磁共振法研究(Fe_{1-x}Co_x)₄Zr_{3.5}Nb_{3.5}B₈Cu₁ 纳米晶薄带 的磁各向异性

侯碧辉^{1)*} 刘凤艳¹⁾ 郭慧群²⁾

¹(北京工业大学应用数理学院,北京 100022)²(中国科学院物理研究所磁学国家重点实验室,北京 100080) (2002 年 12 月 23 日收到 2003 年 1 月 20 日收到修改稿)

铁磁共振 FMR)实验研究 $Fe_{1-x} Co_x$)₄ $Zr_{3.5}$ Nb_{3.5} B₈ Cu₁($x = 0.0 \ 0.2 \ 0.4 \ 0.6 \ , 0.8$)合金薄带的各向异性 ,易轴在 薄带的横向方向 ,同等宽度样品的各向异性常数 K' 随 Co 掺杂量的增加而减小 , K' 值在 4.67 × 10⁻⁵ J/n(x = 0.0)到 2.54 × 10⁻⁵ J/m⁴(x = 0.8)之间 . 由于磁化率的虚部 $\chi''(H)$)随磁场强度 H 非线性变化 ,在低场(0—12 mT)有一个与 FMR 信号强度相当的低场非共振信号 . 特别是对 $Fe_{84} Zr_{3.5} Nb_{3.5} B_8 Cu_1$ 合金薄带的磁化 ,在可逆磁化(0—2.0 mT)和趋 近饱和磁化(9.0—12 mT)区域 , $d\chi''/dH = 0$;不可逆畴壁移动过程中 ,交流磁化率虚部 $\chi''(H)$ 与磁场强度的 n 次方 即 H'($n \ge 3$)有关 ;在磁畴转动过程中 $\chi'(H)$ 正比于 H²(瑞利区) , $\frac{d\chi''}{dH}$ 为常数 ;而且发现 ,有不可逆畴壁移动-磁畴转 动三段交替变化的过程 ,此过程对应三种磁畴的消失过程.

关键词:铁磁共振,各向异性常数,低场非共振信号,磁化过程 PACC:7630,7560,7570K

1.引 言

在对 ($Fe_{1-x}Co_x$)₄₄Zr_{3.5} Nb_{3.5}B₈Cu₁(x = 0.0 0.2, 0.4 0.6, 0.8)系列纳米微晶合金薄带的静态磁性及 磁电阻特性较为全面研究的基础上^[1],我们用电子 自旋共振(ESR)谱仪对样品的动态磁特性进行了研 究.由于交流磁化率的虚部 χ'' 随磁场强度 *H* 非线性 变化,在低场(0.02 T 以下)样品的非共振信号与电 子自旋的一致共振(即铁磁共振,FMR)信号强度相 当.薄带样品的 FMR 谱是各向异性的.本文就 Fe₈₄ Zr_{3.5} Nb_{3.5}B₈Cu₁ 合金薄带样品的低场非共振信号进 行研究,并对 ($Fe_{1-x}Co_x$)₄₄Zr_{3.5} Nb_{3.5}B₈Cu₁ 系列合金 薄带的各向异性 FMR 谱进行分析,计算各向异性 常数 *K*.

顺磁状态是磁矩无序的情况.在顺磁材料中磁 性离子的电子自旋之间没有交换耦合作用,磁化率 χ 是一个数值较小的常数(大约为 10^{-4} — 10^{-6}),也 就是说磁化强度 *M* 和磁场强度 *H* 是线性关系, χ = M/H,在外磁场 H 不太大的情况下, χ 与磁场 H 无 关.归一化磁共振实验测量的是微波交变磁化率 χ = χ' + i χ'' 的虚部 χ'' 随外磁场 H 变化的谱线; ESR 谱仪测量的是 χ'' 的一次微分 d χ''/dH 随外磁场 H 变 化的 d $\chi''/dH-H$ 谱线.顺磁材料的 χ'' 是一个常数,在 没有共振峰时, $d\chi''/dH = 0$,因而在此情况下,顺磁 共振谱线中共振峰的线宽很窄.顺磁样品的磁化过 程是可逆的,在磁场强度 H 退为零时磁化强度 M 也 为零.M-H 关系与磁化历史无关.

