一类非线性演化方程的新多级准确解*

付遵涛 刘式适 刘式达

(北京大学物理学院,北京 100871)

(2003年1月8日收到 2003年2月28日收到修改稿)

在 Lamé 方程和新的 Lamé 函数的基础上,应用小扰动方法和 Jacobi 椭圆函数展开法求解一类非线性演化方程(如 mKdV 方程,非线性 Klein-Gordon 方程 [[等)获得多种新的多级准确解,这些多级准确解对应着不同形式的周期 波解,这些解在极限条件下可以退化为多种形式的孤立波解,如带状孤立子、钟形孤立子等,

关键词:Jacobi 椭圆函数, Lamé 函数, 多级准确解, 非线性演化方程, 扰动方法

PACC: 0340K

1. 引 言

寻找非线性演化方程的准确解在非线性问题中占有很重要的地位.同时,对这些解的稳定性的讨论有助于了解这些相干结构的演化特性.在文献 1.2]中, Lamé 函数 $^{[3]}$ 、Jacobi 椭圆函数展开法 $^{[4-7]}$ 和小扰动展开法 $^{[8-10]}$ 被尝试应用于探讨这方面的问题,得到了一些初步的结果.事实上,以函数 y(x)表述的Lamé 方程 $^{[3]}$

$$\frac{d^2 y}{dx^2} + [\lambda - n(n+1)m^2 \operatorname{sn}^2 x]y = 0$$
 (1)

有丰富的内容值得探讨,这里 λ 为本征值, $\sin x$ 为 Jacobi 椭圆正弦函数^{3,9]},m 为模数(0 < m < 1),m n 通常为正整数.在文献 1,2]中,我们仅仅讨论了 n = 3 和 n = 2 时 Lamé 方程(1)部分解的情况,并把它们应用到求解非线性演化方程解的稳定性,得到非线性演化方程多级准确解中存在的不变性^{2]}.在本文中,从 Lamé 方程(1)中将得到更多的 Lamé 函数,并把这些 Lamé 函数应用到某些非线性演化方程的求解中,可以得到更多的新的多级准确解.

在这里,我们进一步考虑 n=2 时 Lamé 方程 (1)的解. 我们知道,在 $\lambda=(1+m^2)$ 和 n=2 时, Lamé 方程(1)的解为 Lamé 函数 $\operatorname{cn} x \operatorname{dn} x^{[12]}$,为了讨论方便,我们把它定义为

$$L_2^S(x) \equiv \operatorname{cn} x \operatorname{dn} x. \tag{2}$$

对应的方程为

$$\frac{\mathrm{d}^2 L_2^S}{\mathrm{d}x^2} + [(1 + m^2) - 6m^2 \mathrm{sn}^2 x] L_2^S = 0. \quad (2')$$

当 n=2 时 ,Lamé 方程(1)还存在两类显著的解 ,当 $\lambda = (1+4m^2)$ 时 ,解为 $\operatorname{sn} x \operatorname{dn} x$,定义为

$$L_2^c(x) \equiv \operatorname{sn} x \operatorname{dn} x.$$
 (3)

对应的方程为

$$\frac{\mathrm{d}^2 L_2^c}{\mathrm{d}x^2} + \left[(1 + 4m^2) - 6m^2 \operatorname{sn}^2 x \right] L_2^c = 0. \quad (3')$$

当 $\lambda = (4 + m^2)$ 时,解为 $\operatorname{sn} x \operatorname{cn} x$ 定义为

$$L_2^d(x) \equiv \operatorname{sn} x \operatorname{cn} x. \tag{4}$$

对应的方程为

$$\frac{d^2 L_2^d}{dx^2} + [(4 + m^2) - 6m^2 \operatorname{sn}^2 x] L_2^d = 0. \quad (4')$$

下面我们来说明这些解在求解某些非线性演化 方程中的应用.

