基态非简并聚合物中的极化子和双极化子动力学*

王鹿霞 张大成 刘德胜 韩圣浩 解士杰†

(山东大学物理与微电子学院,晶体材料国家重点实验室,济南 250100)(2002年11月20日收到2002年12月31日收到修改稿)

研究了极化子和双极化子在基态非简并聚合物中的动力学.弱电场下,发现载流子为带电极化子或双极化子, 它们的晶格态与电荷态始终耦合在一起同步运动.极化子比双极化子的运动速度快,存在饱和速度,且它们的饱和 速度随聚合物非简并度的增加而降低,强电场下,元激发的电荷态将脱离晶格态的束缚而快速运动,参与导电的不 再是极化子或双极化子,而是电子直接导电.

关键词:极化子,双极化子,动力学模拟 PACC:7280,7123,7138,7210

1.引 言

近年来由于有机光致、电致发光器件的应用与 发展 共轭聚合物的光电性质成为当前低维凝聚态 物理的一个研究热点^[1,2].有机 LED 材料发光需要 具备两个条件:1)外加电场:2)电荷注入有机层.电 荷注入后的聚合物会产生多种元激发,如激子、孤 子、极化子或双极化子等[3].激子是中性的电子-空 穴对,在外电场下具有明显的极化倾向,寿命短,其 湮没过程将伴随着发光,聚合物中的激子或双激子 存在很多有趣的物理现象,其静态与动力学研究可 参见文献 4-81.孤子、极化子或双极化子通常是带 电元激发,包含局域净电荷和局域晶格缺陷两部分。 一般情况下,电荷与晶格畸变是耦合在一起的,在基 态简并的聚合物中,带电元激发主要是孤子和单极 化子 "Ono 等在绝热近似下研究了在反式聚乙炔中 带电孤子的动力学过程,并讨论了孤子的宽度等问 题^{9,10]}; Conwell 等研究了极化子的动力学过程,并 发现在强场下,电荷态的运动快于晶格态^[11,12]; Stafström 等在非绝热近似下进一步探讨了链间耦合 对极化子运动的影响^{13,14}].

上述这些工作对于理解有机材料的光电性质具 有重要意义.但是他们的动力学模拟都是在以反式 聚乙炔为代表的基态简并聚合物中进行的,而聚乙 快并没有电致发光特性.当前应用在发光器件上的 有机聚合物都是非简并材料,如可以发蓝绿光的 poly(paraphenylenevinylene)(PPV,聚对苯乙炔),发 蓝光的 poly(p-phenylene)(PPP,聚对苯撑)^{15]}等.基 态非简并聚合物中的载流子不是孤子,而是带单个 电荷的极化子或两个电荷的双极化子^[16],因此研究 它们在非简并聚合物中的动力学行为对于理解有机 发光器件的发光机理更具有指导意义.本文通过引 入非简并参数,研究了极化子和双极化子在基态非 简并聚合物中的动力学过程,分析了载流子运动与 晶格畸变以及能量间的关系.

2. 基本公式

由于低维和强的电子-晶格相互作用 ,高分子聚 合物基态存在 Peierls 聚化 ,在紧束缚图像内 ,系统的 哈密顿量可写为^[9,11]

$$H = H_{el} + H_{lat} ,$$

$$H_{el} = -\sum_{n,s} [t_0 - \alpha (u_{n+1} - u_n) - t_e \cos n\pi] \times (e^{i\gamma A} C_{n,s}^+ C_{n+1,s}^+ + e^{-i\gamma A} C_{n+1,s}^+ C_{n,s}^-) ,$$

$$H_{lat} = \frac{K}{2} \sum (u_{n+1} - u_n)^2 + \frac{M}{2} \sum (\frac{\partial u_n}{\partial t})^2 . (1)$$

由于极化子和双极化子在电场作用下产生能级跃迁的概率较小本文采用了绝热近似.其中 H_{el}是电子-

^{*} 国家自然科学基金(批准号 90103034, 10074040, 60176021)资助的课题.

[†]E-mail:xsj@sdu.edu.cn

晶格的相互作用 , H_{lat} 代表晶格的势能与动能. u_n 是 在第n 个格点处的晶格位移 , $C_{n,s}^{+}$ 和 $C_{n,s}$ 是电子的产 生和湮没算符 ,K 是弹性常数 ,M 是(CH)集团的质 量 , t_0 是原子等距离排列时的电子跃迁积分 , α 是电 子 – 声子耦合常数. H_{el} 中的复相因子为外电场效 应^[17] ,它适合于周期性边界条件 ,其中乘在矢势 A上的系数 γ 定义为 $\gamma = ea/\hbar c \cdot e$,a 和 c 分别是电子 电量、晶格常数和光速.电场强度表示为 $E = -(\partial A/\partial t) c \cdot t_e$ 是非简并参数 ,它使得系统存在能 量不相等的 A ,B 两相.