铁磁材料中磁性离子的电子自旋之间有交换耦 合作用,磁化率 χ 不仅比顺磁材料大得 σ (大约为 1—10⁴),而且不是一个常数,也就是说,磁化率 χ 与 磁场强度 H 有关.对 FMR 谱,不仅其信号强度比顺 磁样品的 ESR 谱强得 σ ,而且还有一些与材料的铁 磁性相关的现象值得注意^[2,3].铁磁样品的磁化过程 是不可逆的,M-H 关系与磁化历史有关.M-H 曲线 呈现磁滞回线^{4,5]}.特别是在低场,磁化率 χ (H)随 磁场强度 H 变化很大, χ "不是一个常数^[6].

由于样品制备中机械应力的作用,许多铁磁薄

带的易磁化轴是在沿薄带长度的方向,而经 650 °C 热处理的非晶合金薄带($Fe_{1-x}Co_x$), $Zr_{3.5}Nb_{3.5}B_8Cu_1$ 系列,观察样品的磁畴可以明显地看到占主导的是 沿薄带宽度方向的条形磁畴⁷¹,即样品的易磁化轴 是沿薄带宽度的方向.样品的厚度约 17 μ m,晶格常 数为 0.2830—0.2862 nm,由于样品是由非晶基质经 热处理晶化而成,所以有相当多的空位,样品的密度 减小,约为 4.9 g/cm³.其平均晶粒尺寸相差较大,磁 性和磁电阻特性也随 Co 掺杂量的增加有明显不同, 但都是软磁性的,矫顽力 H_c 小于 31 A/m.关于五个 样品的一些实验研究结果见表 1^[1].

表 1 样品(Fe_{1-x}Co_x)₄ Zr_{3.5}Nb_{3.5}B₈Cu₁ 的一些实验研究结果

X	平均粒径	比饱和磁化强度 $\sigma_{ m s}$	矫顽力 H_{c}	晶格常数
	/nm	/(A•m/kg)	/(A/m)	/nm
0.0	10.70	159	1.92	0.2862
0.2	7.80	177.6	22.2	0.2858
0.4	7.25	147.5	19.4	0.2853
0.6	6.8	164.4	25.6	0.2845
0.8	6.4	115.6	30.38	0.2830

2. 实 验

利用熔旋法在氩气气氛保护下制备了系列铁磁 样品(Fe_{1-x}Co_x)₄Zr_{3.5}Nb_{3.5}B₈Cu₁快淬非晶薄带,铜 辊转速约为 40 m/s,然后在 10⁻³ Pa 的真空条件下在 650℃对非晶薄带进行 20 min 热处理,选取样品的坐 标 x 在薄带长度的方向(纵向),y 在薄带宽度的方 向(横向),z 在垂直薄带平面的方向;球坐标中外磁 场 H 与样品的取向关系为(a)H 在 z 方向 θ = 0°, (b)H 在 x 方向 θ = 90°, φ = 0°(c) H 在 y 方向 θ = 90°, φ = 90°.

通常用于磁共振测量的 ESR 谱仪的磁铁的磁 场强度 H 只能有强弱变化,不能向负磁场方向反 向,而且最小磁场不为零,大约有 0.002 至 0.004 T 的剩余磁场.我们对通用的 ESR 谱仪的磁铁的磁场 扫描系统进行改进,使磁场扫描能从 – 0.004 T 开 始,这样可以观测到磁场零点的情况和有剩余磁化 强度时的情况^[8].

实验是在室温条件下进行的,ESR 谱的频率为 9.76 GHz.再加上 ESR 测量中有交变的微波,起到对 样品退磁化的作用,样品的 ESR 谱几乎是可重 复的.

3. 结果和分析

3.1. 五个样品的 FMR 实验结果

进行 FMR 实验的五个样品的尺寸和按样品尺 寸比例计算设定的退磁因子 N 见表 2.

