薄膜电致发光器件电子能量的空间分布*

邓朝勇 赵 辉 王永生

(北方交通大学光电子技术研究所,信息存储、显示与材料开放实验室,北京 100044)(2000年11月24日收到2001年1月12日收到修改稿)

在对 ZnS 导带结构进行多项式拟合的基础上,利用解析方法,对 ZnS 型薄膜电致发光器件中的电子输运过程进行了 Monte Carlo 模拟,研究了夹层结构和分层优化结构薄膜电致发光器件发光层中电子能量的空间分布,得出了两种不同空间分布曲线,即夹层结构中的 n 形分布和分层优化结构中的 U 形分布,并分析了导致这种不同分布的原因是由于电子在发光层中输运过程的初始能量不同.

关键词:Monte Carlo 模拟,电子能量,空间分布,分层优化结构 PACC:7860,7220

1 引 言

20世纪80年代以来,薄膜电致发光显示技术 的研究取得了很大进展.多种尺寸和分辨率的ZnS: Mn薄膜电致发光显示器件已投入商业化应用^[1].通 常的薄膜电致发光器件(TFELD)采用夹层结构,即 在两层绝缘层之间夹一发光层.在交流驱动的条件 下,将在发光层中形成一个大的电场区(其典型值为 1—3MV/cm).绝缘层与发光层界面处发射的电子, 由于在电场辅助下的隧穿效应,注入到发光层的导 带中,然后在电场作用下被加速,获得足够大的能 量,以碰撞激发发光中心,从而实现发光.在这种器 件中,电子加速、碰撞激发和发光都发生在同一层即 发光层中.于是,发光层需要同时满足以下几个条 件.好的加速特性;发光中心的高溶解度和高的发光 效率.然而在实际中,通过选择和优化发光层来同时 满足这几个条件非常困难.

为了解决这个问题,徐叙 等人曾提出了薄膜 电致发光器件的一种新的器件结构,即分层优化结 构^[2,3].在这种结构中,夹层结构中的绝缘层被一系 列的电子加速层所代替.从电极处发射的电子,在这 些加速层中被加速,获得足够高的能量,然后进入发 光层,碰撞激发发光中心,实现发光.这种加速过程 和发光过程的分离,使我们能够独立地对各层进行 分层优化.已经证明,对几种不同基质的发光中心, 在这种分层优化结构中,无论是电子能量、发光亮 度,还是发光效率,都有不同程度的提高⁴⁻⁻⁶¹.另外, 有几种在夹层结构的器件中被认为不发光的发光 层,在分层优化结构中也实现了发光^[71].

在以上两种器件结构中,电子在发光层中的输 运过程都是最重要的,因为它决定了电子在碰撞激 发发光中心前的能量.为了提高器件性能,对电子高 场输运过程的深入了解很重要.本文对这两种器件 结构的发光层中电子能量的空间分布进行了研究. 利用 Monte Carlo 方法,对发光层(以 ZnS 为例)中的 电子输运过程进行了模拟,并对电子在发光层中不 同位置的平均能量进行了计算.在夹层结构中,电子 在发光层中央附近的能量比在电子发射界面(即发 光层与绝缘层界面)附近高.从而得出电子平均能量 在空间上呈"n"形分布.与之相反的是,在分层优化 结构中,电子平均能量在发光层中的空间分布却呈 "U"形分布,这是因为电子在进入发光层前已经具 有很高的初始能量.

2 Monte Carlo 模拟

Monte Carlo 方法^[8]是一种对具有多自由度系统的计算机模拟方法.它是实验数学的一个分支,是通过随机变量的统计实验和随机模拟来求解物理及工

^{*} 国家自然科学基金(批准号:19874001,19974002和59982001)资助的课题.

程技术等方面问题的数值方法. Monte Carlo 方法已 经被广泛用于模拟固体材料中的电输运过程. 这种 方法在过去的 10 年间也被用于研究 ZnS 型薄膜电 致发光器件的物理机理^[3—15].

薄膜电致发光器件中,电子在发光层中的输运 过程是电子被电场加速与被各种散射机理散射相互 制约的过程.这些散射机理包括声学声子散射、极化 光学声子散射、电离杂质散射、谷间散射、带电中心 散射及其他缺陷的散射.对于一个电子,其被电场加 速与被各种散射机理散射这两个过程交替出现,分 别称之为自由飞行过程和散射过程^[9].

