扰动对一维局域模的影响*

张大成 王鹿霞 刘德胜 韩圣浩 解士杰

(山东大学物理与微电子学院,晶体材料国家重点实验室,济南 250100)(2002年12月10日收到2003年2月28日收到修改稿)

在紧束缚模型基础上,考虑到缺陷、温度、掺杂等外界因素的影响,用方形随机分布模拟了格点原子扰动对一 维局域模的影响.给出了不同扰动参数 σ 下,孤子和极化子中各个局域模的变化情况.计算发现,由于孤子 g_1 模的 钉扎效应,扰动后,弱模 g_4 定域性会得到加强,还会产生两个新定域模 g'_1 和 g'_2 ,它们与相应的 g_1 和 g_2 模有相同 的节点和宇称,极化子的 g_7 模在畸变较大时将消失,其交错模 g_5 和 g_8 均是完好的定域模.

关键词:扰动,局域模,聚合物 PACC:7830,6320,7138

1.引 言

近些年来,导电聚合物作为一种有机材料,其应 用范围越来越广,如有机发光二极管(organic lightemitting diodes,OLED)¹¹、电化学发光电池(lightemitting electronical cells,LEC 'S)²¹、以齐聚物聚噻酚 为基础的有机发光三极管³¹、太阳能电池、车载电话 和电视显示屏等.在过去的二十多年中,导电聚合物 作为新的有机电子光学材料受到广泛关注和研究, 揭示了这类材料丰富的电、磁、光特性^[41].大部分高 分子材料结构简单,具有准一维特征,通过掺杂,电 导率可从半导体水平到金属态水平^[56].

对导电聚合物开展的大量研究^{7—131}发现,其载 流子不是传统半导体材料中的电子或空穴,而是由 于电子-晶格相互作用所产生的带电元激发,如孤 子、极化子或双极化子.光吸收谱、红外、Raman 谱等 实验均证实了这些元激发的存在¹⁵¹.例如,在掺杂聚 乙炔的红外波段观察到三条吸收谱线 930,1260 和 1370 cm⁻¹,在激光诱导中三条吸收谱线为 500,1250 和 1370 cm⁻¹(图1).理论上,这些吸收谱线对应孤子 的偶宇称局域振动模.孙鑫和吴长勤等^[14,15]分别计 算了孤子和极化子中的局域模.解士杰等^[16]考虑到 聚合物链的尺寸效应、杂质钉扎效应等,研究了孤子 振动模的局域性,得到了与实验一致的结果.在他们 的理论计算中,局域模都是在完好孤子(或极化子) 态情况下得到的,没有考虑到外界扰动的影响.在实际情况中外界因素如缺陷、杂质、温度效应总是存在的,这些因素会导致系统结构对孤子(或极化子)态的偏离,从而可能会影响到孤子(或极化子)振动模的局域性.本文将外界因素模型化,并讨论在不同的扰动参数 σ 下,孤子、极化子中各局域模的变化 情况.

图 1 反式聚乙炔中掺杂吸收谱(▲)与光致吸收谱(—)

2. 模型和公式

基态简并结构的准一维高分子材料的典型代表 为反式聚乙炔[trans-(CH),],可用 SSH 哈密顿量^[17] 来描述,

^{*} 国家自然科学基金(批准号 90103034, 10074040, 60176021)资助的课题.

$$H = -\sum_{n,s} [t_0 - \alpha (u_{n+1} - u_n)] C_{n+1,s}^+ C_{n,s}$$

+ $C_{n,s}^+ C_{n+1,s}^-) + \frac{1}{2} \sum_n K (u_{n+1} - u_n)^2$
+ $\frac{1}{2} \sum M u_n^2$, (1)

式中 $C_{n,s}^{+}$ ($C_{n,s}$)表示自旋为 s 的电子在格点 n 上的 产生(湮没)算符, u_n 是第 n 原子偏离平衡态的位 移, t_0 表示均匀晶格结构最近邻格点间的电子跃迁 积分, α 表征电子-晶格相互作用的耦合常数,K 为 晶格弹性常数,M 为原子基团(CH)的质量.

