E^{J} 为电子与电子的排斥势 , E^{xc} 为交换相关能和电子与电子相互作用的其余部 分.除了核与核的排斥势外,每一项均可表示为电子 密度 ρ 的函数,如 E^{t} 可表示为

$$E^{J} = \frac{1}{2} \iint \rho (\mathbf{r}_{1}) \Delta r_{12} \int^{1} \rho (\mathbf{r}_{2}) d\mathbf{r}_{1} d\mathbf{r}_{2} , \quad (2)$$

 $E^{T} + E^{V} + E^{J}$ 与电荷分布 ρ 的经典能量相对应,其解 析表达式较容易写出,而 E^{xc} 是指反对称波函数的交 换能和单电子运动的动力学相关. Hohenberg 和 Kohrf^{10]}认为 E^{xc} 由电子密度所确定,通常可近似认为是 仅包括自旋密度 ρ 和其可能的梯度的积分,即

$$E^{XC}(\rho) = \int f(\rho_{\alpha}(\mathbf{r}), \rho_{\beta}(\mathbf{r}), \nabla \rho_{\alpha}(\mathbf{r}), \nabla \rho_{\beta}(\mathbf{r})) d^{3}\mathbf{r} ,$$
(3)

总的电子密度 ρ 为 α 自旋的密度 ρ_{α} 和 β 自旋的密度 ρ_{β} 之和.为了写出其具体的解析表达式 将 E^{xc} 分为交换和相关两个独立部分(分别对应于相同自旋和混合自旋相互作用):

 $E^{xc}(\rho) = E^{x}(\rho) + E^{c}(\rho),$ (4) 其中的三项均为电子密度的泛函, $E^{x}(\rho)$ 和 $E^{c}(\rho)$ 两项分别为交换泛函和相关泛函,均由仅与电子密 度 ρ 有关的局域泛函(local functionals)和与电子密 度 ρ 及其梯度 $\nabla \rho$ 有关的梯度修正泛函(gradient-corrected functionals)组成.1988 年 Becke 给出了基于局 域的交换泛函形式^[11]:

$$E_{\text{Becke88}}^{X} = E_{\text{LDA}}^{X} - \gamma \int \frac{\rho^{4/3} x^{2}}{(1 + 6\gamma \sinh^{-1} x)} d^{3} \mathbf{r} , (5)$$
$$E_{\text{LDA}}^{X} = -\frac{3}{2} \left(\frac{3}{4\pi}\right)^{1/3} \left[\rho^{4/3} d^{3} \mathbf{r} , (6)\right]$$

其中 ρ 为r的函数, $x = \rho^{-4/3} | \nabla \rho |$, γ 为被选择拟合 已知的惰性气体原子的交换能的参数,Becke 定义 其值为 0.0042 Hartree a.u.类似地,1991 年 Perdew 和 Wang 提出了一种相关泛函的形式:

$$E^{C} = \int \rho \varepsilon_{c} (r_{s} (\rho (\mathbf{r})), \zeta) d^{3}\mathbf{r} , \qquad (7)$$

其中

$$\begin{aligned} r_{s} &= \left[\frac{3}{4\pi\rho}\right]^{1/3}, \quad \zeta &= \frac{\rho_{\alpha} - \rho_{\beta}}{\rho_{\alpha} + \rho_{\beta}}, \\ \varepsilon_{c}(r_{s},\zeta) &= \varepsilon_{c}(\rho,\Omega) + a_{c}(r_{s})\frac{f(\zeta)}{f'(0)}(1-\zeta^{4}) \\ &+ \left[(\varepsilon_{c}(\rho,1) - \varepsilon_{c}(\rho,\Omega))\right]f(\zeta)\zeta^{4}, \\ f(\zeta) &= \frac{\left[(1+\zeta)^{4/3} + (1-\zeta)^{4/3} - 2\right]}{(2^{4/3} - 2)}, \end{aligned}$$