表 2 五个样品的 FMR 实验的样品尺寸和设定的退磁因子 N

x	D/mm	W/mm	L/mm	N_z	N_y	N_x
0.0	0.017	1.1	3.6	0.98022	0.01515	0.00463
0.2	0.017	0.9	2.2	0.97407	0.01840	0.00753
0.4	0.016	0.8	3.8	0.97636	0.01453	0.00411
0.6	0.021	1.4	3.0	0.97847	0.01463	0.00685
0.8	0.017	1.0	3.0	0.97783	0.01662	0.00554

FMR 实验表明薄带有明显的各向异性,薄带的 横向是易轴的方向,这与磁畴观察的结果是一致 的^[7].外磁场 *H* 与样品取向关系的各向异性 ESR 谱 明显反映出这一点,共振磁场 $H_z > H_x > H_y$.由 FMR 实验可求得五个样品各向异性常数 *K*.

以(θ , φ)标志磁化矢量 M_s 在样品中的方位, 并设定恒定磁场 H 的位置为(θ_B , φ_B).f 为微波频 率 $\omega = 2\pi f$, γ 为旋磁比,E 为样品单位体积的自 由能.

$$E = E_{\rm B} + E_{\rm d} + E_{\rm k} , \qquad (1)$$

其中 $E_{\rm B}$ 为样品在外磁场中的能量 , $E_{\rm a}$ 为退磁场 能 , $E_{\rm A}$ 为各向异性能 ,分别表示如下:

$$E_{\rm B} = -\boldsymbol{M} \cdot \boldsymbol{B} = -\boldsymbol{M}\boldsymbol{B} [\sin\theta_{\rm B}\sin\theta\cos(\varphi - \varphi_{\rm B}) + \cos\theta\cos\theta_{\rm B}], \qquad (2)$$

$$E_{\rm d} = -\frac{1}{2}\boldsymbol{M} \cdot \boldsymbol{B} = -\frac{1}{2}\mu_{0}\boldsymbol{M} \cdot \boldsymbol{H}_{\rm d}$$

$$= \frac{1}{2}\mu_{0}\boldsymbol{M}^{2}(N_{x}\sin^{2}\theta\cos^{2}\varphi + N_{y}\sin^{2}\theta\sin^{2}\varphi)$$

+
$$N_z \cos^2 \theta$$
), (3)

$$E_{\rm k} = k\cos^2\alpha = k\sin^2\theta\sin^2\varphi , \qquad (4)$$

α 为 *M* 与易轴(在 *y* 方向)的夹角.特别注意到 ,在 $\theta_{\rm B} = 90^{\circ}, \varphi_{\rm B} = 90^{\circ}, \varphi_{\rm B} = 90^{\circ}, \varphi_{\rm B} = 90^{\circ}, \varphi = 90^{\circ}. K$ 为各向异性常数 ,样 品是纳米多晶 ,各向异性主要源于制备时的应力因 素^[1,7].由平衡条件

$$\frac{\partial E}{\partial \theta} = 0$$
, $\frac{\partial E}{\partial \varphi} = 0$, (5)

并利用试探方程式

$$\left(\frac{\omega}{\gamma}\right)^{2} = \left[B_{i} + (N_{k} - N_{i})\mu_{0}M\right]$$

$$\times \left[B_{i} + (N_{j} - N_{i})\mu_{0}M\right]$$

$$\left(i \ j \ k = x \ y \ z\right)$$
(6)

得到旋磁比 γ ,从而通过共振方程式"」

$$\left(\frac{\omega}{\gamma}\right)^2 = \frac{1}{M_s^2 \sin^2 \theta} \left[\frac{\partial^2 E}{\partial \theta^2} \frac{\partial^2 E}{\partial \phi^2} - \left(\frac{\partial^2 E}{\partial \theta \partial \phi}\right)^2\right] \quad (7)$$

解出各向异性常数 *K*.对于每一个点(θ_{B} , φ_{B} ,*B*),对 应于上面的(5)(6)(7)三个方程,可以取方程联 立,解出 *M* 的方位角(θ , φ).当外加磁场在易轴方 向上时,起作用的是 *N_y*, 而 *N_x* 和 *N_z* 都为零.利用前 面设定的 *N_x*,*N_y*,*N_z* 可以解出各向异性常数 *K*.为 了便于比较,用样品宽度 *W* 除*K*,得到 *K'*.表3为解 出的各向异性常数.