电子态和晶格态在外电场中的演变过程可通过 求解下面的运动方程得到:

$$i\hbar \frac{\partial \psi_{\nu}(n,t)}{\partial t}$$

$$= -[t_{0} - \alpha(u_{n+1} - u_{n})] - t_{e}\cos n\pi]e^{-i\gamma A}\psi_{\nu}(n+1,t) - [t_{0} - \alpha(u_{n} - u_{n-1})] - t_{e}\cos(n-1)\pi]e^{i\gamma A}\psi_{\nu}(n-1,t), \quad (2)$$

$$M \frac{\partial^{2} u_{n}(t)}{\partial t^{2}} = F_{elastic} + F_{electronic}$$

$$= -K(2u_{n} - u_{n+1} - u_{n-1}) + \alpha \sum_{\nu} ' \{e^{-i\gamma A}[\psi_{\nu}^{*}(n,t)\psi_{\nu}(n+1,t)] + e^{i\gamma A}[\psi_{\nu}^{*}(n+1,t)\psi_{\nu}(n,t)] + e^{i\gamma A}[\psi_{\nu}^{*}(n+1,t)\psi_{\nu}(n,t)] + e^{i\gamma A}[\psi_{\nu}^{*}(n+1,t)\psi_{\nu}(n-1,t)]\}, \quad (3)$$

其中 $\phi_{s}(n,t)$ 代表 t 时刻电子波函数 ,对应能级 ε_{s} . 上述处理为绝热近似下的动力学模拟.求得的解为 t 时刻的定态结果.

运动过程中时刻 t_{j+1} 的晶格速度 $v_n(t_{j+1})$ 和晶 格位移 $u_n(t_{j+1})$ 由前一时刻 t_j 的 $v_n(t_j)$ 和 $u_n(t_j)$ 决 定:

$$v_n(t_{j+1}) = v_n(t_j) + \frac{1}{M}(F_{\text{elastic}}(t_j) + F_{\text{electronic}}(t_j))\Delta t ,$$
$$u_n(t_{j+1}) = u_n(t_j) + v_n(t_j)\Delta t .$$
(4)

为结果分析方便, 晶格态和电荷态分别用平滑 \tilde{y}_n 和 ρ_n 来表示

$$y_{n} = u_{n+1} - u_{n} ,$$

$$\rho_{n}(t) = \sum_{\nu} ' + \psi_{\nu}(n,t) |^{2} - 1 ,$$

$$\tilde{y}_{n} = \frac{(-1)^{n}}{4} (2y_{n} - y_{n-1} - y_{n+1}) ,$$

$$\tilde{\rho}_{n} = \frac{1}{4} (2\rho_{n} + \rho_{n-1} + \rho_{n+1}) .$$
(5)

3.结果与讨论

非简并参数 t_e 的引入导致 u_n 为 u_0 和 – u_0 时, 体系的能量不同,出现 A ,B 两项.当 t_e 达到某个临 界值 $t_{ee} = 0.86$ eV 时,能量高的 B 相将是不稳定的. 本文所用参数分别为 $t_0 = 2.5$ eV ,K = 2100.0eV/nm², $\alpha = 41.0$ eV/nm ,a = 0.122nm ,M = 134914.0eVfs²/ nm².链长取 N = 100,电场方向为从右向左,则负电 极化子或双极化子自左向右沿链运动.

3.1. 弱电场情况

有机发光器件的外加电场强度典型值为 1 × 10^5 V/cm.取计算步长 0.2fs ,图 1 给出了极化子和双极化子的晶格态和电荷态随时间的演变情况 ,其中非简并参数 $t_e = 0.1 \text{eV}$,外加电场 1×10^5 V/cm.可以看到随着时间的推移 ,极化子和双极化子在电场力的作用下沿链平移 ,其电荷态与晶格态始终保持同步.仔细检查发现 ,当外电场加上后 ,极化子或双极化子开始加速运动 ,大约 100fs 以后 ,速度达到饱和 ,极化子或双极化子速度随时间的变化情况 ,其中 $v_s = \omega_0 a/2 = \sqrt{4K/Ma/2}$ 为声子速度^[9].很明显 ,极化子的运动速度要大于双极化子的.其原因可简单理解为 :双极化子的晶格缺陷大(或有效质量大),其运动受到的阻力大.

为了进一步理解非简并对极化子或双极化子运 动的影响,我们计算了饱和速度与非简并参数 t_e 的 关系,如图 3 所示,随着 t_e 的增加,饱和速度减小. 饱和速度的出现是由于电场能不断地被晶格所吸 收.如图 1 所示,长时间以后,虽然极化子或双极化 子的电荷态仍是完好局域的,但其晶格态则出现了 振荡的'尾巴",它不断地吸取能量,从而造成极化子 或双极化子饱和速度的出现.