r_s 为密度参数 , ζ 为相关自旋极化. DFT 方法就是将 交换泛函和相关泛函联合起来进行计算 ,本文所用 的 B3LYP 方法即是将包含梯度修正的 Becke 交换泛 函和包含梯度修正的 Lee ,Yang 和 Parr 相关泛函联 系在一起 ,局域相关泛函按常规采用 Vosko ,Wilk 和 Nusain(VWN)局域自旋密度处理 ,得到 Becke 三参数 的泛函:

$$E_{\rm BJLYP}^{\rm XC} = E_{\rm LDA}^{\rm X} + c_0 (E_{\rm HF}^{\rm X} - E_{\rm LDA}^{\rm X}) + c_{\rm X} \Delta E_{\rm Becke88}^{\rm X} + E_{\rm VWN3}^{\rm C} + c_c (E_{\rm LYP}^{\rm C} - E_{\rm VWN3}^{\rm C}).$$
(8)

通过调节参数 c_0 , c_x 和 c_c 的值,可以优化控制交换 能和相关能修正,Becke 通过在 G1 理论基础上对第 一周期原子的原子化能、电离势、质子亲和能和原子 能量进行拟合,得到参数的值分别为 $c_0 = 0.20$, $c_x = 0.72$ 和 $c_c = 0.81$.根据(8)式的泛函形式,用类似于 自洽场方法(SCF)的迭代方式进行自洽的 DFT 计算.

2.2 计算结果

由于 Pu 原子的核外电子数较多,其基电子组态 为(Rn)5f⁶7s²,因而计算中采用 RECP 取代内层 78 个电子(1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶4d¹⁰4f⁴⁴5s²5p⁶5d¹⁰), 价电子层含 16 个电子(6s²6p⁶5f⁶7s²),应用文献[5] 给出的 RECP 和收缩价电子基函数(7s6p2d4f) (3s3p2d2f),见表 1.

表 1 Pu 的价电子 Gaussian 基函数(3s3p2d2f)

指数		收缩基函数	
s型轨道			
11.56	- 0.036486	0.017531	
2.487	1.615699	-0.702791	
1.799	- 3.638856	1.733968	
1.176	2.031471	- 1.090296	
0.359	0.853304	- 0.945060	
0.113		1.106266	
0.04			1.0
p型轨道			
2.580	0.200502	- 0.069709	
1.622	- 0.591226	0.219611	
0.7482	0.797473	- 0.357547	
0.2793	0.563555	- 0.428166	
0.100		0.793268	
0.037			1.0
d型轨道			
0.409	1.0		
0.152		1.0	
f型轨道			
4.857	0.206687		
2.031	0.469625		
0.815		0.421215	
0.302		0.172522	

取代内层 78 个电子的 Pu RECP 按下式拟合:

$$\begin{bmatrix} U_g(r) - Z_{core}(r) r \end{bmatrix} r^2 \quad l = 4,$$

 $\begin{bmatrix} U_l(r) - U(r) \end{bmatrix} r^2 \quad l = 0, 1, 2, 3,$ (9)
得到 Gaussian 型函数(见表 2).

$$d^k r^k \exp(-\alpha_k r^2). \qquad (10)$$

表 2	Pu RECP 的幂指数	k	,Gaussian	指数	α_k	和系数	d
-----	--------------	---	-----------	----	------------	-----	---

