$LiNbO_3$:Ni²⁺的常压能谱和 g 因子*

张红梅¹) 马东平²) 刘 德³)

¹(河北科技大学理学院,石家庄 050054)
²(四川大学应用物理系,成都 610065)
³(河北师范大学物理系,石家庄 050091)
(2001年10月1日收到,2001年12月19日收到修改稿)

采用强场方案,通过将 d^{*} 完全能量矩阵对角化,统一计算了 LiNbO₃:Ni²⁺ 的常压能谱和 g 因子,计算结果与大量实验数据符合很好.给出了各个能级对不同参量的变化率.研究表明,利用对角化完全能量矩阵获得的波函数对 g 因子所作的计算为整个理论计算及波函数的归属提供了重要判据,充分体现了将能谱和 g 因子作统一计算的重要性和必要性.

关键词:晶场,能谱,g因子 PACC:6000,6116N,6470K

1.引 言

掺过渡金属离子(3d"离子)Ni²⁺的 LiNbO₃ 晶体 被作为压力传感材料和发光与激光材料等而受到极 大关注^[1-7].它的许多光学、磁学和热学性质与它的 微观能谱紧密相关.因此,研究它的能谱具有很重要 的理论和实际意义.但是,正如 Wybourne 所指出的, 仅仅使能谱的计算值和实验值很好拟合是不够的, 正确地反映物理实际的理论计算结果还应满足下述 要求,即从由此得到的波函数出发可算出与实验符 合的各种物理量的值,g 因子就是这些物理量之一. 因此,对 LiNbO₃:Ni²⁺晶体的能谱和 g 因子作统一计 算极为重要.

我们在传统晶场理论的基础上,采用强场方案, 已对红宝石(α -Al₂O₃:Cr³⁺)等多种晶体的能谱和 g因子作了统一计算^[2-7],计算结果与实验数据符合 很好.本文将利用该套理论方法计算 LiNbO₃:Ni²⁺的 能谱和 g 因子.

目前所能搜集到的 LiNbO₃ :Ni²⁺ 的只有常压能 谱^{8 9]}和常压 g 因子^[10]的实验数据.L^[11]曾利用这 些实验数据作了拟合计算,但因其所用的能量矩阵 不完全,且自旋-轨道耦合矩阵元有误,所以产生了 较大的误差.

本文应用强场方案,通过对角化 d^8 完全能量矩 阵,对 LiNbO₃ :Ni²⁺ 的以上实验数据进行了最小二乘 拟合,并利用对角化完全能量矩阵得到的本征矢,对 LiNbO₃ :Ni²⁺ 的能谱作了相应的归属,得到了与实验 符合很好的能谱,同时利用基态本征矢计算出的 $g_{//}$ 和 g_{\perp} 也与实验符合很好.

2. 常压能谱的计算

在 LiNbO₃ :Ni²⁺ 晶体中,过渡金属离子 Ni²⁺ 的格 位对称点群为 C_3 ,但很接近 C_{3*} ,可作为 D_3 处 理^[12],即处于三角畸变的八面体晶场中.Ni²⁺ 的最 外电子壳层为 3d⁸,而电子和" 空穴"之间的关系为 (10 – N)个电子系统可认为是 N 个" 空穴"系统^[13]. 据此,外层电子为 3d⁸ 的 Ni²⁺ 可在某种转换下利用 3d² 能量矩阵来处理.我们采用强场方案^[14],计算了 d² 电子组态的所有自旋-轨道耦合矩阵元,建立了立 方晶场下的 45 × 45 阶完全能量矩阵.根据 3d⁸ 组态 与 3d² 组态矩阵元之间的关系,只需改变 3d² 完全 能量矩阵中晶场矩阵元和自旋-轨道耦合矩阵元的