2. 对 mKdV 方程的应用

这里 mKdV 方程写作

$$\frac{\partial u}{\partial t} + \alpha u^2 \frac{\partial u}{\partial x} + \beta \frac{\partial^3 u}{\partial x^3} = 0.$$
 (5)

需要说明的是 (5)式中 α 和 β 是两个参数 ,当取不同的值时方程描述的系统性质会有明显的不同 .当 然 ,在适当的自变量和因变量的变化下 ,方程可以简化为只有一个控制参数的形式 .

^{*} 国家自然科学基金(批准号 40175016 40045016)资助的课题.

设它的行波解为

$$u = u(\xi),$$

$$\xi = k(x - ct),$$
(6)

其中 k 和 c 分别为波数和波速.

将(6)武代入方程(5) 求得

$$\beta k^2 \frac{\mathrm{d}^3 u}{\mathrm{d}\xi^3} + \alpha u^2 \frac{\mathrm{d}u}{\mathrm{d}\xi} - c \frac{\mathrm{d}u}{\mathrm{d}\xi} = 0. \tag{7}$$

上式对 ξ 积分一次 取积分常数为零 得到

$$\beta k^2 \frac{d^2 u}{d\xi^2} + \frac{\alpha}{3} u^3 - cu = 0.$$
 (8)

设

$$u = u_0 + \varepsilon u_1 + \varepsilon^2 u_2 + \dots, \tag{9}$$

式中 ε 为小参数($0 < \varepsilon \ll 1$), u_0 , u_1 , u_2 ,...分别代表 u 的零级、一级、二级等各级解.对应的各级方程分别为

$$\varepsilon^{0}$$
: $\beta k^{2} \frac{\mathrm{d}^{2} u_{0}}{\mathrm{d} \varepsilon^{2}} + \frac{\alpha}{3} u_{0}^{3} - c u_{0} = 0$, (10)

$$\xi^{1}: \qquad \beta k^{2} \frac{d^{2} u_{1}}{d \xi^{2}} + (\alpha u_{0}^{2} - c) u_{1} = 0 \qquad (11)$$

和

$$\varepsilon^2$$
: $\beta k^2 \frac{d^2 u_2}{d\xi^2} + (\alpha u_0^2 - c)u_2 = -\alpha u_0 u_1^2$. (12)

对上述多级近似方程求解可以得到丰富的多级 准确解.对于零级方程(10),可以应用 Jacobi 椭圆函数展开法^{4-7]}求解.若令

$$u_0 = a_0 + a_1 \operatorname{sn} \xi , \qquad (13)$$

代入方程(10)定得

$$a_0 = 0 ,$$

$$a_1 = \pm \sqrt{-\frac{6\beta}{\alpha}} mk ,$$

$$c = -(1 + m^2)\beta k^2 .$$
 (14)

因而 mKdV 方程(5)的零级准确解为

$$u_0 = \pm \sqrt{-\frac{6\beta}{\alpha}} mk \text{ sn } \xi.$$
 (15)

这是零级基本方程的周期解 ,是非线性和频散作用 平衡的必然结果 . 在 $m \rightarrow 1$ 时 , $\operatorname{sn} \xi \rightarrow \operatorname{tanh} \xi$,零级准 确解退化为

$$u_0 = \pm \sqrt{-\frac{6\beta}{\alpha}}k \tanh \xi.$$
 (15a)

这是我们常见的孤立波解,一般称作冲击波解.从 (15)和(15a)式看出,为了得到有意义的解,参数 α 和 β 的符号必须相反.不失一般性,取 $\beta > 0$,则 $\alpha < 0$ 这代表着排斥非线性作用,对应的模式在物理学各分支中有着广泛的应用.

