北京同步辐射装置上的位相衬度成像

黄万霞1) 田玉莲1) 朱佩平1) 麦振洪2) 胡小方3)

¹(中国科学院高能物理研究所 北京 100039)
²(中国科学院物理研究所 北京 100080)
³(中国科学技术大学 合肥 230027)
(2001年7月3日收到 2001年10月17日收到修改稿)

在北京同步辐射装置上首次用位相衬度成像方法对生物样品和复合材料进行研究,得到了非常清晰而精细的 材料内部细观结构.其图像的清晰度和分辨率明显地优于吸收衬度成像.

关键词:位相衬度成像,相干光源,同步辐射硬 X 射线 PACC:4230,0785

1.引 言

在医学、生物学及材料科学领域,硬 X 射线成 像是一种非常重要的诊断工具.X 射线照相术和 X 射线断层摄影术利用 X 射线穿透力强的特点能提 供其他无损检测方法所不能提供的材料内部信息. 这种 X 射线成像方法是以吸收衬度为基础,图像的 衬度是由于材料对 X 射线的吸收不同而引起的.然 而对于以轻元素为基的材料而言,由于材料对 X 射 线几乎没有吸收或者只有很少的吸收,或不同轻元 素之间的吸收差别很小,因此只能记录到很差的像 衬度.正是由于这个原因,近年来,X 射线位相衬度 成像技术越来越受到人们的重视^{1→51}.

以轻元素为基的复合材料是由两种或两种以上 材料组合成的新材料,具有高比强、高比模、耐腐蚀、 耐辐射等优于传统材料的性能,在航空航天、建筑交 通、机械化工设备等领域都得到越来越广泛的应用, 甚至成为许多高科技领域的支撑材料.其中环氧基 复合材料(玻璃纤维增强,碳纤维增强)由于其比强 度、比刚度很高,同时重量又很轻,大量应用于航空、 航天及军事领域,如飞机、火箭、宇宙飞船、卫星、导 弹的外壳及内部材料,并广泛地应用于民用产品,如 自行车、网球拍等.但是对于复合材料来说,由于很 难观察到其吸收像,因此位相衬度成像方法成为研 究复合材料的一种非常有效的研究手段^[6].

本文利用北京同步辐射光源 4W1A 束线引出的 硬 X 射线,采用位相衬度成像方法对生物样品和环

氧基复合材料进行内部细观结构观测,获得了清晰的图像.这是北京同步辐射装置自建成以来第一次 成功地把位相衬度成像方法应用于材料研究中,具 有重要的意义.

2. 位相衬度成像原理

当 X 射线穿过物质时,其折射率可以写成 n = 1- δ - i β ,其中 β 为吸收项, δ 为位相项.对于传统的 X 射线照相术,当 X 射线穿透物体时,物体的各个不 同部分对 X 射线的吸收不同,因而能得到记录物体 各个部分吸收分布的吸收像.另一种方法是位相衬 度 X 射线照相术,记录的是 X 射线穿透物质前后其 位相的变化产生的衬度差.位相衬度形成的原理如 下所述^[7—9],采用相干光源,当波前通过物体时,相 干(平面或球面)波前受到了畸变,进一步传播时,由 于横截波前的干涉效应(Fresnel diffraction),就会产 生强度变化,因此使位相变化成为可见,即形成位相 衬度.为了对位相衬度进行处理,在傅里叶光学概念 基础上提出了一种近似理论的处理方法.

假定一薄层物体,在 z = 0 的平面上, 被沿 z 方 向传播的单色平面波 exp{-ikz }辐照. 经过物体后波 函数变成 q(x), q 是物体的传递函数, 可写成 exp[i $\not(x) - \mu(x)$]. $\not(x)$ 和 $\mu(x)$ 分别对应于位相 和吸收的变化,对于吸收和相变弱的物体,

 $q(x) \approx 1 + i \phi(x) - \mu(x).$

在 z > 0 的连续平面里,用近轴近似的方法,根据 Fresnel 衍射理论,波函数 f(x; z)用 Fresnel-Kirch-

hoff 积分形式写出.采用傅里叶变换,经过一系列推导得出

$$F(u;z) \approx \delta(u) - \Phi \sin(\pi \lambda z u^2) - M \cos(\pi \lambda z u^2) + \left[\Phi \cos(\pi \lambda z u^2) - M \sin(\pi \lambda z u^2) \right],$$

式中 F(u;z)是波函数 f(x;z)的傅里叶变换, πx 共轭的变量 u 是在物体中或成像平面上的空间频 率. M 和 Φ 分别是 μ 和 ϕ 的傅里叶变换.