k	$lpha_k \qquad \qquad d_k$	
g轨道势		
0	1.1870180	- 0.2351718
1	320.1179395	- 45.4081287
2	107.2740348	- 476.8288295
2	29.6307950	- 197.0071237
2	9.9804742	- 56.9841048
2	3.5674691	- 19.1954418
2	1.1899211	- 0.9423357
s-g轨道势		
0	158.8492184	2.5916624
1	89.9329314	62.4462904
2	36.8569318	385.9249706
2	7.1893383	404.6175823
2	4.8242287	- 541.9641571
2	3.0576352	383.4766370
2	1.9204674	- 95.8282398
2	1.4002527	17.9027180
_{p-g} 轨道势		
0	205.3583344	1.8340376
1	73.8574796	64.7077751
2	26.4937731	280.8660049
2	4.9612440	385.3008049
2	3.6464185	- 769.1010536
2	2.8852656	517.2637286
2	1.6913216	- 34.2942762
2	1.1024245	2.9362540
d-g轨道势		
0	236.9374680	2.9040916
1	121.7063684	65.4380888
2	70.3224181	435.7288038
2	24.5731063	287.9883569
2	6.7775423	96.3047822
2	1.4529015	26.8450498
f-g轨道势		
0	274.1162206	3.9474354
1	131.2837669	52.9504481
2	143.5982730	467.0766447
2	49.6887665	454.3389567
2	14.9990763	189.3942401
2	4.2478349	21.1763500
2	1.5745337	- 1.8564639

文献 5]曾利用表 1 和表 2 的 RECP 和 DFT 理 论计算 PuF₆ 等得到了比较满意的结果.

1) Pu₂ 分子基态的势能函数和光谱常数

用 B3LYP 方法对 Pu₂ 分子的 1—13 重态进行了 优化 结果表明 13 重态的能量最低 ,为基态 ,平衡距 离为 $R_{PuPu} = 0.4537$ nm ,能量为 E = -0.85438 eV.采 用最小二乘法对基态进行拟合 ,势能函数形式为 Murrell-Sorbie 势能函数^[9,12]:

 $V = -D_{e}(1 + a_{1}\rho + a_{2}\rho^{2} + a_{3}\rho^{3})\exp(-a_{1}\rho),$ 其中 $\rho = R - R_{e}$, R 为核间距, R_{e} 为平衡核间距, D_{e} 为离解能, a_{1} , a_{2} , a_{3} 为参数,用正规方程拟合后 的值为 $D_{e} = 0.85438$ eV, $a_{1} = 10.0078$ nm⁻¹, $a_{2} = 285.11$ nm⁻², $a_{3} = 932.1$ nm⁻³.

图 1 是拟合的势能曲线 图中离散点为 ab initio

图 1 Pu₂ 分子的拟合势能曲线

计算点,实线为拟合出的势能曲线.由 Murrell-Sorbie 势能函数可求得光谱数据和力常数,其关系如下:

$$f_{2} = D_{e} \left(a_{1}^{2} - 2a_{2} \right),$$

$$f_{3} = 6D_{e} \left(a_{1}a_{2} - a_{3} - \frac{a_{1}^{3}}{3} \right),$$

$$g_{1} = D_{e} \left(a_{1}a_{2} - a_{3} - \frac{a_{1}^{3}}{3} \right),$$
(11)

 $f_4 = D_e a_1^4 - 6f_2 a_1^2 - 4f_3 a_1 , \qquad (11)$ 分别为一阶 三阶和四阶力学数 f 与光谱

 $f_2 f_3 f_4$ 分别为二阶、三阶和四阶力常数 f_i 与光谱 数据关系如下:

$$f_{2} = 4\pi^{2} m\omega_{e}^{2} C^{2} ,$$

$$f_{3} = -\frac{3f_{2}}{R_{e}} \left(1 + \frac{\alpha_{e} \omega_{e}}{6B_{e}^{2}}\right) ,$$

$$f_{4} = \frac{f_{2}}{R_{e}^{2}} \left[15 \left(1 + \frac{\alpha_{e} \omega_{e}}{6B_{e}^{2}}\right)^{2} - \frac{8\omega_{e} \chi_{e}}{B_{e}}\right] . \quad (12)$$

由(11)和(12)式,以及 D_e , a_1 , a_2 和 a_3 可计算 得到 f_2 , f_3 和 f_4 ,进一步得到光谱常数, Pu_2 分子的 光谱和力常数见表 3.