^{*}河北师范大学科学研究基金(批准号:12000q02)资助的课题。

符号,就得到 3d⁸ 完全能量矩阵.接着又对该能量矩 阵进行了检验,证明了我们所建立的矩阵完全正确. 计算中共引入了 Dq, B, C, ζ , ζ' , K 和 K'7 个待定参 量.其中立方晶场参量 Dq 和静电作用参量(也称 Racah 参量) B, C 基本上决定了各能级的位置,而自 旋-轨道耦合参量 ζ , ζ' 和三角场参量 K, K' 对能级 的影响较小,其数量级为 10^2 cm⁻¹,它们主要决定能 级的分裂,从而产生精细结构,其表达式分别为

$$\begin{split} \zeta &= -2 \ t_2 \ \frac{1}{2} x_+ \ \Big| \ H_{so} \ \Big| \ t_2 \ \frac{1}{2} x_+ \ , \\ \zeta' &= -\sqrt{2} \ t_2 \ \frac{1}{2} x_+ \ \Big| \ H_{so} \ \Big| \ e \ \frac{1}{2} u_+ \ , \\ K &= \ t_2 x_+ \ \Big| \ V_{trig} \ \Big| \ t_2 x_+ \ , \\ K' &= -\frac{1}{\sqrt{2}} \ t_2 x_+ \ \Big| \ V_{trig} \ \Big| \ eu_+ \ . \end{split}$$

常压能谱的实验数据取自文献 81 但后来同一 作者的另一篇文献^{9]}中关于零场分裂的实验数据为 5.31cm⁻¹(而文献 8 冲为 5.06cm⁻¹). 哪一个更可 靠 尚有待进一步考证,为此本文取折衷的实验数 据 采用强场方案 利用对角化 d[®] 完全能量矩阵 通 过相应的 Fortran 程序 对以上实验数据进行了最小 二乘拟合.在计算过程中发现,将 c 和 c'分开与否 对计算结果影响很小 ,为了减少参量个数 ,可近似认 为 t_{2} 和 e 轨道径向波函数相同,于是有 $\zeta \approx \zeta'$.因 此计算 LiNbO₃:Ni²⁺ 的常压能谱时,仅需引入 6 个参 量 Dq, B, C, C, K和 K'即可. 另外, 在计算过程中, 我们还发现中间一条能级(13330cm⁻¹)和后面两条 能级(22220和23260cm⁻¹)相互矛盾,即当中间能级 符合很好时 后两条能级符合很差 而当后两条能级 符合较好时,中间一条能级符合较差,这到底是属于 实验测量的问题还是" 晶场理论 "的缺陷 ,有待进一 步研究.我们最后确定出的 LiNbO, Ni²⁺ 的常压参量 值为 Dq = 8724cm⁻¹ ,B = 566cm⁻¹ ,C = 3953cm⁻¹ , $\zeta =$ $\zeta' = 531.3 \text{ cm}^{-1}$, $K = 2371.1 \text{ cm}^{-1}$, $K' = -332.2 \text{ cm}^{-1}$. \Re 用这套参量值计算出的常压能谱详见表 1. 可以看 出 计算结果与实验数据的符合程度明显优于 文献 111.

能级		能量/cm ⁻¹			
		计算值	实验值		
$e^{2}{}^{3}A_{2}$	Ε	0.0			
	A_1	5.16	5.06 14]	5.31 ^[13]	
$t_2 e^3 T_2$	Ε	7920.8	7810		
	A_1	7972.7	7970		
	Ε	8711.0			
	Ε	8927.8			
	A_2	9173.9			
	A_2	9203.6			
$e^{2} {}^1 E$	Ε	12054.2	12120		
$t_2 e^3 T_1$	A_2	12891.0	12990		
	E	13120.4	13330		
	A_1	13749.5	13773		
	A_1	13773.9			
	Ε	14143.2			
	Ε	14500.3			
$t_2^{2\ 3}\ T_1$	A_2	18998.4			
	Ε	19419.8	19420		
$e^{2} {}^{1}A_{1}$	A_1	19432.5			
$t_2 e^1 T_2$	A_1	20449.9	20450		
	Ε	20696.5	20620		
$t_2^{2\ 3}\ T_1$	Ε	22224.7	22220		
	A_1	22250.8			
	Ε	22405.4			
	A_1	22405.7			
$t_2 e^1 T_1$	A_2	22824.3	23260		
	Ε	24314.0			
$t_2^{2\ 1}\ T_2$	Ε	29322.7			
$t_2^{2\ 1} E$	Ε	31714.2			
$t_2^{2\ 1}\ T_2$	A_1	32456.9			
$t_2^{2\ 1}A_1$	A_1	53273.7			