对于一级方程(11)将(15)式代入得到

$$\frac{\mathrm{d}^2 u_1}{\mathrm{d}\xi^2} + [(1 + m^2) - 6m^2 \operatorname{sn}^2 \xi] u_1 = 0. \quad (16)$$

这正是 n = 2, $\lambda = 1 + m^2$ 的 Lamé 方程(2'). 因此 mKdV 方程(5)的一级准确解为

$$u_1 = AL_2^S(\xi) = A \operatorname{cn} \xi \operatorname{dn} \xi,$$
 (17)

式中 A 为任意常数. 这是另外一种形式的周期波解.在 $m \rightarrow 1$ 时 ,cn $\xi \rightarrow \operatorname{sech} \xi$,dn $\xi \rightarrow \operatorname{sech} \xi$,一级准确解退化为

$$u_1 = A \operatorname{sech}^2 \xi. \tag{17a}$$

这是钟形孤立波解,也称作脉冲孤立波解.

对于二级方程(12),以(17)式代入,得到

$$\frac{d^2 u_2}{d\xi^2} + [(1 + m^2) - 6m^2 \operatorname{sn}^2 \xi] u_2$$

$$= \pm \sqrt{-\frac{6\alpha}{\beta}} \frac{mA^2}{k} \operatorname{sn} \xi \operatorname{cn}^2 \xi \operatorname{dn}^2 \xi$$
 (18)

或

$$\frac{d^2 u_2}{d\xi^2} + [(1 + m^2) - 6m^2 \operatorname{sn}^2 \xi] u_2$$

$$= \pm \sqrt{-\frac{6\alpha}{\beta}} \frac{mA^2}{k} [\sin \xi - (1 + m^2) \sin^3 \xi + m^2 \sin^5 \xi].$$
(19)

这是 n=2 , $\lambda=1+m^2$ 的非齐次 Lamé 方程 ,为了求解它 ,设

$$u_2 = b_1 \operatorname{sn} \xi + b_3 \operatorname{sn}^3 \xi.$$
 (20)

将(20)式代入(19)式 定得

$$b_{1} = \mp \frac{1 + m^{2}}{12m} \sqrt{-\frac{6\alpha}{\beta}} \frac{A^{2}}{k} ,$$

$$b_{3} = \pm \frac{1}{6} \sqrt{-\frac{6\alpha}{\beta}} \frac{mA^{2}}{k} .$$
(21)

因此 "mKdV 方程的二级准确解为

$$u_{2} = \mp \sqrt{-\frac{\alpha}{6\beta}} \frac{(1+m^{2})A^{2}}{2mk} \operatorname{sn} \xi \left[1 - \frac{2m^{2}}{1+m^{2}} \operatorname{sn}^{2} \xi\right].$$
(22)

当 *m*→1 时 二级准确解退化为

$$u_2 = \mp \sqrt{-\frac{\alpha}{6\beta}} \frac{A^2}{k} \tanh \xi \operatorname{sech}^2 \xi.$$
 (22a)

这是一种新型的孤立波解.

事实上 我们还可以求得更多的多级准确解,对零级方程(10) 若令

$$u_0 = a_0 + a_1 \operatorname{cn} \xi , \qquad (23)$$

代入方程(10) 定得 mKdV 方程(5)的零级准确解为

$$u_0 = \pm \sqrt{\frac{6\beta}{\alpha}} mk \text{ en } \xi.$$
 (24)

这是另外一种周期波解. 当 $m \rightarrow 1$ 时 ,零级准确解为

$$u_0 = \pm \sqrt{\frac{6\beta}{\alpha}} k \operatorname{sech} \xi.$$
 (24a)

这是钟形孤立波解. 从(24)和(24a)式看出 ,为了得到有意义的解 ,参数 α 和 β 的符号必须相同. 不失一般性 \mathbb{R} $\beta>0$ 则 $\alpha>0$,这代表着吸引非线性作用 ,对应的模式在物理学各分支中同样有着广泛的应用. 这与(15)和(15a)式的解具有明显不同的性质 ,特别是在边界上.

