氘、氚代聚苯乙烯单体 ab initio 研究*

张继 d^{1})王红艳²) 唐永建¹) 朱正和²) 吴卫东¹)

¹(中国工程物理研究院,绵阳 621900)
²(四川大学原子分子物理研究所,成都 610065)

(2001年9月2日收到 2001年11月10日收到修改稿)

用 HF, MP₂及 BLYP 从头算方法,在 6—31G*基组水平上,优化了聚苯乙烯单体基态的平衡几何构型.主要用 BLYP/6—31*方法研究了氘、氚代聚苯乙烯单体(DPS, PST)的正则振动频率、红外光谱强度、C—D 键键能,并对正则 振动模式进行了简单分析,同时研究了 DPS, PST 单体中温度、压强与熵的关系.

关键词:平衡几何构型,正则振动频率,红外光谱强度,键能 PACC:3110,3120D,3190

1.引 言

聚苯乙烯 (PS)和氘代聚苯乙烯 (DPS)是惯性约 束核聚变(ICF)研究中一种非常重要的有机靶材 料^[12].随着 ICF研究的不断深入,对 PS和 DPS的研 究也向更深层次发展.除此之外,DPS在低损耗塑料 光纤,持种聚合物微孔泡沫及聚合物性能研究等众 多领域有十分重要的应用^[3-6],而且 PS 也是一种很 常用的塑料.

国外已有人应用 HF, MP₂ 等不同的 ab initio 计 算方法^[7—10] 对 PS 及 DPS 单体的几何构型,振动频 率及红外光谱强度等进行了研究,并与微波光谱,电 子光谱 核磁共振谱等实验结果进行了对比.国内对 PS 研究主要集中在其工业应用上,如塑料工程,在 ICF 中的研究起步较晚.1998 年,中国工程物理研究 院与四川大学合作,首次成功地在国内制备了氘代 率大于 98%的氘代聚苯乙烯^[11],为 ICF 研究打下了 坚实的基础.但有关 DPS 微观结构的研究,国内尚 未见报道.

本文应用 HF, MP₂ 及 BLYP 量子化学从头算方法,在 6—31G*基组水平上,对聚苯乙烯单体基态的 平衡几何构型进行了优化.采用 BLYP/6—31*方法 研究了 DPS 单体的正则振动频率,C—D 键键能,红 外光谱强度,及温度、压强对熵的影响,并对正则振 动频率进行分析.结果表明,理论计算的结果能较好的与实验及相关文献的结果吻合.

2. 计算方法

密度泛函理论(DFT)方法^[12,13],就是通过构造 电子密度的泛函来模拟电子相关的一种近似方法, 将电子的能量分成动能,电子-核吸引能,Coulomb排 斥能和交换-相关项几部分来计算,即 *n* 个电子体系 的能量为

$$E_{\rm el} = -\frac{1}{2} \sum_{i} \int \Psi_{i}(r_{1}) \nabla^{2} \Psi_{i}(r_{1}) \mathrm{d}r_{1}$$

+
$$\sum_{A} \int \frac{Z_{A}}{|R_{A} - r_{1}|} \rho(r_{1}) \mathrm{d}r_{1}$$

+
$$\frac{1}{2} \int \frac{\rho(r_{1})\rho(r_{2})}{|r_{1} - r_{2}|} \mathrm{d}r_{1} \mathrm{d}r_{2} + E^{XC}.$$

上式最后一项交换-相关能可分为交换泛函 E^{*}(ρ)和相关泛函 E^{*}(ρ)两个独立部分,它们分别 对应于相同自旋和混合自旋相互作用.DFT 就是将 交换泛函和相关泛函联合起来进行计算.本文应用 HF MP₂ 及 BLYP 从头算方法,在 6—31G^{*} 基组水平 上 对聚苯乙烯单体基态的平衡几何构型和能量进 行优化;并用 BLYP 方法(即将包含梯度修正的 Becke 交换泛函和包含梯度修正的 Lee, Yang 和 Parr 相关泛函联系在一起)研究了 DPS 单体的正则振动 频率 C—D 键键能,红外光谱强度及温度、压强对熵

^{*}国家自然科学基金(批准号:10075040)和中国工程物理研究院行业科学技术预先研究基金(批准号:20000322)资助的课题。

的影响.全部计算应用 Gaussian 98W 程序完成.