表1 LiNbO₃:Ni²⁺的常压能谱的计算值与实验值

3. g 因子的计算

由于 LiNbO₃ :Ni²⁺ 晶体存在三角场 ,从而导致 g因子的各向异性 ,其实验数据为^[10]

 $g_{/\!/} = 2.24 \pm 0.02$, $g_{\perp} = 2.20 \pm 0.02$, 具体的计算公式为

$$g_{//} = t_2^6 e^{2^3} A_2 1 e_2 |'(\hat{L}_z + g_s \hat{S}_z)| t_2^6 e^{2^3} A_2 1 e_2 '$$

(外加静磁场平行于晶轴),

和

$$|t_{2}^{6}e^{2} A_{2}1e_{2}' = \sum_{\alpha \in \mathcal{IM}_{s}\gamma} \alpha \in \mathcal{IM}_{s}\gamma |t_{2}^{6}e^{2} A_{2}1e_{2}'$$
$$\times |\alpha \in \mathcal{IM}_{s}\gamma$$

 $|t_{2}^{6}e^{2} A_{2}0e_{2}' = \sum_{\alpha s \Gamma M_{s}\gamma} \alpha s \Gamma M_{s}\gamma | t_{2}^{6}e^{2} A_{2}0e_{2}'$ $\times |\alpha s \Gamma M_{s}\gamma$

均为上述对角化 d^8 完全能量矩阵得到的基态的混 合波函数. 采用计算 g 因子的方法²⁻⁷¹,计算了 LiNbO₃ :Ni²⁺ 晶体在常压下的 g 因子,计算结果为

$$g_{/\!/}$$
 = 2.24 , g_{\perp} = 2.20 ,

其中轨道缩小因子为 k = k' = 0.90.