对于一级方程(11)将(24)式代入得到

$$\frac{\mathrm{d}^2 u_1}{\mathrm{d}\xi^2} + \left[(1 + 4m^2) - 6m^2 \operatorname{sn}^2 \xi \right] u_1 = 0. \quad (25)$$

这正是 n = 2, $\lambda = 1 + 4m^2$ 的 Lamé 方程(3'). 因此 mKdV 方程(5)的一级准确解为

$$u_1 = AL_2^c(\xi) = A \operatorname{sn} \xi \operatorname{dn} \xi$$
, (26)

式中 A 为任意常数 . 当 $m \rightarrow 1$ 时 , 一级准确解为

$$u_1 = A \tanh \xi \operatorname{sech} \xi.$$
 (26a)

这也是一种孤立波解,一般称作带状孤立波解.

对于二级方程(12),以(26)式代入,得到

$$\frac{d^{2} u_{2}}{d\xi^{2}} + [(1 + 4m^{2}) - 6m^{2} \operatorname{sn}^{2} \xi] u_{2}$$

$$= \mp \sqrt{\frac{6\alpha}{\beta}} \frac{mA^{2}}{k} \operatorname{cn} \xi \operatorname{sn}^{2} \xi \operatorname{dn}^{2} \xi. \tag{27}$$

这是 n=2 , $\lambda=1+4m^2$ 的非齐次 Lamé 方程 ,为了求解它 ,设

$$u_2 = b_1 \operatorname{cn} \xi + b_3 \operatorname{cn}^3 \xi.$$
 (28)

将(28)式代入(27)式 ,定得 mKdV 方程的二级准确解为

$$u_2 = \pm \sqrt{\frac{\alpha}{6\beta}} \frac{(2m^2 - 1)A^2}{2mk} \operatorname{cn} \xi \left[1 - \frac{2m^2}{2m^2 - 1} \operatorname{cn}^2 \xi \right].$$
(29)

当 *m*→1 时 二级准确解为

$$u_2 = \pm \sqrt{\frac{\alpha}{6\beta}} \frac{A^2}{2k} \operatorname{sech} \, \{ 1 - 2 \operatorname{sech}^2 \, \xi \, \}.$$
 (29a)

这也是一种新型的孤立波解,

很明显,上面得到的是一类新的多级准确解.若令

$$u_0 = a_0 + a_1 \, \mathrm{dn} \, \xi \, , \tag{30}$$

可以得到另一类新的多级准确解,将(30)式代入方程(10),定得 mKdV 方程(5)的零级准确解为

$$u_0 = \pm \sqrt{\frac{6\beta}{\alpha}} k \, \operatorname{dn} \, \xi. \tag{31}$$

对于一级方程(11)将(31)式代入得到

$$\frac{\mathrm{d}^2 u_1}{\mathrm{d}\xi^2} + [(4 + m^2) - 6m^2 \operatorname{sn}^2 \xi] u_1 = 0. \quad (32)$$

这正是 n = 2, $\lambda = 4 + m^2$ 的 Lamé 方程(4'). 因此 mKdV 方程(5)的一级准确解为

$$u_1 = AL_2^d(\xi) = A \operatorname{sn} \xi \operatorname{cn} \xi, \qquad (33)$$
式中 A 为任意常数.

对于二级方程(12),以(33)式代入,得到

$$\frac{d^2 u_2}{d\xi^2} + [(4 + m^2) - 6m^2 \operatorname{sn}^2 \xi] u_2$$

$$= \mp \sqrt{\frac{6\alpha}{\beta}} \frac{A^2}{k} \operatorname{dn} \xi \operatorname{cn}^2 \xi \operatorname{sn}^2 \xi.$$
 (34)

这是 n = 2 , $\lambda = 4 + m^2$ 的非齐次 Lamé 方程 ,为此 ,设 $u_2 = b_1 \, dn \, \xi + b_3 \, dn^3 \, \xi$. (35)

将(35)式代入(34)式,定得 mKdV 方程的二级准确解为

$$u_2 = \pm \sqrt{\frac{\alpha}{6\beta}} \frac{(2 - m^2)A^2}{2m^4k} \operatorname{dn} \xi \left[1 - \frac{2}{2 - m^2} \operatorname{dn}^2 \xi \right].$$
(36)

当 $m \rightarrow 1$ 时,各级近似解分别退化为(24a)(26a)和(29a)三种形式的孤立波解.