图 4 是单极化子在 1000fs 的时刻晶格态和电荷 态位形.到这个时刻极化子已经沿封闭的链运动了 多个来回 "尾巴"的振荡幅度不断增大,单电荷态的 局域性仍是完好的,并且与晶格态保持同步,双极化 子也有类似的现象.

3.2. 强电场情况

在强电场的作用下,Conwell等人研究了基态简 并聚合物中的极化子动力学,发现晶格态的运动滞

图 1 在简并参数为 0.1eV 的系统中,在几个不同时刻 (a)极化 子和(b)双极化子在 0fs(细实线) 50fs(粗实线),100fs(虚线), 200fs(空心圆连线),400fs(方点连线)的晶格位形和电荷密度 分布

后于电荷态的运动^[12].这一现象使人们对聚合物中 的带电元激发又有了一个新的认识.一般来说,聚合 物中的极化子或双极化子含有三个特征:1)局域晶 格位形(晶格态)2)局域净电荷(电荷态)3)带隙内 深能级(极化子能级).从定态量子力学理解,极化子 或双极化子的净电荷是完全局限在晶格缺陷内的, 深能级对应的电子态也局限在晶格缺陷内.前面的 计算表明,弱电场下,电荷态与晶格态一直是同步运

图 2 在简并参数为 0.1eV 的系统中,在 1000fs 内极化子(粗实 线)和双极化子(细实线)的速率与声子速率的比值 V₁/V₈随时 间的演变过程

图 3 极化子(粗实线)和双极化子(细实线)的饱和速率与声 子速率的比值 V_{t_i}/V_s 随简并参数 t_e 的变化曲线

图 4 在简并参数为 0.1eV 的系统中 极化子运动至 1000fs 时的 晶格位形(实线)和电荷密度分布(方点连线)

动的,与聚合物本身的简并性无关.如果检查其能带 结构,也发现极化子或双极化子能级始终处于带隙 内.从这个意义上说极化子和双极化子在弱场下能

够保持其稳定性.

图 5 极化子在 2 × 10⁶ V/cm 的电场下,在 0fs ,50fs ,200fs 时刻的 晶格态(虚线)深能级电子态(空心圆连线)和系统的电荷密 度分布(实线)

图 6 双极化子在 2×10⁶ V/cm 的电场下,在 0fs ,50fs ,200fs 时刻 的晶格态(虚线)深能级电子态(空心圆连线)和系统的电荷 密度分布(实线)

我们增加电场强度为 2 × 10⁶ V/cm,步长取 0.01fs,非简并参数 $t_e = 0.1 \text{eV}$.图 5 给出了系统掺杂 一个净电荷时的晶格态 \tilde{y}_n 、电荷态 ρ_n 和极化子能 级上的电子概率分布 $|\phi_p(n)|^2$.可以看出,初始时 刻系统激发起一个完整的单极化子,其晶格态、电荷 态以及极化子能级上的电子概率分布是完好局域 的.外加电场后,三者发生了分离,但在前50fs内,

图 7 极化子态在 2×10⁶ V/cm 的电场下,在格点为 100 的系统中 第 51 条能级(实线)和第 52 条能级(虚线)在 300fs 内的变化曲线

它们仍能保持各自的局域位形.晶格态几乎没有沿 链移动 而是在初始位置附近发生畸变 电荷态和极 化子能级上的电子态均在电场力作用下运动 ,奇怪 的是二者并不同步,电荷态的运动要更快一些.随着 时间的推移 晶格态在电场力的作用下逐渐扩展 定 域性越来越差;电荷态则几乎变成了扩展态.但是, 极化子能级上的电子态在演变过程中始终够保持一 定的局域性 图 7 画出了极化子能级和导带底能级 的演变 很明显 由于晶格态的逐渐扩展 晶格势场 似乎变得'无规'起来 这造成电子能级出现起伏,比 较每一时刻的电子状态与极化子能级发现,当极化 子能级较深(即远离导带底)时相应的该能级电子 态定域性越好 ;反之,当该能级接近带底时,深电子 态的定域性越差.双极化子情况的计算结果分别显 示在图 6 和图 8 中, 与单极化子的结论基本是一样 的.增加简并参数,我们发现双极化子的稳定性会持

图 8 双极化子态在 2×10⁶ V/cm 的电场下,在格点为 100 的系统 中第 51 条能级(实线)和第 52 条能级(虚线)在 300fs 内的变化 曲线

续更长时间,晶格态、电荷态和深能级电子态在电场 施加后的 300fs 内会一直同步运动.

