钇掺杂钨酸铅晶体中的极化子和导纳谱*

沈 韩¹) 许 4^{2} 陈 敏¹) 李景德¹)

¹(中山大学物理系,广州 510275) ²(江西宜春学院物理系,宜春 336000) (2003年3月12日收到 2003年4月21日收到修改稿)

在室温至 160 ℃范围内测量了掺钇钨酸铅(PWO:Y)晶体的直流电导率,证明此时的载流子为极化子.观察到 极化子由能带导电到跳跃导电转变引起的电导率极小.在此温区的交流导纳分析给出的交流电导率比直流电导率 大三个数量级,说明此时的交流电导率主要是复介电常数的贡献.当样品的电导率和介电常数均随频率而变化时, 从交流测量只能得到样品的总的导纳谱,而不能将其中的电导谱和介电谱分开.

关键词:钨酸铅,电导谱,介电谱,导纳谱,极化子 PACC:6150,7220J

1.引 言

人工生长的钨酸铅(PbWO₄)单晶具有 CaWO₄ 型结构,点群为 C_{4h} .(WO₄)⁻²四面体构成四方晶格, Pb⁺²离子填充于其间较大的空间.掺杂 PbWO₄ (PWO)和 PbMoO₄ 晶体因可望用于声光器件在 20 世 纪 70 年代已引起注意^[1],研究表明其中出现氧离子 空位的导电.在高于 400℃时,掺杂 PWO 可以成为 快离子导体^[2]而提供重要应用.对于离子导电固体 和快离子导体 因为交流电导率和频率有关而出现 电导谱的研究,这类固体的直流电导率难以得到可 以重现的测量结果^[3].

最近,掺杂 PWO 被欧州核子研究中心选用于大型强子对撞机测量电磁辐射能量,引起了新的研究 兴趣^[4].因为在室温和不太高的温度下,微量掺杂 PWO 近于绝缘,故又可被用来作介电谱研究以查明 晶体的闪烁机理^[5].从而在物理基础上出现一个新 问题:用正弦信号对同一个样品的测量结果,应该描 述为电导谱还是介电谱?从两种描述方法分析得到 的结论是不同的.

本文实验所用 PWO:Y 晶体由提拉法生长,掺 入元素 Y 配方量 1.5×10^{-4} 晶片厚 l = 0.325 cm,两 面溅射 Au 电极,两片并联总面积 A = 12.27 cm².在 测量全过程中样品浸入硅油内,使之与空气中的氧 完全隔绝.室温下用 HP4192A 阻抗分析仪测得 10 kHz 时样品电容为 C = 88.4 pF,相对介电常数 $\varepsilon = C/C_0 = 26.4$, C_0 为真空时的电容.

2. 直流电导率

为了得到可以重现的直流测量结果,将同一电 压 U₀ = 10.0 V 相继多次反向加于样品,即令外加电 压为

$$\begin{split} & U(t) = 0, \quad t \leq 0, \\ & U(t) \equiv U(\alpha \tau + t') = (-1)^{t} U_{0}, \quad \alpha = 1 \ 2 \ 3 \cdots, \\ & \tau = 10800(s), \quad 0 < t' \leq \tau. \end{split}$$

(1) 测量 U(t)在样品中引起的电流 I(t),所用皮安培 计的灵敏度为 1 pA,由于皮安培计采用了补偿式电 路设计,它在不同量程的等效内阻 R_g 都可保持很 小的值(约为 100 Ω),而在全部测量中样品的交直 流电阻均大于 100 k Ω ,故和样品串联的 R_g 完全可 以忽略不计.为避免时间 $t' < R_g C$ 时可能出现的脉 冲电流,只读取 2 s < $t' < \tau$ 的电流 $I(\alpha \tau + t')$ 值.测 量表明,当 $\alpha \ge 4$ 时 (1)式外电压引起的电流趋向 于与 α 无关的可重现的稳定曲线 I'(t'),即得到

^{*} 广东省科技计划项目(批准号:C11102)资助的课题.

$$I(t) \equiv I(\alpha\tau + t') = (-1)^{\alpha}I'(t'),$$

$$\alpha \ge 4.$$
 (2)

由此可计算出样品的直流电导率

$$f(t') = lI'(t')/U_0A$$
, (3)

式中 t'可理解为加上外电压 U_0 后经历的时间 , $t = \alpha \tau + t'$ 记录了样品的历史. I(t)表明样品的电导率 和历史有关 ,即样品的电导具有历史记忆效应 ,只在 经历时间 $\tau = 3$ h 的正负电压多次重复作用后 ,才能 抹去记忆得到可重现的 I'(t')和 d(t')关系.