对 μ 和 φ 取一阶近似,可得

$$F(u) \approx \delta(u) - M(u)\cos(\pi \lambda z u^{2}) - \Phi(u)\sin(\pi \lambda z u^{2}),$$

式中第一项 $\delta(u)$ 表示直接传递的波 第二和第三项 分别表示吸收和位相的成像衬度.函数 $\cos(\pi\lambda zu^2)$ 和 $\sin(\pi\lambda zu^2)$ 分别是振幅强度和位相强度的衬度传 递函数(CTF).图 1 是二者相对于约化变量 $u' = (\lambda z)^{y_2}u$ 的曲线.

对于纯吸收物体,

$$\begin{split} \phi &= 0 ,\\ F(u) &\approx \delta(u) - M(u) \cos(\pi \lambda z u^{2}). \end{split}$$
对于纯位相物体 ,

$$\mu = 0,$$

 $F(u) \approx \delta(u) - \Phi(u) \sin(\pi \lambda z u^2).$ 对于这一种情况,当 u'足够小,sin(πλzu²) ≈ πλzu², 那么很容易转换到真实空间,可以得到在 z 平面(成 像平面)上强度的分布

$$f(x) = |f(x)|^2 \approx 1 + \frac{\lambda z}{2\pi} \phi''(x).$$

由此可见,成像的衬度正比于位相的二阶导数,即位 相的二阶 Laplacian.对于 X 射线, $\phi(x) = r_e \lambda \rho_e(x)$, 其中 r_e 为电子经典半径, ρ_e 为电子密度沿 z 方向的 投影,那么

$$(x) \approx 1 - \frac{\lambda^2}{2\pi} r_e z \rho_e''(x).$$

因此,成像的衬度正比于投影电子密度的 Laplacian, 投影电子密度的改变能够被明显地显示出来.这种 成像对边缘特别敏感,在这种情况下,能够看到直接 像,样品的特征能显现在增强的边缘衬度中.这种成 像的机理被称作微分位相衬度(differential phase contrast),本文所采用的位相衬度成像方法即是基于这 一原理.

要获得位相衬度成像,适当的 z 是成像的关键. 这可以由空间频率和强度衬度传递函数(CTF)进行 处理.图1为计算得到的位相强度(实线)和振幅强 度(虚线)的衬度传递函数 CTF 相对于约化变量 (λz)¹² u 的曲线. u 是空间频率, $u = d^{-1}$, d 是空间 周期 ,在这里 *d* 可以看作是需要的空间分辨率.从 图 1 可见 ,当 *z* = 0 时 ,对所有 *u* ,振幅强度的 CTF = 1 为极大 ,而位相衬度的 CTF = 0 ,因此当底片紧贴样 品成像时 ,得到的是吸收衬度成像.为了得到好的位 相衬度成像 ,我们可以选择适当的 $\sqrt{\lambda z u}$ 值 ,使得位 相衬度的 CTF = 1.由以上的讨论可知 ,当 sin($\pi \lambda z u^2$) = 1 时 ,位相衬度的 CTF = 1.由此 ,对给定的波长 λ 和空间频率 *u* ,可决定最佳的有效物像距离 *z*.

图 1 点光源的位相(实线)和振幅(虚线)强度衬度转换函数 (CTF)

3. 实验装置介绍

本实验是在北京同步辐射装置 4W1A 束线形貌 站完成的.形貌学实验站建在 Wiggler 白光束线上, 束线出口处距发光点 43m.其光源尺寸为水平方向 8.91×10⁻⁴m 及垂直方向 3.23×10⁻⁴m.根据 $\Delta x \cdot \Delta \theta$ ~ λ 得到 $\Delta \theta$,即由此光源发出的光束在 $\Delta \theta$ 的范围 内为相干光束.4W1A 束线的 X 射线能量范围为 3— 22keV,若采用能量为 8keV 来计算,我们可以得到 4W1A 束线出口处相干光束的尺寸约为 7.4 μ n(水平 方向)×20.5 μ n(垂直方向).根据计算可知,虽然在 毫米范围,样品得到的是非相干光照明,但在微米范 围却是相干光照明.因此,可以利用 4W1A 束线获取 微米范围位相衬度差别的图像.

图 2 位相衬度成像的实验装置示意图

图 2 是位相衬度成像的实验装置示意图.本实 验采用由双晶单色器引出的单色光对样品进行成 像.单色器选用 Si(111)晶面,单色光能量为 8keV, 单色光光斑尺寸为 6mm × 4mm.样品台可以沿 z 轴 方向移动,以调节样品与成像装置的距离.实验中我 们采用 Fuji IX80型 X 射线胶片成像,其分辨率为 0.3—0.8μm.X 射线胶片固定在扫描台上,可以沿 x,y 轴方向移动.