设初始时刻电子的波矢为 k₀,时刻 t 电子的波 矢为 k(t),于是 ,在外加电场作用下 ,电子在进行自 由飞行过程中 ,电子波矢随时间 t 的变化可表示为

$$k(t) = k_0 + Ft,$$

其中 F 为电子所受的电场力.电子在运动过程中被 某种散射机理散射可能在任何时刻发生,所以散射 为一个随机事件.自由飞行时间 t_e 为一个随机数, 其概率分布由各种散射机理的散射速率之和唯一 确定:

$$t_{c} = -\frac{1}{\Gamma} \ln(r_{1})$$
 ,

其中 上 为所考虑的各种散射机理散射速率之和 ,r₁ 为由计算机产生的在[0,1]上的随机数

自由飞行结束后,电子将在 t_e 时刻开始散射过 程,至于发生哪一种类型的散射,也是由一个随机数 r₂来确定,其概率分布由不同散射机理散射速率的 相对大小唯一确定.设共有 n 种类型的散射机理,发 生第 i 种散射的概率为 W_i,则在一次散射中,发生第

m 种散射的概率为 $W_m / \sum_{i=1}^n W_i$. 当 r_2 满足

 $\left(\sum_{i=1}^{m-1} W_i\right) / \left(\sum_{i=1}^n W_i\right) < r_2 < \left(\sum_{i}^m W_i\right) / \left(\sum_{i=1}^n W_i\right)$ 时,可以判断发生的是第 *m* 种散射.

一旦确定了散射机理,就可以利用这一散射机 理的物理规律和散射的初态(即自由飞行的末态)来 确定散射的末态,这一末态作为下一次自由飞行的 初态而重复上述过程,于是,便可实现电子在发光层 中整个输运过程的跟踪模拟.

根据所采用的描述 ZnS 导带结构的模型不同, 对 ZnS 型电致发光器件的 Monte Carlo 模拟可以分为 两类:一类是解析能带模型,它把 ZnS 导带描述成为 抛物^{10,11}或非抛物^{12,13}形式;另一类是全导带模 型^[14—17],它是根据经验赝势法(empirical pseudopotential method)得出的.这两种模型在模拟过程中都分 别存在不足,如精度差、运算速度慢、难以开发应用 软件等.本文把两类模型结合起来,先对用经验赝势 法计算出的全导带结构进行多项式拟合,在此基础 上应用解析方法进行模拟.这种处理方法已经被成 功地应用于 Sf^{18,19}1和 GaAs^[20]的模拟中,并证明了这 种方法不但具有全导带模型的精度,并由于其能带 结构仍保持解析,与其他解析能带模型一样,具有很 快的运算速度^[21].

本文在模拟中所考虑的散射机理包括声学声子 散射、极化光学声子散射、谷间散射和空间电荷散 射.用 Monte Carlo 方法进行模拟的细节及在非抛物 能带模型中对这些散射机理的处理已有报道^[22-25]. 模拟中我们利用新的能带模型得出的态密度,对以 上几种散射机理的散射速率重新进行了计算,而且 在模拟中还考虑了带间碰撞离化,并将这一过程作 为一种附加的散射机理^[9],计算了其带间碰撞离化 速率.带间碰撞离化速率的计算在文献 26,27]中也 有报道.模拟中对每一个电子的位置,即到发光层界 面处的距离进行记录,这些信息使我们能够得到电 子能量在发光层中的空间分布.

3 夹层结构

在夹层结构中,电子从发光层与绝缘层之间的 界面处注入发光层.因为这种注入是一种在电场辅 助下的隧穿过程,并且电子在隧穿前的能量可以忽 略,于是电子隧穿后的能量也被认为很小,亦即电子 在发光层中输运的初始能量非常低.这些电子在电 场作用下被加速,向阳极界面方向运动.由于声子的 散射速率随电子能量的增加而增大,那么在电子加 速过程中,随电子能量的不断增加,加速作用受到各 种散射机理的影响就变得越来越严重,最终电场对 电子的加速作用与各种散射机理对电子加速的制约 作用将达到平衡,电子能量将保持不变.