图 1 示出了 t' = 4,10,100,1000,10000 s 的一些测 量结果.当温度 T > 50 ℃时 I'(t' = 10000 s)已达稳定 值 给出样品的平衡态直流电导率 σ_d .在 50 ℃ $\geq T >$ 20 ℃温区 可用外推法估计出样品的平衡态直流电 导率 如图 1 点线所示.对于更低的温度 原则上可用 类似方法得出直流电导率.这时,体系在恒定电压下 建立稳定电流的过程更慢,要选取更大的 τ 值.

图 1 PWO: Y 晶体的直流电导率

图 1 的等 t'曲线实验结果明显地可用短划线分 成三个区. [区的测点组成一组平行直线, [] 区的测 点组成另一组平行直线, [] 区的 I'(t')随温度 T 和 时间 t'的变化显得较为复杂.离子导电的特征是电 导率只能随温度下降而单调减小^[3].但 [] 区的电导 率还出现随降温而增大的部分.由此可以断言 尽管 公认在更高温度时体系可以出现离子导电,但在实 验温区提供直流电导的载流子不是离子.

3. 极化子导电

如果认为直流电导中的载流子是极化子,则可

以解释图 1 的结果.在半导体和绝缘体中的载流子 一般都是极化子^[6].当体系的电导率不够高时,若导 带底部出现传导电子,则一个电子的电场不足以被 其他传导电子所屏蔽.这个电场将使晶格发生畸变, 后者产生的位阱反过来作用于电子使其能量降低出 现自陷,电子带着这种畸变运动便成为极化子.较低 温度下,在导带的下面附近形成极化子能带,参见图 χ a).当温度升高至转变点 T_{i} ,极化子能带改变为 分立的能级,参见图 χ b),这时极化子由一个局域 能级运动至邻近能级要跨越位垒 W_{2} .极化子能带导 电的特点是迁移率随升温而减小.极化子跨越位垒 跳跃导电的特点是迁移率随升温而增大.故在温度 T_{i} 上出现迁移率的极小^[6].图 1 的 II 区的电导率极 小就是极化子能带转变为局域能级的表现,实验给 出的 T_{i} 约为 40 °C.

掺 Y 的 PWO 中 Y⁺³离子占据 Pb⁺²位^[4].元素 Y 多出的一个价电子形成极化子. 晶体中的杂质 Y⁺³ 比所取代的 Pb⁺²多出一个正电荷,其电场形成深为 W_1 的极化子陷阱能级. 一般地,极化子处于陷阱能级而不参与导电.

图 2 极化子的两种导电态 (a)较低温度 (b)温度升至 T_t 以上

根据图 2(a),在体系的电导率中含有因子 exp(-W₁/kT),其中 k 为玻尔兹曼常数.将这个因 子分出来,便可将含时间 t'的电导率写为

 $\sigma(t') = \sigma_a(t') \exp(-W_1/kT), \quad T < T_1.(4)$ 故有

$$\log \sigma(t') = \log \sigma_a(t') - (W_1 \log e) kT,$$

$$T < T_1.$$
(5)

一般而言 $\sigma_a(t')$ 和温度 T 有关 这种关系来自迁移 率随温度的变化. 但 $\sigma_a(t')$ 随 T 的变化是缓慢的 , $\log \sigma_a(t')$ 随 T 的变化更慢. 故在温度比 T_1 低不太 多的温区 (5)式等号右端第一项可近似地认为与 T无关.这时 (5)式中 $\log \sigma(t')$ 随 1/T 的变化,如图 1 Ⅲ区的一组平行直线.由直线的斜率可得到 $W_1 =$ 0.650 eV.类似地,由图 χ b)可得

 $\log \sigma(t') = \log \sigma_b(t') - [(W_1 + W_2)\log e]kT$, $T > T_1$. (6) (6)式解释了图 1 的 [区得到的一组实验直线.由这 些平行直线的斜率可得($W_1 + W_2$) = 0.784 eV, W_2 = 0.134 eV.