4. 实验研究情况

在实验中,我们对生物样品和复合材料分别进行了吸收衬度和位相衬度成像,对位相衬度成像,我 们选择不同的空间周期 *d* 进行成像.

图 3 是一组白蚁的 X 射线照片.图 3(a)为吸收 衬度成像(z = 0),图 3(b)为位相衬度成像(z = 81mm),根据计算,z = 81mm 对 $d = 5\mu$ m 空间分辨的 位相衬度成像最清楚.很显然,图 3(a)的图像很模 糊,而图 3(b)显示了白蚁组织中精细的结构.

图 4 是一组玻璃纤维增强环氧基复合材料的 X 射线照片.图 4(a)为吸收衬度成像(z = 0),图中所 显示的纤维和基体的线条较为模糊.图 4(b)为位相 衬度成像(z = 81mm),对应于空间周期 d = 5µm,得 到了非常清晰而精细的纤维和基体的结构.图 4(c) 为位相衬度成像(z = 159mm),对应于空间周期 d = 7μm.与(b)相比,可以看出,虽然(c)所得图像的衬度很清晰,但是其纤维和基体的线条不如(b)精细. 由此可以看出选取小的空间周期,能得到材料更精细的结构.

图 4 玻璃纤维增强环氧基复合材料的一组 X 射线照片 (a)为吸收衬度成像(z=0)(b)为位相衬度成像(z=81mm)(c) 为位相衬度成像(z=159mm)

图 5 是一组碳纤维增强环氧基复合材料的 X 射线照片.图 5(a)为吸收衬度成像(z=0),图中没 有得到任何信息.图 5(b)为位相衬度成像(z= 81mm),可以看到较清晰的纤维和基体的图像.

5.结 论

在北京同步辐射装置上首次成功地将位相衬度 成像方法应用于材料研究中.在实验中,对生物样品 和复合材料分别进行了吸收衬度和位相衬度成像, 并进行了比较.结果发现,对于对 X 射线吸收很弱 的物质,利用传统的吸收衬度成像技术已无法对其 进行精细结构分析,而位相衬度成像能得到材料中 非常清晰和精细的内部细观结构.在此基础上,可以

图 5 碳纤维增强环氧基复合材料的一组 X 射线照片 (a)为吸收衬度成像(z = 0)(b)为位相衬度成像(z = 81mm)

更深入地展开对材料性能的研究,如对复合材料进行力加载实验,研究其微损伤演化过程等,这在材料

- [1] Fitzgerald R 2000 Physics Today July p23
- [2] Cheng J and Han S S 1999 Opt. Lett. 24 175
- [3] Wilkins S W and Gureyev T E 1996 *Nature* **384** 335
- [4] Momose A, Takeda T and Itai Y 1996 Nat. Med. 2 473
- [5] Nugent K A, Gureyev T E and Cookson D J 1996 Phys. Rev. Lett. 77 2961
- [6] Davis T J and Gao D 1995 Nature 373 595

[7] Gao D C and Pogany A 2000 Acta Phys. Sin 49 2368(in Chinese) [高大超, Pogany A 2000 物理学报 49 2368]

科学研究领域具有非常重要的意义.

- [8] Pogany A, Gao D and Wilking S W 1997 Rev. Sci. Instrum. 68 2774
- [9] Cao N W 2000 Acta Phys. Sin. 49 66 653(in Chinese] 曹念文等 2000 物理学报 49 66 653]

Phase-contrast imaging using synchrotron radiation

Huang Wan-Xia¹) Tian Yu-Lian¹) Zhu Pei-Ping¹) Mai Zhen-Hong²) Hu Xiao-Fang³)

¹) (Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China)

²) (Institute of Physics , Chinese Academy of Sciences , Beijing 100080 , China)

³ (University of Science and Technology of China, Hefei 230027, China)

(Received 3 July 2001; revised manuscript received 17 October 2001)

Abstract

Phase-contrast imaging is an important technique used in studying materials which have little absorption. Phase-contrast imaging method has been studied and developed in Beijing Synchrotron Radiation Facility. The experiment shows dramatic contrast enhancement for weakly adsorbing biological and composite materials, compared with the conventional radiography.

Keywords : phase-contrast imaging , coherence X-ray source , synchrotron radiation PACC : 4230 , 0785