3. 计算结果

3.1. 基态的平衡几何构型及 C-D 键的键能

聚苯乙烯单体中,各原子编号如图1所示.

图 1 苯乙烯分子中各原子的编号

表 1 列出了苯乙烯基态(1¹A')的几何构型参数 结果表明,聚苯乙烯单体的最稳定构型为平面构型,并非扭转的非平面构型,与文献 14 的一致.BL-YP方法计算得到的分子的能量最低,与实验值能较好的吻合;而 HF 方法计算得到的分子能量较高,MP₂比 HF 方法要更接近实验值,所以在对大分子进行从头计算时 BLYP 方法是较可靠的.

表 2 中 C—D 键的键能为 C₈D₈ 与 C₈D₇ 的能量 差,其中 C₈D₈ 和 C₈D₇ 的能量是优化出的最低能量, 并且考虑了零点能校正.计算公式为

 $E_e(\text{ eV}) = E(C_8D_7) + ZPE(C_8D_7) + E(D)$

 $-(E(C_8D_8) + ZPE(C_8D_8)),$

式中 E_e 为键能 ,E 为分子能量 ,ZPE 为零点能校正 能量.

一般的 C—D 键的键能约为 4.259eV 左右.表 2 中 C₇—D₆ 的键能最小 3.821eV,即乙烯基上与苯环 相邻的 C—D 键最不稳定,易断裂.

表1 苯乙烯分子的平衡几何构型及能量

计管方注	10 ⁻¹⁰ 键长/m								
1 异刀広	$C_1 - C_2$	C1-C6	C ₂ —C ₃	C ₃ -C ₄	С4—С	5 C ₅ -C ₆	C ₆ —C ₇	C ₇ —C ₈	
HF/6 – 31G*	1.3815	1.3954	1.3881	1.3831	1.385	7 1.3919	1.4799	1.3224	
MP2/6 - 31G*	1.3929	1.4057	1.3981	1.3953	1.394	9 1.4042	1.4713	1.3432	
BLYP/6 - 31G*	1.401	1.4186	1.4086	1.405	1.403	8 1.4169	1.4777	1.3503	
实验值 ^[14]	1.397	1.397	1.397	1.397	1.397	1.397	1.467	1.344	
C_1 — H_1	C_2 — H_2	С3—Н3	C ₄ – H ₄	C_5 — H_5	$C_7 - H_6$	C_8 — H_7	C ₈ —H ₈	$\angle C_2 C_1 C_6$	
1.0742	1.0754	1.0751	1.0753	1.076	1.0777	1.0748	1.0745	120.8302	
1.0873	1.0876	1.0873	1.0875	1.089	1.0904	1.0854	1.0847	120.7162	
1.0935	1.0944	1.094	1.0943	1.0952	1.0979	1.0939	1.0929	120.9342	
1.080	1.080	1.080	1.080	1.080	1.080	1.080	1.080	120.0	
$\angle C_2 C_1 H_1$	$\angle C_1 C_2 C_3$	$\angle C_1 C_2 H_2$	$\angle C_2 C_3$,C₄ ∠C	$_{2}C_{3}H_{3}$	∠C ₃ C ₄ C ₅	$\angle C_3 C_4 H_4$	$\angle C_4 C_5 C_6$	
119.0567	120.4254	119.6073	119.42	120	.2336	120.0286	120.0943	121.2307	
119.2193	120.4449	119.6014	119.47	120	0.215	120.0001	120.1801	121.1704	
119.3084	120.437	119.5952	119.44	158 120	0.223	120.0743	120.1822	121.3207	
120.0	120.0	120.0	120.	0 12	20.0	120.0	120.0	120.0	
$\angle C_4 C_5 H_5$	$\angle C_1 C_6 C_5$	∠C5 C6 C7	∠C ₆ C ₇	H ₆ ∠C	₆ C ₇ C ₈	∠C ₇ C ₈ H ₇	∠C ₇ C ₈ H ₈	(Hartree)	
119.4255	118.0629	118.7595	114.43	127	.7124	123.2133	120.6636	- 307.585398	
119 ,6635	118.1897	118.7092	115.01	54 126	.9898	122.9447	120.7186	- 308.5930519	
119.6944	117.8147	118.8466	114.2	64 127	.9074	123.011	120.8836	- 309.4941168	
120.0	120.0	120.0	120.	0 12	20.0	120.0	120.0		