图 1 的 II 区 $T \approx T_1$,因为出现迁移率转折,所以 情况比较复杂,有待进一步研究.但是,在不过问 $\sigma_a(t')和 \sigma_b(t')$ 的情况下就能得出晶体中电子能级 结构重要参数 W_1 和 W_2 ,这是上述实验方法的优 点.

价带的传导空穴也可组成极化子.这时 极化子 能带和极化子能级在价带上面附近.观察掺 Y 的 PWO 室温温差电动势,发现样品中的载流子荷负 电,故晶体中的极化子应由传导电子组成.

4. 导纳谱

用 HP4192A 阻抗分析仪测量了样品的复导纳

Y(f) = Q(f) + iB(f), (7) 式中 f 为正弦信号的频率. 样品的升温速度约 1 ℃/min 加热至所需温度后恒温约1h再进行不同 频率的测量.在最高温度160 ℃测量完毕后.再类似 地在降温过程测量一次.在相同温度相同频率上,取 升、降温测量值的平均.得到交流电导 G 和电纳 B 的温度谱示于图 3. 在 500 Hz 至 50 kHz 范围内,B 随温度 T 的变化很小,而 log G 随 1/T 的变化成一直 线.图 4 示出 B 和 G 的频率谱,样品的交流电导 G 几乎不随频率而变,log B 对 logf 作图的实验点则趋 向于与坐标轴成 45°角的直线.这表明在不太低的温 度和不太低的频率下, B 与 f 成比例.

图 1 的测量表明,建立平衡的电导率需花很长 时间,故在交流测量中必须定义复电导率

 $\sigma^*(f) = \sigma'(f) - i\sigma''(f),$ (8) 式中 σ' 为其实部 , σ'' 为其虚部.类似地,在交流测量 中复介电常数为

 $\varepsilon^*(f)\varepsilon_0 = [\varepsilon'(f) - i\varepsilon''(f)]\varepsilon_0.$ (9) 根据定义 样品的导纳 Y 可写为

 $Yl/A = \sigma^{*}(f) + 2\pi i \varepsilon^{*}(f) \epsilon_{0}.$ (10) 这里 ϵ_{0} 为真空的介电常数.由(7)-(9)式得到交流

图 4 PWO:Y 晶体导纳的频率谱

电导

$$G = (\sigma' + 2\pi f \varepsilon_0) A/l.$$
 (11)

而交流导纳

$$B = (2\pi f \varepsilon' \varepsilon_0 - \sigma'') A/l. \qquad (12)$$

可见,只测量 G 和 B 是不能确定 σ' , σ'' , ϵ' , σ'' ϵ'' 四个参数的,因为这四个参数都与频率 f 有关.

常称 $\sigma'(f)$ 为交流电导率.当 $f \rightarrow 0$ 时 原则上由 (11)式的 *G* 可以得到 $\sigma'(f \rightarrow 0)$,但它仍只是交流电 导率,而不一定是图1测出的直流电导率 σ_{d} .图4 的 测量结果表明,在低于射频范围可足以近似地认为 Q(f) = G 与 f 无关.因此

 $\sigma'(f \rightarrow 0) = Gl/A.$ (13) 图 3 右边标出了直线 *G* 相应的 $\sigma'(f \rightarrow 0)$ 的标度.在 相同温度下得到的 $\sigma'(f \rightarrow 0)$ 比图 1 的 σ_a 至少大两 三个数量级.由图 3 交流电导率直线的斜率可得激 活能 *W* = 0.530 eV,它不等于以上所述极化子导电 的 *W*₁,*W*₂ 或 *W*₁ + *W*₂.

5. 交流电导率

由于 $\sigma'(f \rightarrow 0) \gg \sigma_d$ 极化子导电在 T_i 附近的电 导率转折被 σ' 掩盖了,图 3 直线 *C* 在 T_i 上没有表 现出类似转折. σ' 可解释为 O⁻²离子空位的贡献,它 使极 化 子 的 贡 献 可 以 忽略. 在 PWO 晶 体 中, (WO₄)⁻²四面体中常出现一个 O⁻²空位^[1].在外电场 作用下,空位可由四面体的某个顶角跳至能量更有 利的另一顶角.但在实验温区,一个四面体中的 O⁻² 空位还不能迁移至邻近另一个四面体.在交变电场 作用下,空位在同一个四面体的两个顶角位置来回 跳动将提供交流电导. W 就是这种跳动的激活能.