通过微扰论 静态孤子(或极化子)的数值解由 下式决定:

$$u_{n} - u_{n+1} = \frac{2\alpha}{k} \Big(\sum_{\mu} 'Z_{\mu,n} Z_{\mu,n+1} - \frac{1}{N} \sum_{n}^{N} \sum_{\mu} 'Z_{\mu,n} Z_{\mu,n+1} \Big). \quad (2)$$

振动矩阵则由下式给出:

$$B_{m,n} = \frac{2}{\pi\lambda} (\delta_{m,n-1} + 2\delta_{m,n} + \delta_{m,n-1}) + 2 \cdot (-1)^{n+n} \sum_{\mu}' \sum_{\nu} \frac{C_{\mu\nu}^m C_{\mu\nu}^n}{\varepsilon_{\mu} - \varepsilon_{\nu}} , \quad (3)$$

其中

$$C_{\mu\nu}^{m} = Z_{\mu,m} (Z_{\nu,m+1} - Z_{\nu,m-1}) + Z_{\nu,m} (Z_{\mu,m+1} - Z_{\mu,m-1}).$$
(4)

(2)—(4)式中,N 为聚乙炔分子链中(CH)基团数, $Z_{\mu,n}$ 表示电子本征矢, μ 为电子态标记, ϵ_{μ} 为电子本 征能量, \sum' 表示只对电子占据态求和.将正定矩阵 { $B_{m,n}$ }对角化,就可得到振动模的本征频率和本征 矢.从前的研究中^[14,16],人们首先从(2)式得到严格 的孤子(或极化子)位形,然后通过振动矩阵,求得 其振动频率和振动模式,从而找出其局域模.

在实际材料中,外界因素对一维分子链产生的 影响,可归结为两类^[18]:一类是局域影响,即链中某 一部分格点偏离原来的理想位形;另一类是非局域 影响,即整条链的位形并非总是保持其稳定位形 {u⁰_n},而是每个格点都会有所偏离.我们用方形随 机分布来模拟非局域影响下这种可能的格点偏离.假 设晶格稳定位形为{u⁰_n},格点原子偏离的大小为 δu_n,用一随机数来表征,则键长相对于原来的偏离为

 $u'_{n} = (u_{n}^{0} - u_{n+1}^{0}) + (\delta u_{n} - \delta u_{n+1})$

 $= (u_n^0 - u_{n+1}^0) + (2R_n - 1)\sigma u_0, \quad (5)$ 式中 R_n 程 0,1 间的均匀分布的随机数,链上每个 键长的最大偏离量相应为[$-\sigma u_0, \sigma u_0$], u_0 为基态时二聚化的大小,对于聚乙炔分子链, $u_0 = 0.004$ nm σ 为扰动大小程度的参数,当 $\sigma = 2$ 时,晶格原子的扰动已达到二聚化大小.

3. 计算及讨论

对于反式聚乙炔,取参量 $t_0 = 2.5$ eV, $\alpha = 42.0$ eV/nm, K = 1870.0 eV/nm^{2[14]},在不同的扰动参数下 计算孤子、极化子中的局域模.每种情况均取多次随 机计算来分析局域模的变化.

引入定域因子 I. 来粗略地描述振动模的定域性,

$$I_{u} = \frac{\sum_{n=1}^{N} |V_{n,u}|^{4}}{\sum_{n=1}^{N} |V_{n,u}|^{2} \sum_{n=1}^{N} |V_{n,u}|^{2}}, \quad (6)$$

式中 $V_{u,n}$ 是频率为 ω_u 的振动波函数.对于完全扩展 模 , $V_{u,n}$ 近似等于 $\frac{1}{\sqrt{N}}$, $I_u = 1/N \rightarrow 0$ ($N \rightarrow \infty$);假如振 动模局域在一个格点上 ,即 $V_{n,u} = \delta_{n,n_0}$,则有 $I_u = 1$. 因此 振动模的定域性可通过定域因子的大小来反映.

3.1. 晶格无序对孤子局域模的影响

为了避免链端效应对孤子局域模的影响^{19]}取 链长 N = 161 来计算孤子局域模随扰动参数 σ 变化 的情况.计算发现 扰动前后孤子局域振动模的数目 和频率都发生了变化.图 2 是孤子局域振动模随 σ 变化的情况.当不考虑扰动($\sigma = 0$)时 孤子中有 5 个 振动定域模:g1 即为 Goldstone 模,频率为零;g3,g5 为另外两个偶宇称模,振动模位形也绘于图 2(a) 中.相应地,当 $\sigma=1$ 时,一次随机扰动下,计算得到 的孤子局域模也绘于该图中.从图 2 可以看出,孤子 位形发生畸变($\sigma \neq 0$)后, g_4 模的定域性强于畸变以 前 其他4个模的定域性随着扰动参数的增大而有 所减弱.表1给出了各定域模频率与扰动参数关系 的一组数值.从表 1 我们可以看出,当计入扰动(σ ≠0)后,定域模频率出现了新的变化.首先,Goldstone 定理被破坏,g1 模受到钉扎,频率上升为一有 限值 同时伴随出现一新的偶宇称模 g'_1 .例如当 σ =1 时,一次随机计算给出 ω_1 = 84 cm⁻¹, ω'_1 = 99 cm⁻¹.其次 ,g2 模的频率在 873 到 1002 cm⁻¹之间 变化,并伴随出现有一个新的模 g'2.g3 模的频率在 1215 到 1291 cm⁻¹之间变化,g_s模的频率基本上没