表 2 C—D 键的键能								
	能量/Hartree		E_{zp}/H	Iartree	C—D			
$C_8 D_8$	$C_8 D_7$	D	$C_8 D_8$	$C_8 D_7$	键	键能/eV		
- 309.4941168	- 308.8160969	- 0.4954462	0.129791	0.094973	$C_1 - D_1$	4.007		
- 309.4941168	- 308.8151896	- 0.4954462	0.129791	0.094966	$C_2 - D_2$	4.032		
- 309.4941168	- 308.8142445	- 0.4954462	0.129791	0.094948	$C_3 - D_3$	4.057		
- 309.4941168	- 308.8149872	- 0.4954462	0.129791	0.094969	$C_4 - D_4$	4.037		
- 309.4941168	- 308.8147663	- 0.4954462	0.129791	0.094967	$C_5 - D_5$	4.043		
- 309.4941168	- 308.8219954	- 0.4954462	0.129791	0.093993	$C_7 - D_6$	3.821		
- 309.4941168	- 308.8152748	- 0.4954462	0.129791	0.094369	$C_8 - D_7$	4.013		
- 309.4941168	- 308.8140480	- 0.4954462	0.129791	0.094500	C_8 — D_8	4.050		

表 3 聚苯乙烯甲体及其同位素取代物的止则振动频

位署	描式	心层供法	C ₈ 1	H ₈	C ₈]	D ₈	$C_8D_4T_4$	$C_8 T_8$
四直	175 176	归周田应	实验[15]	计算	实验[15]	计算	计算	计算
平面内	V_1	ν CH ₂	3106	3163	2292	2355	2309	2020
	V_2	R CH	3091	3123	2320	2315	2299	1988
	V_3	R CH	3084	3115	2277	2304	2298	1980
	V_4	R CH	3061	3106	2292	2295	2286	1975
	V_5	R CH	3055	3096	2267	2277	1990	1955
	V_6	R CH	3029	3090	2261	2274	1970	1945
	V_7	$V \nu$ CH	3009	3060	2250	2241	1966	1893
	V_8	ν CH ₂	2981	3089	2215	2283	1919	1968
	V_9	ν C=C	1630	1650	1574	1581	1555	1542
	V_{10}	$R \nu$ CC	1600	1598	1563	1561	1545	1521
	V_{11}	$R \nu$ CC	1575	1573	1536	1530	1513	1499
	V ₁₂	$R \nu$ CC	1494	1500	1377	1375	1359	1332
	V ₁₃	$R \nu$ CC	1450	1458	1327	1338	1330	1326
	V_{14}	$\beta = CH_2$	1411	1432	1050	1310	1295	1269
	V_{15}	$A \beta$ CH	1334	1340	1179	1177	1134	1120
	V16	$A \beta$ CH	1303	1336	1001	1052	1011	932
	V_{17}	RνCC	1289	1300	1028	1028	975	927
	V_{18}	$A \beta$ CH	1203	1201	870	1008	946	904
	V_{19}	$\nu C_1 C_7$	1181	1186	1168	947	933	863
	V_{20}	$A \beta$ CH	1156	1165	841	870	846	761
	V_{21}	β CH	1083	1090	825	845	839	714
	V ₂₂	$\beta = CH_2$	1032	1035	810	842	762	709
	V_{23}	β CH	1019	1018	841	828	731	691
	V_{24}	$R_{ m def.}$	999	986	955	812	695	683
	V_{25}	α CC	776	767	699	696	631	626
	V_{26}	αC—C—C	621	618	594	593	581	564
	V ₂₇	$\beta C = C$	553	547	498	492	471	456
	V_{28}	α CC	437	437	408	403	392	371
	V_{29}	BC—CHCH ₂	228	232	206	206	196	187
平面外	V_{30}	$V \gamma$ CH	992	1003	789	809	801	790
	V_{31}	$A \gamma$ CH	985	952	825	769	741	722
	V ₃₂	$A \gamma$ CH	970	923	789	748	724	690
	V_{33}	$V \gamma$ CH	909	890	708	732	691	664
	V_{34}	$A \gamma$ CH	909	874	747	696	661	604
	V_{35}	$A \gamma$ CH	841	825	656	644	602	571
	V_{36}	$A \gamma$ CH	776	775	647	643	599	566
	V ₃₇	$R_{ m def.}$	699	692	554	548	539	469
	V_{38}	$V \gamma$ CH	640	635	517	511	452	439
	V_{39}	$R_{ m pucher.}$	433	437	369	373	347	330
	V_{40}	$R_{ m def.}$	399	400	354	349	328	309
	V_{41}	$C_1 - C_7 B$	199	203	182	174	164	155
	V_{42}	$C_1 - C_7 T$	38	49		42	40	38