当温度足够高时,O⁻²空位就可以由一个(WO₄)⁻²四面体迁移至邻近四面体,形成空位在样 品内的体积扩散,并提供真正的离子导电或快离子 导电.

下面再来讨论复电导率的虚部 $\sigma'(f)$.图 4 测量结果表明,当频率足够高时 B = f成比例.这可用 (12)式解释为此时 σ'' 可以略去而 $\epsilon' = f$ 无关.相应 地,图 3 中的 B 随 T 几乎不变表明 ϵ^* 的实部 ϵ' 随温 度变化很小.当温度增高时,图 4 中的 B 更快地离 开与 f 成比例的直线,变得更大.这表明(12)式中的 σ'' 为负值,且 $= \sigma''$ 随温度升高而增大,随频率增高而 减小.若 σ'' 为正并足够地大,则(12)式可以使电纳 B 为负值.在掺杂 SrTiO₃ 陶瓷中曾观察到这种情 况^[7].

以上根据图 3 和图 4 在 10 Hz 至 100 kHz 范围 的测量结果,利用基本定义的(11)和(12)式分析得 到了此频段的 $\sigma'(f)$ 和 $\epsilon'(f)$ 几乎不随 f 变化.但 $\sigma''(f)$ 和 $\epsilon''(f)$ 只能被略去,不能完全确定复 $\sigma^*(f)$ 和复 $\epsilon^*(f)$.在离子导电和快离子导电问题中,习惯 上,侧重讨论 $\sigma'(f)$ 而略去 $\sigma''(f)^{31}$.但在介电测量 中 $\epsilon'(f)$ 和 $\epsilon''(f)$ 都要同时讨论.尽管经常出现 $\epsilon'' < \sigma'/10$ 或相对更小的 ϵ'' ,其中含有的信息也是很重 要的.其实,在比图 4 更低的 0.1 Hz 至 10⁻⁶ Hz 频 段 图 1 表明 $\sigma'(f)$ 将有进一步减小.对于真正的离 子或快离子导电,难以在直流或太低的频率下定义 复 $\sigma^*(f)$,因为此时样品体内外将出现物质交换.这 涉及电化学问题,而且还和样品形状尺寸、电极性质 有关.在用阻抗分析仪测量 $\epsilon^*(f)$ 时,假设了

 $\sigma^*(f) \equiv 0.$ (14) 从而由(11)和(12)式给出了样品的电容 *C* 和损耗 角正切 $\tan \delta$,

$$C = B/2\pi f ,$$

tan $\delta = G/B$. (15)

对于电子导电的一般情况,则假设了 $\sigma^*(f) = \sigma_a$ 为 实的并与 f 无关的常数,这时

 $\varepsilon' \tan \delta = \varepsilon'' + \sigma_d / 2\pi f \varepsilon_0$. (16)

在介电测量中常视 16 元的等号右端为 ε^* 的等效虚 部 即将 σ_d 引起的损耗合并于新定义的等效 ϵ'' .若 $\sigma_d > 0$ 则当 f 足够小时将引起等效 ϵ'' 向无限大发散.

6. 讨 论

在室温至 160 ℃范围内测量了 PWO :Y 晶体的 直流电导率.发现电导率在 40 ℃附近出现极小值的 转折,证明在测量温区 PWO :Y 晶体中的载流子为 极化子.电导率极小是极化子由能带导电到跳跃导 电转变引起的.