表 3 由 FMR 实验求得的五个样品各向异性常数 K_w 及 与样品宽度 W 的比值 K' (W × 10³)

x	W/mm	$K \not (10^{-5} \text{J/m}^3)$	K' (W × 10 ³) (10 ⁻⁵ J/m ⁴)
0.0	1.1	5.14	4.67
0.2	0.9	3.99	4.43
0.4	0.8	3.39	4.24
0.6	1.4	3.76	2.68
0.8	1.0	2.54	2.54

从表 3 可以看出各向异性常数 K 随着 x 的增 加而减小 ,即在合金中的 Co 含量增高 ,各向异性常 数减小 ,只有 x = 0.6 的样品有异常 ,因为它是最宽 的 ,而 K' = K/W 就明显地是单调地随着 x 的增加而 减小.

3.2. 样品(x=0.0)的低场信号分析

当外加磁场在易轴方向上($\theta_{\rm B} = 90^{\circ}$, $\varphi_{\rm B} = 90^{\circ}$) 时,五个样品都有两个信号峰,低场的峰是非共振信 号 较高磁场的峰是 FMR 信号,图 1 是在零至 0.6 T 磁场范围,样品(x = 0.0)的 ESR 谱.低场的峰信号 随 $\varphi_{\rm B}$ 角的减小变化不大,FMR 信号随 $\varphi_{\rm B}$ 角的减小 向高场移动.当加在样品(x = 0.0)上的磁场在易轴 方向上时,低场的峰信号出现三个平台.图 2 是 -4 mT至 40 mT 磁场范围样品的非共振信号 ESR 谱,即图 1 中的低场峰信号.

把图 2 的低场峰信号分为四部分,也就是磁化 过程的四个区域.

图 1 零至 0.6 T 磁场范围, Fe₈₄ Zr_{3.5} Nb_{3.5} B₈ Cu₁ 样品的 ESR 谱

图 2 - 4 mT 至 20 mT 磁场范围 Fe₈₄Zr_{3.5} Nb_{3.5}B₈Cu₁ 样品的 非共振信号 ESR 谱

1.起始磁化区域 外磁场很小(从零至 2.0 mT),是可逆磁化过程,这个区域又称为可逆磁化区域 微观上是可逆畴壁位移区域.注意到通用的 ESR 谱仪测量的是 χ'' 的一次微分 $d\chi''/dH$ 随外磁场*H* 的 变化,在这个区域 $d\chi''/dH = 0$,即交流磁化强度 *M* 随外磁场*H* 的变化是线性的.

2.陡峻区域 外磁场为 2.0 mT 至 4.2 mT 较弱 磁场范围. 当磁场变化很小时,磁化强度 *M* 或磁感 应强度 *H* 的变化十分显著且急剧地增加, $d\chi''/dH$ 单调增加,是不可逆磁化过程,微观上是不可逆畴 壁位移区域.通常会出现巴克豪森跳跃(Barkhausen jumps)地急剧变化过程⁴¹,但在我们的样品中没有 测到相应的信号.因为在发生巴克豪森跳跃的磁场 点, χ'' -*H* 是不连续函数,就会出现 $d\chi''/dH$ -*H* 不连续 变化的奇点,ESR 谱线会有两个以上很尖锐的 $d\chi''/$ *dH*-*H* 峰^[6,0,11].这个区域也叫最大磁导率区域,磁 化率 χ 很大并达到最大值(χ_{max}).ESR 谱实验不能 得到 χ_{max} 的数值,但可以得出达到 χ_{max} 时的磁场 H_m ,该样品(x = 0.0)的 H_m 为 4.2 mT.