注:_ν为伸缩振动; R_{ν} 为苯环上的伸缩振动; V_{ν} 为乙烯基上的伸缩振动; A_{ν} 为苯基上的伸缩振动; β 为平面内的弯曲振动; α 为平面内 环的弯曲振动; γ 为平面外的弯曲振动; T为扭曲振动; B为弯曲振动; $R_{def.}$ 为苯环的变形振动; $R_{pucker.}$ 为苯环的无规变形扭曲振动.

3.2. 正则振动频率

聚苯乙烯单体有 16 个原子,是非线形多原子分子(所属群为 *Cs*),有 42 个振动模式(3N-6).用 BL-YP-DFT/6-31G*方法,计算得到的聚苯乙烯单体 及其同位素取代物的正则振动频率分析结果列在表 3 中.

表 3 中的 42 个正则振动模式,其中有 29 个平面振动模式,13 个非平面振动模式.为了和实验的结果进行比较,表中也列出了部分实验数据.从表中明显可以看出,平面振动模式中,与 8 个 C—H(D,

T)相关的伸缩振动频率均高于其他模式的振动,其 中 V₁为苯乙烯乙烯基上 CH(CD ,CT)反对称伸缩振 动,V₈为苯乙烯乙烯基上 CH(CD ,CT)对称伸缩振 动,V₂,V₃,V₄,V₅,V₆,V₇为苯乙烯中 C—H 键的伸 缩振动.

3.3. 红外光谱强度

图 2 中,是用 BLYP/6 – 31G*方法计算得到的 C₈H₈, C₈D₈, C₈T₈ 的红外光谱强度图.分析可以看出 同位素取代有显著影响:苯乙烯被氘、氚取代后,红 外光谱发生红移,并且光谱强度减弱.

图 2 C₈H₈, C₈D₈, C₈T₈ 红外光谱

3.4. 温度、压强与聚苯乙烯单体熵的关系

用 BLYP/6 – 31G* 方法,分别计算了不同温度, 不同压强下,DPS 单体的熵,其关系如图4所示.从 图中可以看出,随温度的增加(压强不变),熵在增加 随压强的增加(温度不变),熵在减小;在相同条件下,同位素取代效应明显.