在此温区的交流导纳分析给出的交流电导率比 直流电导率大三个数量级 说明此时的交流电导率 主要是复介电常数的贡献,传统上,将外电场引起的 体系中电荷偏离平衡位置的位移称为介电效应 除 去外电场后电荷将回到原来平衡位置,而外电场引 起电荷在体系中的迁移为电导效应 除去外场后流 过的电流不会倒流回去,在掺杂 PWO 中出现了居间 的新情况.外电场使 $(WO_4)^{-2}$ 四面体的一个 O^{-2} 空 位从一个顶角跳至另一顶角,而这两个顶角都可以 是空位的平衡位置,除去外场后空位不一定能回到 原来位置,但这个空位相应的电荷又不能从一个 $(WO_{4})^{-2}$ 四面体跳到近邻其它四面体作贯穿晶体体 积的迁移,这是一个有趣的新问题,涉及复。* 和复 σ^* 同时不可忽略地出现于同一体系. 当两者均随 频率而变时 从交流测量只能得到样品的总的导纳 谱,而不能将其中的电导谱和介电谱分开.这时,只 作导纳的频域测量不足以说明有关机理 ,还要进行 含时间的直流测量.图1得到的 $\sigma(t')$ 随时间 t' 增 大而减小的过程 就是晶体中各(WO4)⁻²四面体中可 能出现的 O^{-2} 空位跳至新平衡位置的过程, 全部空位 都跳到了能量较低的位置后 $\sigma(t')$ 便趋向于直流 σ_{d} . 这是十分缓慢的过程,T > 50 ℃时要花上万秒; $T \leq$ 50 ℃时须花更长的时间,常用的 HP4192A 阻抗分析 仪的低频限为 5 Hz 不能觉察到这个过程对频域测量 的影响. $U_{a}(t')$ 的测量可以说明这一过程. 更详细的 信息可望通过分析 d(t')随时间变化的规律得到.

根据样品在 γ 辐照后的热释光,分析可得图 2 (b)中陷阱能级距导带底部 0.97 eV,故极化子能级 与导带底部相距约 0.32 eV,此值比 W₂ 大.当温度 升高出现离子或快离子导电时,热运动足以使导电 离子在晶体内各处跳跃式地作扩散运动.这种运动 破坏了能带结构,使只占小部分的电子导电失去意 义而只需考虑离子导电.在更高温度上出现快离子 导电时 样品的电导率增大 ,使得难以在其中建立电场以产生介电效应.这时 ,复 ε^* 失去意义而只需考虑复 σ^* .

感谢中国科学院上海硅酸盐研究所冯锡淇教授提供本 实验所用的晶体.

- [1] Groenink J A, Binsma H 1979 J. Solid State Chemistry 29 227
- [2] Takai S, Sugiura K, Esaka T 1999 Mater. Res. Bull. 34 193
- [3] Solamon M B 1979 Physics of Superionic Conductors (New York : Springer)
- [4] Feng X Q, Lin Q S, Man Z Y et al 2002 Acta Phys. Sin. 51 315(in Chinese] 冯锡淇、林奇生、 振勇等 2002 物理学报 51 315]
- [5] Han B G, Feng X Q, Hu G Q et al 1998 J. Appl. Phys. 84 2831
- [6] Li Z Z 1985 Solid State Theory(Beijing: Higher Education Press) in Chinese] 李正中 1985 固体理论 北京 高等教育出版社)]
- [7] Fan Y C, Li J D, Fu D S 1995 Scientirum Naturalium Universitatis Sunyatseni 34(3)31(in Chinese] 范仰才、李景德、符德胜 1995 中山大学学报 34(3)31]

Polaron and admittance spectroscopy of yttrium-doped lead tungstate single crystal *

Shen Han¹) Xu Hua²) Chen Min¹) Li Jing-De¹)

¹⁾ (Department of Physics , Zhongshan University , Guangzhou 510275 , China)

 $^{2}\$ (Department of Physics , Jiangxi Yichun College , Yichun 336000 ,China)

(Received 12 March 2003; revised manuscript received 21 April 2003)

Abstract

Both DC and AC conductance of Y-doped PbWO₄ single crystal have been studied over a temperature range from ambient temperature to 160 $^{\circ}$ C. Results of DC conductivity indicate that the carriers in PbWO₄ in such a temperature range are polarons other than ions , for a transition of polarons from energy band conduction to hopping conduction which characterized by a minimum of conductivity has been observed. AC conductivity obtained from admittance analysis is almost 3-orders higher than that of DC analysis , it ought to be mainly ascribed to the effect of dielectric. If conductivity and dielectric constant of a given system change together with frequency , AC measurement can only yield a total admittance spectrum , but is unable to separate conductivity spectrum from dielectric spectrum.

 $\label{eq:keywords:PbWO_4 single crystal , conductance spectroscopy , dielectric spectroscopy , admittance spectroscopy , polaron PACC : 6150 , 7220 J$

^{*} Project supported by the Guangdong Provincial Key Research Project of Science and Technology , China Grant No. C11102).