表 3 Pu₂ 分子的光谱和力常数

$R_{ m e}/{ m nm}$	$F_2/10^2$ aJ·nm ⁻²	$f_3/10^3 \text{ aJ} \cdot \text{nm}^{-3}$	$f_4/10^4$ aJ·nm ⁻⁴	$\omega_{\rm e}/{\rm cm}^{-1}$
0.4537	0.1583	-0.1166	0.2494	52.3845
$\omega_{\rm e} \chi_{\rm e}/{\rm cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	$\alpha_{\rm e}/10^{-6} {\rm ~cm^{-1}}$	$D_{\rm e}/{\rm eV}$	
0.0201	0.0034	6.8343	0.8544	

注 f_2 , ω_e 的值为 Gaussian 98 程序计算值.1 aJ = 10^{-18} J.

2) Pu, 分子基态的结构和力常数

重态的 *D*_{3h}结构能量最低 ,为基态 ,离解能为 2.3228 eV ,结果见表 4.其中只列出了 19 重态的三种构型.

D_{xh}, C_{2n}, D_{3h}三种结构进行了优化,结果表明 19

用 B3LYP 方法对 Pua 分子的 1-19 重态的

表 4 Pu₃ 分子构型优化结果

	$D_{\infty h}$	C_{2v} ($^{19}\mathrm{B_{1}}$)	D_{3h}
平衡结构	$R_{PuPu} = 0.3735 \text{ nm}$	$R_{\text{PuPu}} = 0.40618 \text{ nm}$	$R_{\rm PuPu} = 0.42878 \mathrm{nm}$
	\angle PuPuPu = 180.0°	\angle PuPuPu = 54.125°	$\angle PuPuPu = 60.0^{\circ}$
能量	-214.806859 a.u.	-215.2746248 a.u.	- 215.3141504a.u.
力常数 ^{a)}			f_{rr} (PuPu) = 7.02552 × 10 ⁻³
			f_{RR} (PuPu) = 7.02515 × 10 ⁻³
			$f_{rR} = -1.02481 \times 10^{-3}$, $f_{ra} = -9.61862 \times 10^{-4}$
			$f_{a lpha} = 7.05698 imes 10^{-3}$, $f_{R lpha} = -9.61811 imes 10^{-4}$
谐性频率			$\nu_1 = 56.9007 \text{ cm}^{-1} \nu_2 = 57.1816 \text{ cm}^{-1}$
			$\nu_3 = 64.0785 \text{ cm}^{-1}$

a) 力常数为内坐标下的力常数 ,单位为 a.u.

2.3 基态 Pu, 体系的多体项展式分析势能函数

为了方便地研究势能函数,根据势能面上稳定 结构的结构特征,本文采用优化内坐标.对于三体 项 取 C_{2v} 参考结构, $R_1^\circ = R_{PuPu}^\circ = 0.42878$ nm, $R_2^\circ = R_{PuPu}^\circ = 0.21439$ nm, $R_3^\circ = R_{PuPu}^\circ = -0.21439$ nm,故内 坐标 ρ_i 经下列变换而成为优化内坐标 S_i :

$$\begin{bmatrix} S_1 \\ S_2 \\ S_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{bmatrix}, \quad (13)$$

其中 $\rho_i = R_i - R_i^{\circ}$ (*i* = 1 2 3).

若基态原子能量设为能量零点 ,Pu₃ 的多体项 展式分析势能函数为^[9,12]

$$V(R_1, R_2, R_3) = V_{PuPu}^{(2)}(R_1) + V_{PuPu}^{(2)}(R_2) + V_{PuPu}^{(2)}(R_3) + V_{PuPu}^{(3)}(R_1, R_2, R_3), \quad (14)$$

其中 $V_{PuPu}^{(2)}(R_1)$, $V_{PuPu}^{(2)}(R_2)$ 和 $V_{PuPu}^{(2)}(R_3)$ 为 Pu_3 分子在 基态时的双体项势能函数,即 Pu_2 双原子分子势能 函数,其解析表达式在前面已做表述. $V_{PuPuPu}^{(3)}(R_1, R_2, R_3)$ 为三体项,采用形式为