3.中等磁场范围内(大约4.2—9.0 mT), 微观上

是不可逆畴壁位移及磁畴磁矩转动的区域 通常在 铁磁学中认为是瑞利(Rayleigh)区域,根据实验规 律 瑞利近似描述磁化曲线规律的经验公式为

$$M = aH + bH^2 \tag{8}$$

如果是这样,由于在瑞利区域(8)式中没有比 H² 更 高次的项,而 ESR 谱所观测的是 $d\gamma''/dH$ 随 H 的变 化 即 $d\gamma''/dH$ 为一常数 b ,测到的应当是一条水平 线.从图 2 看出,磁场在 4.2—9.0 mT 范围,只有三 小段是 dy"/dH 为水平线的区域 ,分别为(a) 磁场在 4.8—5.2 mT ,为了便于比较 ,假设常数相对值 b1 = 1.0,(b)磁场在 5.8—6.4 mT,常数相对值 b2= 0.85,(c)磁场在 8.0—8.5 mT,常数相对值 b3 = 0.60.被它们隔开的其余区域, dy"/dH 不是常数, 即在其余区域 8) 武中应当有比 H² 更高次的项 ,此 区域应当与不可逆畴壁位移对应,这样,就可以从 ESR 谱中把微观上不可逆畴壁位移和磁畴磁矩转动 的区域区分开来,不可逆畴壁位移对应 $d\chi''/dH$ 不 是常数的区域,磁畴磁矩转动对应 dγ″/dH 是常数 的区域,而且可以认为在每段水平线的高场端 5.2 mT 6.4 mT 8.5 mT ,分别是对应着某一种磁畴消失 的磁场值.

4. 趋近饱和磁化区域 在强磁场(9.0 mT 以 上 作用下 磁化强度 M 随磁场 H 变化比较缓慢 磁 化曲线变化比较平缓 ,最后 ,M 随 H 变化而逐渐趋 于技术磁化饱和.磁化达到饱和需要较强的磁场,而 所获得的磁化强度 M 增加量很小,磁化率 γ'' 很小,

4 结 论

从以上对($Fe_{1-x} Co_x$)₄ Zr_{3.5} Nb_{3.5} B₈ Cu₁(x = 0.0, 0.2 0.4 0.6, 0.8) 合金薄带的实验和 FMR 及 ESR 谱的分析可以得出:

 $(\text{Fe}_{1-x} \text{Co}_x)_{4} \text{Zr}_{3.5} \text{Nb}_{3.5} \text{B}_8 \text{Cu}_1 (x = 0.0, 0.2, 0.4),$ 0.6, 0.8 合金薄带的各向异性常数 K 随 x 的增加 而减小,即在合金中 Co的含量增高,各向异性常数 减小.实验中只有 x = 0.6 宽度 D = 1.4 mm 的样品 有异常 因为它是最宽的 如果令各向异性常数除以 其带宽 即 K' = K/D 则 K'就是单调的随着 x 的增 加而减小的.

对(Fe_{1-x} Co_x)₄ Zr_{3.5} Nb_{3.5} B₈Cu₁(x = 0.0, 0.2, 0.4 0.6, 0.8) 合金薄带的 ESR 谱的分析可以得出, Fe₈₄Zr₃₅Nb₃₅B₈Cu₁合金薄带中包含三种磁畴,谱图 中的每一个平台,即 χ"(H)与 H² 成正比关系的部 分 都对应一种磁畴磁矩的转动 而且可以认为在每 段水平线的高场端 5.2 mT 6.4 mT 8.5 mT 是对应 着某一种磁畴消失的磁场值;而其他各段,即γ"(Η) 与 Hⁿ(n≥3)有关的各部分则对应不可逆畴壁位 移.

随着直流磁场 H 的增强 从不可逆畴壁移动逐 渐转化到磁畴转动以至消失,这是微观的磁畴变化 的宏观表现.

