聚偏氟乙烯β相全反式结构链的第一性原理计算*

李吉超 王春雷 钟维烈 薛旭艳 王渊旭

(山东大学物理系,济南 250100)

(2001年7月7日收到;2001年9月15日收到修改稿)

用紧束缚的 Hartree – Fock 自洽场方法对聚偏氟乙烯 (PVDF) β 相的全反式结构链进行了第一性原理计算.在结构方面,计算得出相邻 F原子对平均距离为 0.264nm 相邻 H原子对平均距离为 0.255nm 和 F原子相连的 C原子的平均距离为 0.257nm.电偶极矩方面,计算得出单体的平均电偶极矩为 3.98×10⁻³⁰ C·n(三个单体的链) λ .40×10⁻³⁰ C·n(六个单体的链) λ .44×10⁻³⁰ C·n(十一个单体的链).结构和电偶极矩的计算值与实验值基本符合.最后预测了全反式链的振动模式.

关键词:聚偏氟乙烯 β 相全反式结构链, Hartree-Fock 自洽场方法 PACC: 3130, 6100

1.引 言

自从 Kawa^[1] 报道了取向后的聚偏氟乙烯 (PVDF) 材料有很强的压电性之后,人们又发现了 PVDF 薄膜的热释电性^[2,3].由于 PVDF 是由晶态和 非晶态两部分组成,而且有不同的晶型,很难确定其 晶体结构;另外,由于压电性和热释电性都是在直流 电场处理后才得到的,所以早期人们认为 PVDF 是一 种驻极体.20 世纪70 年代末期通过 X 射线、红外谱线 以及电滞回线才被证实 PVDF 是一种铁电体^[4].

和其他无机材料相比,PVDF聚合物材料质轻、 价廉、易于加工成大面积薄膜,特别是经电子照射后 电致伸缩系数由照射前的 – 2.1— – 2.5m⁴/C² 增加 到 Q = -13.5m⁴/C²,这对于促动器、传感器,换能器 有强大的吸引力^[5].因而 PVDF 材料获得广泛应用, 并且被认为有广泛的应用前景.近年来广大学者对 PVDF 材料作了详细研究.实验上观察到 PVDF 有 4 种晶型,分别为 α 相, β 相, γ 相和 δ 相^[46]. Lovinger 预测了另外 5 种稳定结构^[7],但实验上一直没观察 到. β 相的 PVDF 极性最强,是一种铁电体,它和三氟 乙烯的共聚物是由链-((一CH₂—CF₂-),-(一 CF₂—CHF),-,-)组成,这条链在 C—C 键的控制 下,F原子对以 0.26nm 周期排列.铁电相全反式结 构的链以准六角密排的形式平行排列,属于正角晶 系,空间点群为 mm2¹⁸¹.取向后的样品用粉末衍射 的方法得到它的精确的晶格常量 $c = 0.2560 \pm 1000$ 0.0001nm^[9]. 单体--(CH₂---CF₂)----的电偶极矩为 CH,和 CF,的贡献之和,实验上对总体积中有二分 之一为β相的 PVDF 进行了电滞回线测量,得到最 大剩余极化为 0.05-0.06C/m^{2[4 6]}.为了解释 β相 PVDF 的极化,建立了许多模型,其中"六阱势"模型 已被广泛接受[10],该模型假设分子晶体中存在一个 具有准六度对称的晶格场,认为这是形成稳定自发 极化的原因,分子链在势场中的旋转以60°或180°为 增量 势阱所在的位置即为稳定的自发极化方向.但 徐敬等^{11]}对偏氟乙烯分子链旋转时势能的变化做 了计算,计算得到的势能曲线有4个很高的势垒,这 一计算结果与" 六阱势 "模型所预言的势能变化存在 准六度对称性出现了矛盾.因此有必要对β相 PVDF 的铁电性、自发极化 极化反转做进一步研究.

基于以上原因,我们用 Gaussian98W 程序中的 Hartree-Fock 自洽场方法对 PVDF 全反式结构的链在 结构、电偶极矩和振动频率方面做了一些计算,本文 报道计算结果并进行了讨论.