3. 对非线性 Klein-Gordon 方程(Ⅱ)的 求解

这里非线性 Klein-Gordon 方程(Ⅱ)的形式为

$$\frac{\partial^2 u}{\partial t^2} - c_0^2 \frac{\partial^2 u}{\partial x^2} + \alpha u - \beta u^3 = 0.$$
 (37)

将(6)式代入方程(37)求得

$$k^{2}(c^{2} - c_{0}^{2})\frac{d^{2}u}{d\xi^{2}} + \alpha u - \beta u^{3} = 0.$$
 (38)

将(9)式代入方程(38),求得它的零级、一级和二级 方程分别为

$$\varepsilon^{0}$$
: $k^{2}(c^{2}-c_{0}^{2})\frac{d^{2}u_{0}}{d\xi^{2}}-\beta u_{0}^{3}+\alpha u_{0}=0$, (39)

$$\varepsilon^1$$
: $k^2(c^2 - c_0^2) \frac{d^2 u_1}{d \varepsilon^2} + (\alpha - 3\beta u_0^2) u_1 = 0 (40)$

和

$$\varepsilon^{2} : k^{2}(c^{2} - c_{0}^{2}) \frac{d^{2}u_{2}}{d\xi^{2}} + (\alpha - 3\beta u_{0}^{2})u_{2} = 3\beta u_{0}u_{1}^{2}.$$
(41)

对于零级方程(39)应用(13)式,很容易求得

$$u_{0} = \pm \sqrt{\frac{\chi (c^{2} - c_{0}^{2})}{\beta}} mk \text{ sn } \xi ,$$

$$\left(k^{2} = \frac{\alpha}{(1 + m^{2})(c^{2} - c_{0}^{2})}\right). \tag{42}$$

这就是非线性 Klein-Gordon 方程 37)的零级准确解. 将(42)式代入一级方程(40),得到

$$\frac{\mathrm{d}^2 u_1}{\mathrm{d}\xi^2} + [(1 + m^2) - 6m^2 \mathrm{sn}^2 \xi] u_1 = 0. \quad (43)$$

这正是 n=2 , $\lambda=1+m^2$ 的 Lamé 方程 2') 因此 $u_1=AL^S(\xi)=A \text{ cn } \xi \text{ dn } \xi$,

式中 A 为任意常数.这就是非线性 Klein-Gordon 方程 37 的一级准确解.

将(44)式代入(41)式 求得二级方程为

$$\frac{d^{2} u_{2}}{d\xi^{2}} + [(1 + m^{2}) - 6m^{2} \operatorname{sn}^{2} \xi] u_{2}$$

$$= \pm 3 \sqrt{\frac{2\beta}{(c^{2} - c_{0}^{2})}} \frac{mA^{2}}{k} \operatorname{sn} \xi \operatorname{cn}^{2} \xi \operatorname{dn}^{2} \xi.$$
 (45)

将(20) 武代入(45) 武 定得

$$u_{2} = \mp \frac{1 + m^{2}}{2mk} \sqrt{\frac{\beta}{\chi c^{2} - c_{0}^{2}}} A^{2} \operatorname{sn} \xi$$

$$\times \left[1 - \frac{2m^{2}}{1 + m^{2}} \operatorname{sn}^{2} \xi \right]. \tag{46}$$

类似地 我们可以得到其他两类的多级准确解. 当 $\lambda = 1 + 4m^2$ 时 零级准确解为

$$u_0 = \pm \sqrt{-\frac{2(c^2 - c_0^2)}{\beta}} mk \text{ cn } \xi.$$
 (47)