表 2 LiNbO3 :Ni²⁺的能级随各参量的变化率

序号	能级 F	$\Delta F / \Delta D_{\alpha}$	$\Delta F / \Delta P$	$\Delta E / \Delta C$	$\Delta F / \Delta \Sigma$	$\Lambda F / \Lambda K$	$\Delta F / \Delta K'$	Ē
1		0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0,0000
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	5.1/68	0.0013	0.0011	0.0002	- 0.0190	0.0016	- 0.0041	5.1/68
3	7920.8	- 0.9852	0.0692	0.0180	0.1518	- 0.3122	-0.1115	7920.8
4	7972.7	- 0.9929	- 0.0100	- 0.0002	- 0.0797	- 0.3172	- 0.0828	7972.7
5	8711.0	- 0.9929	0.4047	0.0113	0.3788	- 0.0314	- 0.1540	8711.0
6	8927.8	- 0.9871	0.4170	0.0174	-0.1111	- 0.0392	- 0.1368	8927.8
7	9173.9	- 0.9917	0.2843	0.0020	-0.5807	0.0029	-0.1145	9173.9
8	9203.6	- 0.9909	0.2658	-0.0010	- 0.6956	0.0020	-0.1138	9203.6
9	12054.2	- 0.2599	6.7215	1.5918	0.5147	-0.0367	- 0.1517	12054.3
10	12891.0	1.2903	3.5905	0.0147	0.2212	- 0.3061	-0.1676	12891.1
11	13120.4	- 1.1702	3.9870	0.1785	- 0.5518	- 0.2949	- 1.0716	13120.4
12	13749.5	- 1.2861	3.6677	0.0022	0.2180	0.3268	0.6450	13794.5
13	13773.9	- 1.2472	4.3656	0.0095	0.0092	0.2202	0.3979	13773.8
14	14143.2	- 1.2155	4.4009	0.0320	-0.6776	0.3143	0.5532	14143.2
15	14500.3	- 1.1247	4.6516	0.1514	- 1.5514	0.3442	0.5517	14500.3
16	18998.4	- 1.4525	9.3574	0.7412	0.9755	-0.4459	0.9729	18998.4
17	19419.8	- 1.6598	10.5752	0.1432	0.0217	- 0.5319	1.0186	19419.8
18	19432.5	- 0.3914	12.4965	2.2292	-0.4972	- 0.0679	- 0.0909	19432.5
19	20449.9	- 1.2659	8.4232	1.2623	- 1.3271	-0.3837	0.4405	20449.9
20	20696.5	- 1.2011	7.9104	1.5078	0.2631	-0.0831	- 0.3536	20696.5
21	22224.7	- 1.7194	10.5526	0.0142	-0.3316	0.3214	- 0.7735	22224.7
22	22250.8	- 1.5852	11.3267	0.2658	-0.2723	0.2401	-0.7396	22250.8
23	22405.4	- 1.6016	9.9997	0.3943	- 1.0210	0.1920	-0.6515	22405.4
24	22405.7	- 1.6676	10.8240	0.0843	- 0.8053	0.2997	-0.7807	22405.7
25	22824.3	- 1.0981	11.6717	1.7276	- 0.6203	- 0.2440	- 0.1769	22824.3
26	24314.0	- 1.0446	10.9680	1.9348	-0.6015	0.4589	0.1914	24313.9
27	29322.7	- 1.9449	10.1091	1.9933	-0.4245	- 0.6122	0.0584	29322.7
28	31714.2	- 1.9526	9.9983	1.9951	-0.4091	0.3341	- 0.3734	31714.2
29	32456.9	- 1.9339	10.3539	2.0530	-0.4017	0.5234	- 0.4649	32456.8
30	53273.7	- 1.6672	21.1471	6.5925	- 0.4746	0.1713	- 0.1247	53273.7

4.讨论与结论

通过以上计算,得出如下结论:

1. 采用强场方案,通过将 d⁸ 完全能量矩阵对角 化,统一计算了 LiNbO₃ :Ni²⁺ 的常压能谱和 g 因子, 计算结果与大量实验数据拟合很好,充分说明了我 们计算方法的正确性.

2. 利用对角化完全能量矩阵获得的波函数对 g因子所作的计算为整个理论计算及波函数的归属 提供了重要判据,充分体现了将能谱和 g因子作统 一计算的重要性和必要性.

3. 在关于常压能谱的计算中,通常采用近似 $\zeta \approx \zeta'$,而实际上 $\zeta 与 \zeta'$ 之间的关系为 $\zeta' = \sqrt{1-\epsilon} \cdot \zeta^{[15]}$,其中 ϵ 需通过对与常压 g 因子有关的轨道缩 小因子 k 和 $k'(k' = \sqrt{1-\epsilon} \cdot k$)的拟合计算来确定. 但到底是否有必要将 ζ 和 ζ' 分开,要依据具体晶体 而定. 若将 ζ 和 ζ' 分开对常压能谱和 g 因子计算的 影响较大,例如 α -Al₂O₃:V^{3+[2]}, α -Al₂O₃:Cr^{3+[3,4]}和 MgO :Cr^{3+[7]}晶体等,此时有必要将二者分开.而对 于 MgO :Ni^{2+[5,6]}和 LiNbO₃:Ni²⁺等晶体而言,通过具 体计算表明将 ζ 和 ζ' 分开与否对能谱和 g 因子的 拟合计算影响较小,此时可近似认为 t_2 和 e 轨道径 向波函数相同,采用 $\zeta \approx \zeta'$ 以减少参量数.需要强调 的是,为了使整个计算自洽,若将 ζ 和 ζ' 分开,则轨 道缩小因子 k 和 k' 也需相应分开;反之,则两者均 不分开.