2.方 法

我们选取了 Gassian98W 程序中的紧束缚的 Hartree-Fock 自洽场方法 近年来用 Gassian98W 程序

^{*} 国家重点基础研究项目(批准号:G1998061408)资助的课题.

对聚合物和共聚物的研究取得一定的进展,例如刘 德胜等¹²¹对 PA 和 PPA 三嵌段共聚物的研究,得出 了带电态和中性态结构和电荷分布不同,Hartree-Fock 自洽场方法是用电子互斥能平均化对称化的方 法来求轨道的具体波函数,略去核的移动不计,多电 子体系的哈密顿算符,并可写成如下形式;

$$\hat{H} = -\frac{\hbar^2}{2m} \sum_{i} \nabla_i^2 - \sum_{i} \frac{Ze^2}{r_i} + \sum_{i < j} \frac{e^2}{r_{ij}}, \quad (1)$$

式中 $\frac{e^{-}}{r_{ij}}$ 为第*i*个电子和第*j*个电子之间的瞬间互斥 作用能.如果第*j*个电子的波函数 Ψ_{j} 是已知的,则 第*j*个电子在空间中的概率分布就是 $|\Psi_{j}|^{2}$,而 $-e|\Psi_{j}|^{2}$ 就是第*j*个电子在空间的电荷分布,相当 于电子云.电子云已不是瞬时的单个电子的空间分 布电荷图像,而是单个电子的电荷在空间的平均分 布图像.在 d₇空间体积元内,第*j*个电子的电子云 与第*i*个电子的互斥作用为 $\frac{e^{2}|\Psi_{j}|^{2}}{r_{ij}}$ d₇,而第*j*个电 子的全部电子云与第*i*个电子的互斥作用能则应是 对第*j*个电子云的全部空间积分,即

$$\nu_{ij} = e^2 \int \frac{|\Psi_j|^2}{r_{ij}} \mathrm{d}\tau_j , \qquad (2)$$

则这种互斥作用能已不是瞬时的互斥作用能,而是 对 *j* 电子的空间位置平均化后的结果,或者说,是第 *j* 个电子的平均电场对第 *i* 个电子互斥作用能.在考 虑 Pauli 原理的基础上,将 Slater 行列式型的波函数 代入体系的哈密顿本征方程中,利用原子轨道要正 交归一化的限制条件应用 Lagrange 不定乘子法求变 分积分函数的极值时,可得出 Hartree-Fock 方程来, 其哈密顿算符如下:

$$\hat{H}_{i}(1) = -\frac{\hbar^{2}}{2m} \nabla^{2} - \frac{Ze^{2}}{r_{1}} + \sum [2\hat{J}_{j}(1) - \hat{K}_{j}(1)],$$
(3)

式中库仑算符 $\hat{J}_{i}(1)$ 和交换算符 $\hat{K}_{i}(1)$ 定义如下:

$$\hat{J}(1) = \int \Psi_j^*(2) \frac{e^2}{r_{12}} \Psi_j(2) d\tau_2 , \qquad (4)$$

$$\hat{K}_{j}(1)\Psi_{j}(1) = \left[\int \Psi_{j}^{*}(2)\frac{e^{2}}{r_{12}}\Psi_{i}(2)\mathrm{d}\tau_{2}\right]\Psi_{j}(1).$$
(5)

我们选取了 STO – 3G 型轨道波函数为基函数, Slater 型轨道(STO)形式为 $\chi_{nml} = r^{n-1}e^{-\vartheta}Y_{lm}(\theta, \phi)$. Gauss 型轨道(GTO)形式为 $\chi_{nml} = X^l Y^m Z^n e^{-\alpha r^2}$.在计 算时两种轨道各有其优缺点,Gaussian98W 提供的 STO-3G 型波基函数是用 Gauss 型波函数近似 Slater 型轨道所得到的轨道波函数.我们对单体个数不同 的 PVDF 的全反式结构链做了结构优化和频率计算 以及电偶极矩的计算.

3. 结果与讨论

我们首先对链的结构做了计算(以下表示中 F_n 就是图中的 nF ,n 为 F 原子的编号 ,对 C ,H 原子也 同样适用).