可以说,在强电场下,极化子或双极化子的自身 稳定性很难保持,电荷会脱离晶格势场的束缚而独 立运动.聚合物有可能向金属态转变,这或许可以解 释实验中强场下高分子有机材料中的强电流和高频 率电子发射等现象^[18].

4. 结 论

通过在绝热近似下研究基态非简并聚合物中的

带电元激发的动力学行为,我们得到:低电场下,极 化子和双极化子能够稳定存在,其晶格态、电荷态以 及极化子能级电子态耦合在一起,同步运动.并发现 极化子比双极化子运动得快,二者都存在饱和速度. 达到饱和速度后接近匀速运动,电场的能量被晶格 吸收转化为热能.随着非简并参数的增加,饱和速度 下降.强电场下,系统的晶格态、电荷态与极化子能 级上的电子态三者不再同步.外加电场后不久,电子 就会脱离晶格态的束缚而独立运动,系统倾向于金 属态,参与导电的不再是极化子或双极化子,而是电 子的直接导电.

- Burroughes J H , Bradley D D C , Brown A R , Marks R N , Mackay
 K , Friend R H , Burn P L and Holmes A B 1990 Nature 347 539
- [2] Pei Q , Yu G , Zhang C and Heeger 1995 Science 269 1086
- [3] Heeger A J , Kivelson S , Schrieffer J R and Su W P 1988 Rev. Mod. Phys 60 781
- [4] FuRL, YeHJ, LiL et al 1998 Acta Phys. Sin. 47 94 (in Chinese] 傅柔励、叶红娟、李 蕾等 1998 物理学报 47 94]
- [5] Wang L X, Liu D S and Xie S J 2002 Acta Phys. Sin, 51 362 (in Chinese] 王鹿霞、刘德胜、解士杰 2002 物理学报 51 362]
- [6] Wang L X , Liu D S , Wei J H , Xie S J , Han S H and Mei L M 2002 J. Chem. Phys. 116 6760
- [7] Zhao E H, Fu R T, Sun X, Fu R L, Zhu J H, Zhang Z L and Jiang X Y 1998 Acta Phys. Sin. 47 2031 (in Chinese] 赵二海、傅荣 堂、孙 鑫、傅柔励、褚君浩、张志林、蒋雪茵 1998 物理学报 47 2031]

- [8] Zhang X J, Li G Q and Sun X 2002 Acta Phys. Sin. 51 134 (in Chinese J 张锡娟、李广起、孙 鑫 2002 物理学报 51 134]
- [9] Ono Y, Terai A J 1990 Phys. Soc. Jpn. 59 2893
- [10] Kuwabara M , Ono Y and Terai A , 1991 Phys. Soc. Jpn. 60 1286
- [11] Rakhmanova S V and Conwell E M , 2000 Synth. Met. 110 37
- [12] Rakhmanova S V and Conwell E M 1999 Appl. Phys. Lett. 75 1518
- [13] Johansson Åsa and Stafström Sven 2001 Phys. Rev. Lett. 86 3602
- [14] Johansson Åsa and Stafström Sven , 2002 Phys. Rev. B 65 5207
- [15] Ambrosch-Draxl C, Majewski J A, Vogl P and Leising G 1995 Phys. Rev. B 51 9668
- [16] Shimoi Y and Abe S 1994 Phys. Rev. B 50 14781
- [17] Su W P , Schrieffer J R and Heeger A J 1980 Phys. Rev. B 22 2099
- [18] Chayet H, Pogreb R and Davidov D 1997 Phys. Rev. B 56 R12702

Dynamics of polarons and bipolarons in nondegenerate polymers *

Wang Lu-Xia Zhang Da-Cheng Liu De-Sheng Han Sheng-Hao Xie Shi-Jie[†]

(School of Physics and Microelectronics , Shandong University ,State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 ,China)

(Received 20 November 2002; revised manuscript received 31 December 2002)

Abstract

We investigate theoretically the dynamic process of polarons and bipolarons in nondegenerate polymers. In a low field, it is bigger that the carriers are charged polarons or bipolarons, their lattice configurations and charge densities move together all along. The velocity of polarons is bigger than that of bipolarons in the same system. Both polarons and bipolarons have their saturated velocities. The saturated velocities decrease with the increase of the nondegenerate parameters. In a high electric field, the electronic states of polarons and bipolarons are dissociated from their lattice states, and move with high velocities. In this case, the carriers are electrons rather than polarons or bipolarons.

Keywords : polaron , bipolaron , dynamic simulation PACC : 7280 , 7123 , 7138 , 7210

^{*} Project supported by the National Natural Science Foundation (Grant Nos. 90103034, 10074040, 60176021).

[†]E-mail: xsj@sdu.edu.cn