以上的分析与本文的模拟结果一致,如图1所 示,在发光层中,电子的平均能量与其到界面处的距 离 z间呈 n 形曲线变化.在本文的模拟中,发光层厚 度取 400nm,电场强度在1—4MV/cm之间,这是薄膜 电致发光器件操作电场的典型范围.器件由交流电 压驱动,在一个周期内,电子在前半个周期由一个界 面向另一个界面运动,在后半个周期中则作相反方 由图 1 可以看出 ; 加速区 "存在于两个界面附近 在这个加速区内 ,电子由很低的初始能量被加速 ,直至稳态.这个加速区域的长度随电场强度的增加而增加.

图1 夹层结构薄膜电致发光器件发光层中电子能量的空间 分布

加速层的存在以及本文对长度的计算与人们对 这类器件中"死层"现象的实验结论非常一致.在这 种结构的薄膜电致发光器件中,发光层界面附近部 分的发光非常弱,于是发光层的这个部分被称为"死 层^{128]},它的厚度约为 30nm^[29].根据本文的模拟,电 子加速的长度约为 60—80nm,在这个区域的前半部 分,电子能量增加得较快,然后在这个区域末端附近 将达到稳态.在小于 40—50nm 的长度范围内,我们 认为电子的能量还不够高,不足以碰撞激发发光中 心发光.另外,由于在绝缘层与发光层之间的晶格常 数不匹配,与发光层中央部分相比,发光层在界面附 近的结晶状态通常比较差.这个因素在本文的模拟 中未予考虑,但它的存在可能会削弱界面处电子的 能量,使得"死层"现象变得更加显著.

4 分层优化结构

在分层优化结构中,电子在进入发光层之前,先 在电子加速层中被加速.因此我们可以为电子加速 层选择合适的材料,设计适当的结构参数,电子在发 光层中输运的初始能量不再像在夹层结构中那样 低,相反,而是很高.同时,这个初始能量也决定于操 作的具体条件.在本文的模拟中取了几个不同的初 始能量,并计算了在发光层中不同位置处电子的平 均能量,计算结果如图2所示.与夹层结构中电子平 均能量在空间的"n"形分布(如图1所示)不同,在分 层优化结构中,电子平均能量的空间分布呈"U"形 分布.在发光层的中央部分,由于电子通过电场加速 所获得的能量与被各种散射机理散射所损失的能量 达到平衡,电子能量达到稳态.在电子由界面处向发 光层中央运动的过程中,电子将损失它在加速层中 加速所获得的"多余"能量.比较图2与图1,容易看 出,在夹层结构中所固有的所谓"死层"现象,在分层 优化结构中并不存在.相反,电子在这种结构的发光 层中,在人们所谓的"死层"部分却具有更高的能量.

图 2 分层优化结构薄膜电致发光器件发光层中电子能量的 空间分布

5 结 论

本文通过 Monte Carlo 模拟,对两类结构不同的 电致发光器件电子能量的空间分布进行了研究.在 夹层结构中获得了在一些典型驱动电场下,电子平 均能量在空间的"n"形分布曲线.这一结果与人们以 前对这类器件中"死层"现象的研究结果一致.本文 研究结果表明,夹层结构薄膜电致发光器件中"死 层"现象的形成,并不仅仅与发光层的界面附近晶格 的结晶状态较差有关,还取决于电子在这个区域内 的瞬态加速特性,说明了该现象是这类器件所固有 的、本征性的.在分层优化结构中还获得了电子平均 能量在空间的"U"形分布曲线.并证明这一结果在 这种结构中是合理的,因为在这种结构中的电子在 进入发光层之前,已经被一系列电子加速,具有了很 高的初始能量.