图1 3个单体构成的链

图 1 为 3 个单体构成的链的结构,我们首先对 其结构做了优化,从输出文件中的 distance martrix 中 可得到以下数据(单位为 nm).

F原子对的距离:9F4F = 0.2641257,4F16F = 0.2615891,10F3F = 0.2641257,3F17F = 0.2615891;

C 原子的距离:5C1C = 0.2532138,1C12C = 0.2557815,2C11C = 0.2511637,11C15C = 0.2530661; H原子对的距离:7H13H = 0.2506986,13H20H

= 0.256057 6H14H = 0.2506986 AH19H = 0.256057.

图 2 为 6 个单体构成的链,我们对其结构做了 优化.从输出文件中的 distance martrix 中可得到以下 数据(单位为 nm):

F原子对的距离 34F29F = 0.2642222 35F28F = 0.2642222 29F22F = 0.2640372 28F23F = 0.2640372 , 22F17F = 0.2640436 ,16F23F = 0.2640436 ,11F16F = 0.2641539 ,17F10F = 0.2641539 ,10F5F = 0.2682304 , 11F4F = 0.2682304 ;

C原子的距离:30C26C = 0.261036,26C18C = 0.2609213,18C14C = 0.2608531,14C6C = 0.2607145,6C1C = 0.2607143,33C27C = 0.2581911,27C21C = 0.2575157,21C15C = 0.2574808,15C9C = 0.2574636,9C2C = 0.2573793;

H原子对的距离:38H32H = 0.2593075,32H25H = 0.2550971,25H20H = 0.2550500,20H13H = 0.2551430 ,13H8H = 0.2562606 ,37H31H = 0.2593075 ,

图 3 11 个单体构成的链

19H12H = 0.2551430 ,12H7H = 0.2562606 ,31H24H = 0.2550971 ,24H19H = 0.2550500.

图 3 为 11 个单体构成的链,我们对其结构做了 优化(图中省略了元素符号,F,C,H由上至下顺序 如图 1),从输出文件中的 distance martrix 中可得到 以下数据(单位为 nm):

F原子对的距离:65F58F = 0.264220,64F59F = 0.264244,58F53F = 0.264064,59F52F = 0.264073, 46F41F = 0.264040,47F40F = 0.264070,22F17F = 0.264076,28F35F = 0.264048,29F34F = 0.264036, 23F16F = 0.264041,10F5F = 0.264140,11F4F = 0.268234,53F46F = 0.264061,52F47F = 0.264089, 41F34F = 0.264040,40F35F = 0.264069,29F22F = 0.264017,28F23F = 0.264047,17F10F = 0.268264, 16F11F = 0.2064121;

C原子的距离:62C54C = 0.261040,54C50C = 0.260957,50C42C = 0.260927,42C38C = 0.260912, 38C30C = 0.260903,30C26C = 0.260891,26C18C = 0.260875,18C14C = 0.260835,14C6C = 0.260710, 6C1C = 0.260717,63C57C = 0.258179,57C51C = 0.257519,51C45C = 0.257485,45C39C = 0.257487, 39C33C = 0.257492,33C27C = 0.257496,27C21C = 0.257499,21C15C = 0.257495,15C9C = 0.257473, 9C2C = 0.257378;

H原子对的距离:66H60H = 0.259278,67H61H

= 0.259338, 61H56H = 0.255049, 60H55H = 0.255114, 56H49H = 0.255023, 55H48H = 0.254995, 48H43H = 0.255055, 49H44H = 0.254992, 43H36H = 0.255031, 44H37H = 0.255059, 36H31H = 0.255086, 32H25H = 0.255090, 24H19H = 0.255124, 25H20H = 0.255064, 19H12H = 0.255148, 20H13H = 0.255181, 12H7H = 0.256295, 13H8H = 0.256224, 37H32H = 0.255025, 31H24H = 0.255060.