- [1] He J , Guo H Q , Shen B G et al 1999 Acta Phys. Sin.(Oversae Edition) 8 208
- [2] Hou B H ,Li Z W ,Chen Y T 2000 Chinese J. Magn. Reson. 17 83 (in Chinese] 侯碧辉、李志伟、陈裕涛 2000 波谱学杂志 17 83]
- Hou B H , Shen B G et al 1995 J. Mag. Mag. Materials. 140 -[3] 144 327
- [4] Chen C W 1977 Magnetism and Metallurgy of Soft Magnetic Materials(North-Holand Publishing Company) p63, 62, 68
- Zhong W D 1987 Ferromagnetism (volume 2) (Beijing : Science [5] Press) p181 ,187(in Chinese] 钟文定 1987 铁磁学(中册) 北 京科学出版社)第181,187页]
- Liao S B 1988 Ferromagnetism(volume 3) Beijing Science Press) [6]

p89,171(in Chinese] 廖绍彬 1988 铁磁学(下册) 北京 科学 出版社)第89,171页]

- [7] Guo H Q , Kronmueller H et al 2000 Phys. Rev. B 62 5760
- Hou B H ,Xu Y X ,Yi S et al 1997 Chinese J. Magn. Reson. 14 [8] 63(in Chinese] 侯碧辉、睢云霞、易 俗等 1997 波谱学杂志 14 163]
- [9] Maksymowicz L J, Maksymowicz A Z and Jankowski H 1988 J. Magn. Magn. Mater. 7311
- [10] Seavey M H and Tannenwald P E 1958 J. Appl. Phys. Suppl. 30 2278
- [11] Qian K M , Dai D S et al 1987 Acta Phys. Sin. 32 1557(in Chinese] 钱昆明、戴道生等 1987 物理学报 32 1557]

Study on the magnetic anisotropy of the ($Fe_{1-x}Co_x$)₈₄Zr_{3.5}Nb_{3.5}B₈Cu₁ nano-crystallite ribbon with the method of magnetic resonance

Hou Bi-Hui¹) Liu Feng-Yan¹) Guo Hui-Qun²)

¹ (College of Mathematics and Physics, Beijing University of Technology, Beijing 100022, China)

² (Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Science, Beijing 100080, China)

(Received 23 December 2002; revised manuscript received 20 January 2003)

Abstract

We have carried out an experimental study based upon the ferromagnetic resonance (FMR) on the anisotropy of alloy ribbons of ($Fe_{1-x}Co_x$)_{k4}Zr_{3.5}Nb_{3.5}B₈Cu₁(x = 0.0, 0.2, 0.4, 0.6, 0.8). The easy axes of the samples are in the lateral direction of the ribbons, While the single – axis anisotropy constant K' of the samples having the same width decreases as the amount of Co increases. The value of K' lies between 4.67×10^{-5} J/m⁴(x = 0.0) and 2.54×10^{-5} J/m⁴(x = 0.8). Since the imaginary part χ'' of the alternating current magnetic susceptibility changes nonlinearly with the magnetic field H, there is a low field (0-12 mT) non-resonance signal having a comparable strength with that of the ferromagnetic resonance signal. It is found through the study on the magnetic process of the alloy ribbon of $Fe_{84}Zr_{3.5}Nb_{3.5}B_8Cu_1$ that $d\chi''/dH = 0$ in the regions of the reversible (0-12 mT) and saturated (9.0 mT—12 mT) magnetization that $\chi''(H)$ is related to the *n*-th power of H, i.e., $H''(n \ge 3)$ when the domain wall motion is nonreversible ; and χ'' is related to H^2 during the domain rotation (Rayleigh region , $\frac{d\chi''}{dH}$ is a constant). Specifically, it is found that the $\chi''(H)$ proportional to H^2 and that proportional to $H''(n \ge 3)$ appear alternatively in three sections , corresponding to the disappearance of different domains.

Keywords : ferromagnetic resonance , anisotropy constant , low field non-resonance signal , magnetic process PACC : 7630 , 7560 , 7570K