图 3 C₈H₈, C₈D₈, C₈T₈熵随压强的变化

图 4 C₈H₈, C₈D₈, C₈T₈熵随温度的变化

4.结 论

1. 应用 HF, MP₂和 BLYP 从头计算方法,在 6-31G*基组水平上,优化得到了 PS 单体的平衡几何 构型,同位素取代效应对平衡几何构型和能量没有 影响,仅仅影响其正则振动频率和红外光谱强度以 及热力学参数.

2. 根据从头计算方法得出的正则振动频率,断 开 PS, DPS, PST 中的 CH, CD, CT 键需要红外激光才 能发生吸收共振,使键断裂;但对于大分子体系而 言,目前在实验上还不成熟.

3. 理论计算出的 C—D 键的键能范围在 3.821—4.057 eV,所对应的激光波长为 306— 325nm,在紫外波段;一般在实验上具有可行性.但 实际上由于能量损失等因素,实际实验中的波长要 小于该波长.本文的研究可以为惯性约束核聚变 (ICF)实验研究提供一定的理论指导.

- [1] Nakai S, Mima K and Kitagawa Y 1992 Fusion Technol. 21 1350
- [2] Takagi M, Norimatsu T, Yamanaka T and Nakai S 1991 J. Vac. Sci. Technol. A 9 2145
- [3] Kaion T 1985 Appl. Opt. 24 4192
- [4] Kaino T 1987 J. Polym. Sci. Part. A : Polym. Chem. 25 37
- [5] Auber J H and Sylwestr A P 1991 Chemtech 234
- [6] Mross W D and Zundel G 1968 Chem. Ber. 101 2865
- [7] Cheol Ho Choi and Miklos Kertesz 1997 J. Phys. Chem. A 101 3823
- [8] Swiderek P , Fraser M J , Michaud M and Sanche L 1994 J. Chem . Phys. 100 70
- [9] Cochran J C , Hagen K and Paulenetc G 1997 J. Molecular Structure

413 - 414 313

- [10] Ralowski W M, Mjoberg P J and Ljunggren S O 1976 J. Mol. Struct. 31 169
- [11] Zhang L and Gao W D 1998 Chemistry Wordle 3 145 (in Chinese) [张 林、高文德 1998 化学世界 3 145]
- [12] Li Q, Liu X Y, Wang R, Zhu Z H et al 2001 Chin. Phys. 10 501
- [13] Meng D Q, Jiang G, Liu X Y et al 2001 Acta Phys. Sin. 50 1268 (in Chinese)[蒙大桥、蒋 刚、刘晓亚等 2001 物理学报 50 1268]
- [14] Molina V and Smith B R 1999 Chem. Phys. Lett. 309 486
- [15] Zilberg S and Haas Y 1995 J. Chem. Phys. 103 20

Ab initio study of styrene isotopomers *

Zhang Ji-Cheng¹) Wang Hong-Yan²) Tang Yong-Jian¹) Zhu Zheng-He²) Wu Wei-Dong¹)

¹ (China Academy of Engineering Physics , Mianyang 621900 , China)

² (Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China)

(Received 2 September 2001; revised manuscript received 10 November 2001)

Abstract

Using Gaussian98W program , the equilibrium geometry molecule structure of styrene has been optimized with $HF/6 - 31G^*$, $MP2/6 - 31G^*$ and $BLYP/6 - 31G^*$ methods. At same time , using $BLYP/6 - 31G^*$ method , the harmonic frequency of styrene and its isotopemers , the bond energy of C—D bond(with ZPE correction) , the intensity of IR spectrum are studied , and the modes of harmonic vibrational frequencies are simply discussed. At the same time , the effect of temperature and pressure on the thermodynamics parameter-entropy are studied. The results show that the calculated results are in good agreement with the experimental results.

Keywords : equilibrium geometry structure of molecule , vibrational frequencies , IR intensity , bond energy PACC : 3110 , 3120D , 3190

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10075040), and the Foundation for Basic Research of China Academy of Engineering Physics (Grant No. 20000322).