从以上结果可以看出 ,F 原子对之间的平均距 离 0.264nm 基本与实验测出的 0.26nm^[8]相差不多. 尤其明显的趋势是,每一条链的中间部分的F原子 对的距离与实验上测出的 0.26nm 更加靠近 而且随 着链的长度增加有更加符合实验值的趋势,而实际 的 PVDF 材料中的每一条链都有上千个单体组成, 因此除了链两端附近单体外,其余的单体两边的环 境条件可认为是相同的 这就对应了我们取得长链 的中间部分的单体,所以以上趋势是符合实际情况 的.相邻 F 原子对平均距离为 0.264nm 相邻 H 原子 对平均距离为 0.255 m 和 F 原子相连的 C 原子的 平均距离为 0.260nm 和 H 原子相连的 C 原子的平 均距离为 0.257nm.实验上测出相临单体--(CH,---CF₂)—之间的距离为 $c = 0.2560 \pm 0.0001$ nm^[9].考虑 到 C ,H ,F 原子的质量、键长、键角,那么两相临单体 重心之间的距离和实验数据基本一致。

3个单体构成的链的电荷分布为(原子的编号

如图1,电	荷单位为 <i>e</i>):							
1C	0.794136	2C	-0.654611	3F	-0.384558	4 F	- 0.384558	
5C	1.203927	6Н	0.289605	$7\mathrm{H}$	0.289605	8F	- 0.397053	
9F	-0.380444	10F	-0.380444	11C	-0.572356	12C	0.761113	
13H	0.265959	14H	0.265959	15C	-0.650942	16F	- 0.394234	
17F	-0.394234	18H	0.263567	19H	0.229783	20H	0.229783	
其电	偶极矩为 3.5836	Debye ,由	此可得到每一个	个单体的	平均电偶极矩为	ל 3.98×	10 ⁻³⁰ C·m.6 个单体	构成
的链的电	荷分布为(原子的	り编号如[图 2 ,电荷单位为	5 e):				
1C	0.429104	2C	-0.161497	3F	-0.153856	4F	-0.148537	
5F	-0.148537	6C	0.300681	$7\mathrm{H}$	0.086499	8H	0.086499	
9C	-0.151032	10F	-0.149120	11F	-0.149120	12H	0.077757	
13H	0.077757	14C	0.300119	15C	-0.151524	16F	-0.149845	
17F	-0.149845	18C	0.299907	19H	0.076174	20H	0.076174	
21C	-0.151601	22F	-0.150212	23F	-0.150212	24H	0.075758	
25H	0.075758	26C	0.299235	27C	-0.151855	28F	-0.151191	
29F	-0.151191	30C	0.301309	31H	0.075525	32H	0.075525	
33C	-0.205904	34F	-0.157306	35F	-0.157306	36H	0.079378	
37H	0.073267							
电偶	极矩为 7.9179De	ebye ,由此	可得到每一个单	单体的平	均电偶极矩为 4	$.40 \times 10^{-1}$	⁻³⁰ C·m.11 个单体构	成的
链的电荷	分布为(原子的纲	扁号如图	3 ,电荷单位为 e	e):				
1C	0.429157	2C	-0.161502	3F	-0.153831	4F	-0.148435	
5F	-0.148450	6C	0.300737	$7\mathrm{H}$	0.086447	8H	0.086425	
9C	-0.151019	10F	-0.148989	11F	-0.148980	12H	0.077674	
13H	0.077660	14C	0.300232	15C	-0.151499	16F	-0.149599	
17F	-0.149606	18C	0.300183	19H	0.076062	20H	0.076053	
21C	-0.151534	22F	-0.149690	23F	-0.149694	24H	0.075636	
25H	0.075627	26C	0.300157	27C	-0.151546	28F	-0.149706	
29F	-0.149708	30C	0.300147	31H	0.075486	32H	0.075482	
33C	-0.151547	34F	-0.149719	35F	-0.149727	36H	0.075430	
37H	0.075426	38C	0.300120	39 C	-0.151557	40F	-0.149766	
41F	-0.149764	42C	0.300068	43H	0.075419	44H	0.075419	
45C	-0.151570	46F	- 0.149865	47F	-0.149878	48H	0.075430	
49H	0.075430	50C	0.299903	51C	- 0.151611	52F	-0.150158	
53F	-0.150152	54C	0.299253	55H	0.075434	56H	0.075440	
57C	-0.151857	58F	-0.151124	59F	-0.151141	60H	0.075350	
61H	0.075358	62C	0.301315	63C	- 0.205914	64F	-0.157262	
65F	-0.157252	66H	0.073150	67H	0.073175	68H	0.079366	
(m				· ·	<u> </u>			

电偶极矩为 14.634Debye ,由此可得到每一个单体的平均电偶极矩为 4.44 × 10⁻³⁰C·m.