值得说明的是,本文在对 LiNbO₃ :Ni²⁺ 常压能谱 的实验数据进行拟合计算的过程中,发现中间的一 条能级(13330cm⁻¹)与最高的两条能级(22220 和 23260cm⁻¹)相互矛盾,即当中间能级符合很好时,后 两条能级符合很差;而当后两条能级符合较好时,中 间一条能级符合较差.这可能是谱线测量精度不够, 也可能是本文所用的理论有一定的局限性,对此有 待于进一步的实验与理论研究.

- [1] Feng S X et al 2000 Acta Phys. Sin. 49 2433(in Chinese] 冯少 新等 2000 物理学报 49 2433]
- [2] Ma D P , Ma X D , Ch J R and Liu Y Y 1997 Phys . Rev . B 56 1780
- [3] Ma D P Zhang H M, Ch J R and Liu Y Y 1998 Commun. Theor. Phys. 30 491
- [4] Ma D P , Zhang H M , Liu Y Y , Ch J R and Ma N 1999 J. Phys. Chem. Sol. 60 463
- [5] Ma D P , Ma N , Ma X D and Zhang H M 1998 J. Phys. Chem. Sol. 59 1211
- [6] Ma D P , Ma N , Ma X D and Zhang H M 1998 Commun. Theor. Phys. 29 481
- [7] Ma D P, Ma N, Zhang H M and Ch J R 1999 Commun. Theor. Phys. 32 19

- [8] Arizmendi L , Cabrera J M and Agullo-Lopez F 1980 Ferroelectrics , 26 823
- [9] Petrosyan A K and Mirzakhanyan A A 1986 Phys. Sol. Stat. 133 315
- [10] Mirsahaninsov A A 1981 Phys. Sol. Stat. 23 2452
- [11] Li Y 1995 J. Phys. : Condens. Mat. 7 4075
- [12] Rahman H U and Runciman W A 1971 J. Phys. C:Sol. Stat. Phys. 4 1576
- [13] Sugano S, Tanabe Y and Kaminura H 1970 Multiples of Transition Metal Ions in Crystal (New York :Academic)
- [14] Ma D P , Zheng X T , Xu Y S and Zhang Z G 1986 Phys. Lett. A 115 245
- [15] Sugano S and Peter M 1961 Phys. Rev. 122 381

Energy spectrum and g factor for LiNbO₃ :Ni^{2+ *}

Zhang Hong-Mei¹) Ma Dong-Ping²) Liu De³)

¹) College of Sciences ,Hebei University of Science and Technology ,Shijiazhuang 050054 ,China)

² (Department of Applied Physics , Sichuan University , Chengdu 610065 , China)

³ (Department of Physics ,Hebei Normal University , Shijiazhuang 050091 ,China)

(Received 1 Octeber 2001; revised manuscript received 19 December 2001)

Abstract

By adopting the strong-field scheme, a unified calculation of the whole energy spectrum and g factor of the ground state for LiNbO₃ :Ni²⁺ at normal pressure has been carried out on the basis of the diagonalization of the complete d⁸ energy matrix. All the calculated results are in very good agreement with a lot of experimental data. Furthermore, the rates of change of levels with respect to various parameters has been calculated. By using the wavefunctions obtained by diagonalization of the complete energy matrix the calculation of g factor has provided important criteria for the correctness of the calculations and assignments of the energy spectrum and wavefunctions. This shows that it is quite necessary and important to carry out the unified calculation of the whole energy spectrum and g factor.

Keywords : crystal fields , energy spectrum , g factor **PACC** : 6000 , 6116N , 6470K

^{*} Project supported by the Science Foundation of Hebei Normal University , China (Grant No. L2000q02).