一级准确解为

$$u_1 = AL_2^c(\xi) = A \operatorname{sn} \xi \operatorname{dn} \xi.$$
 (48)

二级准确解为

$$u_{2} = \pm \frac{2m^{2} - 1}{2mk} \sqrt{-\frac{\beta}{\chi (c^{2} - c_{0}^{2})}} A^{2} \operatorname{cn} \xi$$

$$\times \left[1 - \frac{2m^{2}}{2m^{2} - 1} \operatorname{cn}^{2} \xi\right]. \tag{49}$$

当 $\lambda = 4 + m^2$ 时 零级准确解为

$$u_0 = \pm \sqrt{-\frac{\chi (c^2 - c_0^2)}{\beta}} k \operatorname{dn} \xi.$$
 (50)

一级准确解为

$$u_1 = AL_2^d(\xi) = A \operatorname{sn} \xi \operatorname{cn} \xi.$$
 (51)

二级准确解为

$$u_{2} = \pm \frac{2 - m^{2}}{2m^{4}k} \sqrt{-\frac{\beta}{\chi (c^{2} - c_{0}^{2})}} A^{2} \operatorname{dn} \xi$$

$$\times \left[1 - \frac{2}{2 - m^{2}} \operatorname{dn}^{2} \xi\right]. \tag{52}$$

关于方程中控制参数对方程和解的性质影响与讨论 mKdV 方程类似 同样 ,各级准确解的退化也可以类似得到 ,这里就不再给出详细结果.

4. 结 论

在本文中,我们把 Jacobi 椭圆函数和多种 Lamé 函数应用求解某些非线性演化方程,得到这类非线性演化方程的多种多级准确解,同时得到了各种形式的孤立波解.当然,这里的方法也可以应用到更多的非线性演化方程或方程组.这种方法对其他方法(如齐次平衡法[11-13]、双曲正切函数展开法[14]、非线性变换法[15,16]、试探函数法[17,18]和 sine-cosine 方法[19]等)求得的非线性演化方程的孤立波解、冲击波解[11-28]和椭圆函数解[4-7,29-31]的稳定性问题是否适用还需要作进一步探讨.

- [1] Liu S K, Fu Z T, Wang Z G et al 2003 Acta Phys. Sin. **52** 1837 (in Chinese] 刘式适、付遵涛、王彰贵等 2003 物理学报 **52** 1837]
- [2] Liu S K, Chen H, Fu Z T et al 2003 Acta Phys. Sin. **52** 1842 (in Chinese] 刘式适、陈 华、付遵涛等 2003 物理学报 **52** 1842]
- [3] Wang Z X , Guo D R 1989 Special Functions (Singapore : World Scientific)
- [4] Liu S K, Fu Z T, Liu S D et al 2001 Acta Phys. Sin. **50** 2068 in Chinese] 刘式适、付遵涛、刘式达等 2001 物理学报 **50** 2068]
- [5] Liu S K, Fu Z T, Liu S D et al 2002 Acta Phys. Sin. 51 10(in Chinese] 刘式适、付遵涛、刘式达等 2002 物理学报 51 10]
- [6] Liu S D , Fu Z T , Liu S K *et al* 2002 *Acta Phys* . *Sin* . **51** 718(in Chinese] 刘式达、付遵涛、刘式适等 2002 物理学报 **51** 718]