由以上数据可以看到,F原子带负电荷,H原子 带正电荷,和F原子相连的C原子带正电荷,和H 原子相连的C原子带负电荷.在一个单体(CH₂CF₂) 中,CH,的电偶极矩由C原子指向两H原子中点的 方向 ,CF₂ 的电偶极矩由两 F 原子中点指向 C 原子 , 而整个单体的电偶极矩为 CH₂ 和 CF₂ 的贡献之和. 由以上分析可知 ,在图 1—图 3 中整个单体的电偶 极矩方向由上而下 ,这就验证了在准六角密排结构 中极化方向沿 b 轴方向.在实验上通过电滞回线测 得最大剩余极化为 0.5—0.6C·m^{-2[4,6]},如果总体积 中有一半是 β 相,这就要求每一个单体的电偶极矩 为 5.4×10^{-30} — 6.5×10^{-30} C·m,我们计算的结果与 这数值符合的较好,并且随着链长的增加单体的电 偶极矩有增加的趋势(3个单体的链为 3.98×10^{-30} C·m δ个单体的链为 4.40×10^{-30} C·m;11 个单体的 链为 4.44×10^{-30} C·m).而实际的 PVDF 材料中的链 至少有上千个单体,如果有条件计算这么长的链,计 算值会与实验值符合的更好.

我们对由 6 个单体组成的链做了频率计算,由 此预测了链振动模式,列于表 1.

振动	振动频率	相对	振动	振动频率	相对
模式	$\nu/{\rm cm}^{-1}$	强度 <i>[</i>	模式	$\nu/{\rm cm}^{-1}$	强度 /
1	296.6	0.01	19	1466.4	0.01
2	492.8	0.30	20	1491.2	0.02
3	500.8	0.09	21	1518.2	0.03
4	502.2	0.07	22	1542.5	0.11
5	512.2	0.01	23*	1558.2	1.00
6	520.7	0.02	24	1576.5	0.63
7	530.0	0.03	25	1593.9	0.58
8	540.8	0.01	26	1606.4	0.02
9	576.4	0.05	27	1622.9	0.01
10	643.8	0.02	28	1630.3	0.01
11	735.3	0.01	29	1638.1	0.1
12	970.8	0.01	30	1643.5	0.03
13	1242.7	0.66	31	1644.8	0.46
14	1250.3	0.01	32	1708.7	0.02
15	1259.9	0.03	33	1779.1	0.01
16	1354.2	0.10	34	3624.9	0.01
17	1392.5	0.33	35	3747.9	0.01
18	1446.4	0.01	36**	15.5	0.00

表1 6个单体构成的链的振动模式

由表 1 中可以看出 :第 23 种振动模式相对强度 最大(表 1 中 23^{*}),由表 1 中振动频率值可推得波 长为 6.4 × 10⁻⁶ m. 其振动模式为 F 原子、H 原子以 及和 H 原子相连的 C 原子基本不动,而和 F 原子相 连的 C 原子上下振动 ,C—F 键的键长和 F—C—F 键角随之变化 ,单体的电偶极矩随之变化 ,链的电偶 极矩对时间的导数的单位矢量垂直于链的方向 ,即 电偶极矩在垂直于链的方向变化 ,我们推测 ,振动剧 烈程度随着温度不同而变化 ,和 F 原子相连的 C 原 子的平衡位置也会随之变化 ,因此每条链的电偶极 矩也会随之变化 ,故宏观上的自发极化也会随着温 度而变化 ,这就从微观角度说明了自发极化是随温 度变化的 .另外 ,还有一种振动模式(表 1 中 36**) 是以和 F 相连的 C 原子所在直线为轴线 ,两端向相 反的方向旋转 ,中间部位基本不动 . Dvey-Aharon 提 出 PVDF 极化时每一条链的反转是通过旋转波 (twist wave)沿链传播实现的^[13] .我们认为 ,当有外 场存在时 ,可能激发了这种振动 ,产生旋转波 ,最终 造成极化反转 .