有发生什么变化.最后,弱定域模 g_4 的频率在 1230 到 到1314 cm^{-1} 间变化,晶格发生扰动后, g_4 的频率移

到 g_s 模以下.

图 2 $\sigma = 0$ 和 $\sigma = 1$ 时孤子局域振动模位形 (a)为 $\sigma = 0$ 时孤子局域模位形 (b)为 $\sigma = 1$ 时孤子局域模位形

表1	聚乙炔中孤子定域模频率与扰动参数的关系

扰动参数 $_{\sigma}$	频率 ω/cm^{-1}							
	ω_1	ω'_1	ω_2	ω'_2	ω_3	$\omega_{ m s}$	ω_4	
0	0		934		1245	1344	1351	
0.5	84	91	919	926	1245	1345	1314	
1.0	84	99	1002	1010	1230	1344	1314	
1.5	129	137	873	881	1215	1345	1291	
2.0	152	167	995	1010	1215	1344	1253	

极化子在理想状态($\sigma = 0$)下有 8 个局域振动

模 I I N = 160 来计算这些模受到扰动后的变化情况.图 3 绘出了 $\sigma = 0$ 和 $\sigma = 1$ 时一次随机分布的计算结果.从图 3 可以看出,扰动前($\sigma = 0$),极化子 8

图 3 $\sigma = 0$ 和 $\sigma = 1$ 时极化子局域振动模位形 (a)为 $\sigma = 0$ 时极化子局域模位形 (b)为 $\sigma = 1$ 时极化子局域模位形

个定域模的定域性均很强. 当极化子的位形发生畸 变后($\sigma \neq 0$), g_1 , g_2 , g_4 , g_6 模的定域性随着 σ 的 增大而逐渐减弱; g_3 模的定域性随着 σ 的增大而稍 有减弱; g_5 , g_8 定域性几乎未发生变化; g_7 模的定 域性很弱 随着 σ 的增大, g_7 模消失.例如, $c \sigma =$ 1.5时,我们已经得不到定域的 g_7 模.表 2 给出了 极化子中各局域模频率与扰动参数关系的一组数 值.计算发现(1)当扰动很小时 g_1 模的频率变化不 大 随着扰动的加强 g_1 模的钉扎效应出现,频率上 移到一有限值.例如,当 $\sigma = 1$ 时的一次随机计算给 出 $\omega_1 = 213 \text{ cm}^{-1}$.(2)当 $\sigma = 0.5$,1.0,1.5 时, g_2 模的 频率在 516 cm⁻¹附近变化;当 $\sigma = 2$ 时, g_2 模的频率 在 425 cm⁻¹左右,并且伴随 g_2 模出现了一个新的模 g'_2 ,与 g_2 模有相同的宇称.(3)扰动后, g_3 模的频率 在 843 到 949 cm⁻¹间变化, g_4 , g_6 模的频率稍有变 化,但变化很小, g_5 , g_8 模的频率几乎未发生变化. 最后, g_7 模的频率在 σ 很小时变化很小,但当扰动 增大时, g_7 模消失了.

表 2 聚乙炔中极化子定域模频率与扰动参数关系

扰动参数 $_{\sigma}$	频率 $\omega/{\rm cm}^{-1}$								
	ω_1	ω_2	ω_2'	ω3	ω_4	ω_5	ω_6	ω_7	ω_8
0	0	516		919	1109	1207	1283	1344	1443
0.5	0	516		926	1109	1215	1283	1336	1443
1.0	114	509		904	1109	1215	1291	1314	1435
1.5	213	478		843	1147	1230	1268		1435
2.0	258	425	435	934	1147	11238	1268		1430