 $V_{PuPuPu}^{(3)}(R_1, R_2, R_3) = P \cdot T$, (15) 其中 P 为优化内坐标 S 的多项式, T 为量程函数, 本文所采用的形式为

$$P = C_0 + C_1 S_1 + C_2 S_2 + C_3 S_2^2 + C_4 S_3^2$$

+ $C_5 S_1 S_2 + C_6 S_3^4 + C_7 S_1^2 + C_8 S_1 (S_2^2 + S_3^2) + C_9 S_2 S_3^2$, (16)
$$T = [1 - \tanh(\gamma_1 S_1/2)] 1 - \tanh(\gamma_2 S_2/2)]$$

 $\cdot [1 - \tanh(\gamma_3 S_3/2)].$ (17)

这样,在(14)式中有10个线性系数 C_i 和三个非线性系数 γ_i .对全势能表面进行非线性优化,确定出三个非线性系数,而7个线性系数 C_i 由7个已知条件确定,所确定的分析势能函数(14)式的参数见表5.

表 5 分析势能函数的三体项参数

C_0	4.978847×10^{4}	C_1	-1.542800×10^4	C_2	-2.222434×10^{5}
C_3	2.305432×10^3	C_4	2.254910×10^3	C_5	2.518999×10^3
C_6	$-\ 1.71806\times 10^1$	C_7	1.55941×10^3	C_8	3.775089×10^{1}
C_9	$-\ 3.20104\times10^2$				
	$\gamma_1 = 1.65$		$\gamma_2 = 1.65$		$\gamma_3 = 1.65$

3 结果与讨论

图 2 和图 3 是根据非线性优化得到的分析势能 函数(14)式所绘制的等值势能图.其中 图 2 是固定 ∠PuPuPu = 60.0°时,表现 Pu—Pu 键和 Pu—Pu 键伸 缩振动的等值势能图.从图 2 中可以准确地分析出

图 2 Pu₃(γ_{1 2 3} = 1.65)分子等值势能图 曲线 1 能量为 - 2.32 eV 曲线 2 能量为 - 2.20 eV,其余依次为 - 2.00, - 1.50,-0.90,-0.80,-0.50 eV

图 3 Pu₃(固定 R_{PuPu} = 0.42878 nm)分子的等值势能图 曲线 1 能量为 – 2.32 eV,曲线 2 能量为 – 2.3 eV,其余依 次为 – 2.2, – 2.0, – 1.94, – 1.9, – 1.7 eV

Pu₃ 分子的平衡结构为键长 *R*_{PuPu} = 0.42878 nm, 键 角∠PuPuPu = 60.0°,在该平衡结构下准确地再现了 离解能 $D_e = 2.3228$ eV.而且从图 2 可知,两个等价 的通道 $Pu + Pu_2 \rightarrow Pu_3$ 上没有鞍点存在,这表明当任 何一个 Pu 原子向 Pu_2 分子接近时都表现为相同的 无阈能反应.同时,也充分体现了 Pu_3 分子的 Pu 原 子与 Pu 原子交换对称性.

图 3 是 Pu₃ 分子的其中两个 Pu 原子固定在 X 轴上,Pu—Pu 的键长固定为 $R_{PuPu} = 0.42878$ nm,让 另外一个 Pu 原子绕固定的两个 Pu 原子旋转时的等 值势能图.图中已清晰地再现了 Pu₃ 分子的 D_{3h} 构 型的平衡结构,同时,从图中可以看出存在两个等价 的线性鞍点($X = \pm 0.64$ nm,Y = 0.0 nm),分析鞍点 附近的等值势能线,得到鞍点的能量为 – 1.935 eV, 这说明 Pu 原子绕 Pu—Pu 旋转时,Pu 要发生内迁移 需翻越 0.3878 eV 的能垒.