4.结 论

本文首先利用紧束缚的 Hartree-Fock 自洽场方 法对 β相 PVDF 的全反式链做了结构优化计算,计 算得到的结果相邻 F 原子对平均距离为 0.264nm; 相邻 H 原子对平均距离为 0.255nm;和 F 原子相连 的 C 原子的平均距离为 0.260nm 和 H 原子相连的 C原子的平均距离为 0.257nm, 这些结果和实验上 已经测得:相邻 F 原子对的距离为 0.26nm;相邻单 体的距离为 $c = (0.2560 \pm 0.0001)$ nm 基本相符.在 此基础上我们又对全反式链的单体的平均电偶极矩 做了计算 我们得到了以下结果 3.98×10⁻³⁰C·m(3 个单体的链) 4.40×10⁻³⁰C·m(6个单体的链) 4.44 ×10⁻³⁰C·m(11 个单体的链).这些结果和由实验数 据推得的单体电偶极矩 5.4 × 10⁻³⁰---6.5 × 10⁻³⁰ C·m基本一致,全反式链的电偶极矩是 PVDF 存在 自发极化的微观原因 最后我们通过计算全反式链 的频率得到了全式链几种振动模式,并且从微观上 解释了自发极化随温度变化的原因。

- [1] Kawai D H 1969 Japn. J. Appl. Phys. 8 975
- [2] Bergman J G , Mcfee J H and Crane G F 1971 Appl , Phys. lett , 18 203
- [3] Nakamura K and Wada Y 1971 Polymer. Sci. A 29 161
- [4] Kepler R G and Anderson R A 1992 Adv. Phys. 41 1
- [5] Zhang Q M , Bharti V and Zhao X 1998 Science 280 2101

- [6] Furukawa T 1990 Ferroelectrics 104 229
- [7] Karrasawa R K N and Goddard W A 1992 Macromolecules 25 7268
- [8] Legrand J F 1998 Ferroelectrics 91 303
- [9] Bellet-Amalric E and Flegrand J 1998 Eur. Phys. B 3 225
- [10] Broadhurst M G and Tpavis G 1981 Ferroelectrics 32 177
- [11] Xu J, Li J 1999 Acta Phys. Sin. 48 1930 (in Chinese] 徐 敬、

李杰 1999 物理学报 48 1930]

- [12] Liou D S, Wang L X, Chen Y X et al 2001 Acta Phys. Sin. 50 1763 (in Chinese] 刘德胜、王鹿霞、陈延学等 2001 物理学报 50 1763]
- [13] Davey-Aharon H , Sluckin T J and Taylor P L 1978 Phys. Rev. B 21 3700

First principles calculation for all-trans chain of β-phase of poly(vinylidene fluoride)*

Li Ji-Chao Wang Chun-Lei Zhong Wei-Lie Xue Xu-Yan Wang Yuan-Xu

(Department of Physics , Shandong University , Jinan 250100 , China)

(Received 7 July 2001; revised manuscript received 15 September 2001)

Abstract

We have conducted first principles calculation for all-trans chain of β -phase of poly(vinyliden fluoride)(PVDF) with the restricted Hartree-Fock self-consistent field method. As for the structure ,we have obtained the result that the average distance of the adjacent F atom couple is 0.264nm; the average distance of adjacent H atom couple is 0.255nm; the average distance of adjacent C atom bonding with F atom is 0.260nm; the average distance of adjacent C atom bonding with H atom is 0.257nm. For the dipole moment ,we have obtained the average dipole moment of a monomer unit :3.98 × 10⁻³⁰ C · n(3-monomer chain) $\cancel{4}.40$ × 10⁻³⁰ C · n(6-monomer chain) $\cancel{4}.44 \times 10^{-30}$ C · n(11-monomer chain). The calculated results for the structure and dipole moment are consistent with the experimental results. Finally we forecast the vibration model of all trans chains.

Keywords : chain of β -phase of poly(vinyliden fluoride) , Hartree-Fock self consistent field method **PACC** : 3030 , 6100

^{*} Project supported by the State Key Program of Basic Research of China (Grant No. G1998061408).