4.结 论

理想状态下,反式聚乙炔中孤子和极化子分别 有5个和8个局域模.当分子链的结构受外界扰动 而发生畸变时,其相应局域振动模的频率或振动性 都会发生不同程度的改变.我们假定高分子链处于 方形随机分布扰动模型下,计算了扰动情况下一维 聚合物中孤子与极化子的振动模,分析了不同扰动 参数下孤子与极化子中各局域模的变化,发现了 Goldstone 模的钉扎效应,孤子弱模 g_4 定域性会得到 加强,但其交错模 g_8 基本不受影响,孤子位形畸变 还会产生两个新定域模 g'_1 和 g'_2 ,它们与相应的 g_1 和 g_2 模有相同的宇称;极化子的 g_2 模在畸变较大 时会产生新的定域模 g'_2 ,与 g_2 模有相同的宇称, g_7 模在畸变较大时将消失,其交错模 g_5 和 g_8 均是完 好的定域模.

- [1] Burroughes J H, Bradley D D C, Brown A R et al 1990 Nature 347 539
- [2] Pei Q , Yu G , Zhang C , Yang Y et al 1995 Science 269 1086
- [3] Garnier F , Horowitz G , Peng X et al 1990 Adv. Mater. 2 592
- [4] Su W P , Schrieffer J R , Heeger A J 1983 Phys. Rev. B 28 1338
 (E)
- [5] Heeger A J, Kivelson S, Schrieffer J R et al 1988 Rev. Mod. Phys. 60 781
- [6] Tsukamoto J , Takahashi A , Kawasaki K 1990 Jpn. J. Appl. Phys. 29 125
- [7] Orenstein J, Baker G L 1980 Phys. Rev. Lett. 49 1043
- [8] Bishop A R et al 1984 Phys. Rev. Lett. 52 671
- [9] Pusching P , Ambrosch-Draxl C 1999 Phys. Rev. B 60 7891
- [10] Jenekhe S A, Chen C W 1990 Appl. Phys. Lett. 57 126

- [11] Liu D S, Wang L X, Chen Y X et al 2001 Acta Phys. Sin. 50 1763 (in Chinese] 刘德胜、王鹿霞、陈延学等 2001 物理学报 50 1763]
- [12] Liu D S , Wang L X , Han S H et al 2003 Chin . Phys. 12 548
- [13] Cohen R J , Glick A J 1997 Phys. Rev. B 36 2907
- [14] Sun X , Wu C , Shen X 1985 Sol . Stat . Commun . 56 1039
- [15] Xing B, Sun X 1988 Acta Phys. Sin. 37 502(in Chinese) 邢 彪、孙 鑫 1988 物理学报 37 502]
- [16] Xie S J, Li Z Y, Sun X 1987 Acta Phys. Sin 36 1141(in Chinese) [解士杰、李仲益、孙 鑫 1987 物理学报 36 1141]
- [17] Su W P , Schriffer J R , Heeger A J 1979 Phys. Rev. Lett. 42 1698
- [18] Wang L X, Liu D S, Xie S J 2002 Acta Phys. Sin. 51 362 in Chinese J 王鹿霞、刘德胜、解土杰 2002 物理学报 51 362]
- [19] Liu D S, Zhao J Q, Wei J H et al 1999 Acta Phys. Sin. 48 1327 (in Chinese 】刘德胜、赵俊卿、魏建华等 1999 物理学报 48 1327]

Effect of atomic fluctuation on the localized modes in one-dimensional system *

Zhang Da-Cheng Wang Lu-Xia Liu De-Sheng Han Sheng-Hao Xie Shi-Jie[†]

(School of Physics and Microelectronics , Shandong University , Jinan 250100 , China)

(State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China)

(Received 10 December 2002; revised manuscript received 28 February 2003)

Abstract

In the frame work of the tight-binding approximation, the effect of defects and disorder on the vibrational modes in onedimensional systems was studied through a random distribution model. It was found that the Goldstone mode of a soliton or polaron is pinned and its frequency is shifted up to a finite value. The weak mode g_4 of a soliton is enhanced. The staggered modes keep their localization even if there is a large lattice fluctuation. Some new modes appear when the perfect soliton or polaron configuration is disturbed.

Keywords : atomic fluctuation , localized mode , polymer PACC : 7830 , 6320 , 7138

^{*} Project supported by the National Natural Science Foundation of China Grant Nos. 90103034, 10074040 and 60176021).

 $^{^{\}dagger}\mbox{Corresponding author. E-mail}$: xsj@sdu.edu.cn