- 7] Liu S K , Fu Z T , Liu S D *et al* 2002 *Acta Phys* . *Sin* . **51** 1923 (in Chinese 】刘式适、付遵涛、刘式达等 2002 物理学报 **51** 1923]
- [8] Liu S K , Fu Z T , Liu S D et al 2000 Phys . Lett . A 269 319
- [9] Liu S K, Liu S D 2000 Nonlinear Equations in Physics (Beijing: Peking University Press) in Chinese] 刘式适、刘式达 2000 物理学中的非线性方程(北京 北京大学出版社)]
- [10] Nayfeh A H 1973 Perturbation Methods (New York: John Wiley and Sons Inc.)
- [11] Wang M L 1995 Phys . Lett . A $\mathbf{199}$ 169
- [12] Fan E G , Zhang H Q 1998 Acta Phys. Sin. 47 353(in Chinese) [范恩贵、张鸿庆 1998 物理学报 47 353]
- [13] Fan E G, Zhang H Q 2000 Acta Phys. Sin. 49 1409 in Chinese) [范恩贵、张鸿庆 2000 物理学报 49 1409]
- [14] Fan E G 2000 Phys . Lett . A 277 212
- [15] Hirota R 1973 J. Math. Phys. **14** 810

- [16] Kudryashov N A 1990 Phys. Lett. A 147 287
- [17] Otwinowski M , Paul R , Laidlaw W G 1988 Phys . Lett . A 128 483
- [18] Liu S K , Fu Z T , Liu S D et al 2001 Appl . Math . Mech . 22 326
- [19] Yan C 1996 Phys. Lett. A 224 77
- [20] Yan Z Y , Zhang H Q , Fan E G 1999 Acta Phys. Sin. 48 1(in Chinese] 闫振亚、张鸿庆、范恩贵 1999 物理学报 48 1]
- [21] Li Z B, Yao R X 2001 Acta Phys. Sin. **50** 2062 (in Chinese **]** 李 志斌、姚若霞 2001 物理学报 **50** 2062]
- [22] Lu K P, Shi T R, Duan W S et al 2001 Acta Phys. Sin. **50** 2074 (in Chinese I 吕克璞、石太仁、段文山等 2001 物理学报 **50** 2074]
- [23] Zhang J F 1999 Chin . Phys . 8 326
- [24] Li Z B, Pan S Q 2001 Acta Phys. Sin. **50** 402(in Chinese] 李志斌、潘素起 2001 物理学报 **50** 402 1

- [25] Zhang J F 1998 Acta Phys. Sin. 47 1416(in Chinese] 张解放 1998 物理学报 47 1416]
- [26] Yan Z Y , Zhang H Q 1999 Acta Phys . Sin . 48 1962 in Chinese) [闫振亚、张鸿庆 1999 物理学报 48 1962]
- [27] Yan Z Y , Zhang H Q 1999 Acta Phys. Sin. 48 1957 in Chinese) [闫振亚、张鸿庆 1999 物理学报 48 1957]
- [28] Zhang J F Chen F Y 2001 Acta Phys. Sin. **50** 1648(in Chinese) [张解放、陈芳跃 2001 物理学报 **50** 1648]
- [29] Porubov A V 1996 Phys. Lett. A 221 391
- [30] Porubov A V , Velarde M G 1999 J. Math. Phys. 40 884
- [31] Porubov A V , Parker D F 1999 Wave Motion 29 97

New multi-order exact solutions to a kind of nonlinear evolution equations *

Fu Zun-Tao Liu Shi-Kuo Liu Shi-Da (School of Physics , Peking University ,Beijing 100871 , China) (Received 8 January 2003 ; revised manuscript received 28 February 2003)

Abstract

Based on the Lamé equation and new Lamé functions, the perturbation method and Jacobi elliptic function expansion method are applied to get the multi-order exact solutions of a kind of nonlinear evolution equations (such as mKdV equation, nonlinear Klein-Gordon equation II etc.), where some more new multi-order exact solutions are found among different nonlinear evolution equations. These multi-order exact solutions correspond to different periodic solutions, which can degenerate into different solitary wave solutions, such as band-soliton, bell-shaped solitary wave, etc.

Keywords: Lamé function, Jacobi elliptic function, nonlinear evolution equation, multi-order exact solution, perturbation method

PACC: 0340K

 $^{^{*}}$ Project supported by the National Natural Science Foundation of China (Grant Nos. 40175016 and 40045016).