- [2] X.R. Xu, G. Lei, M. Y. Shen, G. Z. Zhao, J. Cryst. Grow., 101 (1990),1004.
- [3] X.R.Xu, Z.D.Lou, H.Zhao, C.X.Xu, X.L.Xu, Proc. Seventh International Symposium on Physics and Chemistry of Luminescent Material Celectrochem. Soc.), p. 338–345.
- [4] X. R. Xu, G. Lei, Z. Xu, J. Cryst. Grow. ,117(1992),935.
- [5] G. Lei Z. Xu X. R. Xu J. Lumi. 48&49(1991) 881.
- [6] C.X. Xu, Z. Xu, Z. Lou, X. R. Xu, Solid State Commun., 109 (1999),183.
- [7] X. L. Xu Z. Xu Y. B. Hou Y. M. Su X. R. Xu X. W. Wang W. S. Tong *Appl. Phys. Lett.* **77** (2000) 672.
- [8] C. Jacoboni , P. Lugli , The Monte Carlo Method for Semiconductor Device Simulation (Springer-Verlag Wien , New York , 1989).
- [9] H. Zhao et al., Acta Physica Sinica ,49(2000),954(in Chinese)
 [赵 辉等 物理学报 49(2000),954].
- [10] R. Mach, G. O. Muller, J. Cryst. Grow., 101(1990), 967.
- [11] H.J.Fitting , J. Cryst. Grow. ,101(1990) 876.
- [12] K. Bhattacharyya ,S. M. Goodnick ,J. F. Wager , J. Appl. Phys. ,73 (1993) 3390.
- [13] J.Fogarty ,W.Kong ,R. Solanki , Solid State Electronics ,38(1995), 653.
- [14] S. M. Goodnick , M. Duer , S. Pennathur , Inorganic and Organic Electroluminescence (World Scientific Singapore ,1996), p. 13.
- [15] M. Duer S. M. Goodnick , S. Pennathur , J. F. Wager , M. Reigrotzki , R. Redmer , J. Appl. Phys. 83 (1998) 3176.
- [16] E.Bellotti ,K. Brennan ,R. Wang ,P. P. Ruden , J. Appl. Phys. ,83 (1998) 4765.

- [17] I. Lee ,S. Pennathur ,S. M. Goodnick ,J. F. Wager , J. Korean Phys. Soc. 31 (1997) 517.
- [18] R. Brunetti, C. Jacoboni, F. Venturi, E. Sangiorgi, B. Ricco, Solid State Electronics 32 (1989), 1663.
- [19] X. Wang, V. Chandramouli, C. M. Maziar, A. F. Tasch, J. Appl. Phys. 73 (1993) 3339.
- [20] O. Mouton, J. L. Thobel, R. Fauquembergue, J. Appl. Phys. ,81 (1991),3160.
- [21] H.Zhao, D. W. He, Y. S. Wang, X. R. Xu, Acta Physica Sinica A9 (2000), 1867 (in Chinese] 赵 辉、何大伟、王永生、徐叙 ,物理学报 A9 (2000), 1867].
- [22] H.Zhao, Y. S. Wang, Z. Xu, X. R. Xu, J. Phys. : Cond. Matt., 11 (1999) 2145.
- [23] H.Zhao, Y.S. Wang, Z. Xu, X. R. Xu, Semicond. Sci. Technol., 14 (1999), 1098.
- [24] H.Zhao, Y. S. Wang, Z. Xu, X. R. Xu, Acta Physica Polonica, A96 (1999) 475.
- [25] H. Zhao, Y. S. Wang, Z. Xu, X. R. Xu, Science in China, E42 (1999) 282.
- [26] M. Reigrotzki, K. F. Brennan, R. Wang, P. P. Ruden, J. Appl. Phys. 52 (1995),1456.
- [27] M. Reigrotzki, R. Redmer, I. Lee, S. S. Pennathur, M. Duer, J. F. Wager, S. M. Goodnick, P. Vogl, H. Eckstein, W. Schattke, J. Appl. Phys. 80 (1996) 5054.
- [28] Y. A. Ono , Electroluminescent Displays (World Scientific , Singapore ,1995) p. 23.
- [29] H. Sasakura, H. Kobayashi, S. Tanaka, J. Appl. Phys. 52 (1981), 6901.

SPATIAL DISTRIBUTION OF ELECTRON ENERGY IN THIN FILM ELECTROLUMINESCENT DEVICES*

DENG CHAO-YONG ZHAO HUI WANG YONG-SHENG

 (Institute of Optoelectronic Technology ,Laboratory of Materials for Information Storage and Display , Northern Jiaotong University ,Beijing 100044 ,China)
 (Received 24 November 2000 ; revised manuscript received 12 January 2001)

ABSTRACT

We adopted an analytical approach based on fitting of the full band structure of ZnS by polynomials. We studied the electron transport process in phosphor layer of thin-film electroluminescent divices by Monte Carlo Simulation. Two kinds of spatial distributions of electron energy are obtained in phosphor layers of the sandwich structure and the layered optimization structure and the explanation about it is also given.

Keywords : Mont Carlo simulation , electron energy , spatial distribution , layered optimization structure PACC : 7860 , 7220

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 19874001, 19974002 and 59982001).