4 结 论

用 B3LYP 密度泛函方法对 Pu₂ 分子的 1—13 重 态进行了计算,结果表明 Pu₂ 分子的 13 重态为基 态,符合能量最低原理,并获得了其光谱数据为 ω_e = 52.3845 cm⁻¹和 $\omega_e \chi_e = 0.0201$ cm⁻¹.同时也对 Pu₃ 分子的 1—19 重态进行了优化计算,得到其基态 为 19 重态(D_{3h} 构型),并计算得到 Pu₃ 分子的谐振 频率为 $\nu_1 = 56.9007$ cm⁻¹, $\nu_2 = 57.1816$ cm⁻¹, $\nu_3 = 64.0785$ cm⁻¹.利用多体展式理论获得了 Pu₃ 分子的 分析势能函数.这些研究为 Pu₃ 体系的分子反应动 力学以及 Pu 金属的热力学计算提供了数据.

- [1] B.E.Bursten, G.A.Ozin, Inorg. Chem., 23(1984), 2910.
- [2] M.Pepper, B. E. Bursten, J. Am. Chem. Soc., 111(1990), 7803.
- [3] P.J. Hay, W.R. Wadt, J. Chem. Phys., 71(1979), 1767.
- [4] P.J.Hay, J. Chem. Phys., 79(1983) 5469.
- [5] P.J. Hay , R.L. Martin , J. Chem. Phys. , 109(1998) 3875.
- [6] H.Y.Wang et al., Acta Physica Sinica, 48(1999), 2215(in Chinese J 王红艳等物理学报 48(1999), 2215].
- [7] T. Gao et al., Acta Physica Sinica, 48(1999), 2222(in Chinese) [高 涛等物理学报 48(1999), 2222].
- [8] M.J.Frisch, G.W.Truucks et al., Gaussian 98 (Rev. A.9) 1998,

Gaussian , Inc. , Pittsburgh PA.

- [9] Z.H. Zhu, H.G. Yu, Molecular Structure and Molecular Potential Energy Function(Science Press, Beijing, 1997) in Chinese [朱正 和、俞华根,分子结构与分子势能函数(科学出版社,北京, 1997)].
- [10] P. Hohenberg, W. Kohn, Phys. Rev. ,136 (1964), B864.
- [11] A.D. Becke, Phys. Rev., A38 (1988), 3098.
- [12] J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley, A. J. C. Varandas, Molecular Potential Energy Functions (Wiley, New York, 1984).

STRUCTURES AND POTENTIAL ENERGY FUNCTIONS OF Pu₃ MOLECULE

MENG DA-QIAO^{1 (2)} JIANG GANG¹⁾ LIU XIAO-YA^{1 (2)} LUO DE-LI^{1 (2)} ZHANG WAN-XIANG²⁾ ZHU ZHENG-HE^{1)}

¹) (Institute of Atomic and Molecular Physics , Sichuan University , Chengdu 610065 , China)

²) (China Academy of Engineering Physics , Mianyang 621900 , China)

(Received 24 September 2000 ; revised manuscript received 16 December 2000)

ABSTRACT

Density functional (B3LYP) method with relativistic effective core potential (RECP) has been used to optimize the structures of Pu₂ and Pu₃ molecules. The results show that the ground states of Pu₂ and Pu₃ molecules are of $D_{\infty h}$ and D_{3h} symmetry, and of 13 and 19 fold, respectively. The spectral constants of Pu₂, $\omega_e = 52.3845$ cm⁻¹ and $\omega_e \chi_e = 0.0201$ cm⁻¹, and the harmonic frequencies of Pu₃, $\nu_1 = 56.9007$ cm⁻¹, $\nu_2 = 57.1816$ cm⁻¹ and $\nu_3 = 64.0785$ cm⁻¹, have also been obtained on the B3LYP/RECP level. The potential energy functions of Pu₂ and Pu₃ have been derived, for the first time so far as we know from normal equation fitting and the many-body expansion theory.

Keywords : Pu_2 , Pu_3 , potential energy function PACC : 3120E , 3130 , 3420 , 3520D