O⁵⁺离子与 H 原子碰撞时电子俘获概率的计算^{*}

王利 $x^{1,2}$ 王 $\mathbf{z}^{1,1}$

¹(江南大学理学院,无锡 214036) ²(黑龙江大学物理系,哈尔滨 150080) (2002年4月7日收到,2002年6月26日收到修改稿)

利用原子轨道作基函数展开系统波函数 附加电子转移因子修正 O^{5+} 离子和 H 原子相互作用时的边界条件, 计算了初始通道的势能.在得出的理论值与实验值符合很好的情况下 脸证了计算参数的可靠性.在碰撞参数 b = 8.0a.u. 碰撞速度 v = 220.0a.u.的条件下 利用心核近似方法完成了 O^{5+} 离子和 H 原子碰撞过程中 8 个 Σ 状态的 随时间变化电子俘获概率的理论计算.

关键词: O⁵⁺离子, H原子, 碰撞, 电子俘获 PACC: 3400, 1460, 0250

1.引 言

在原子与分子物理学的实验研究和理论计算 中,多电荷离子和中性原子碰撞的相互作用过程中 电荷转移和电子俘获的研究近些年受到人们的普遍 重视.因为这类结果不仅有助于揭示相互作用过程 中的动力学机理,说明系统的离子化、散射现象的物 理本质^[1],而且在天体物理和宇宙射线的研究中^[2], 在激光和等离子物理领域^{3]},在新材料研究开发方 面都起着越来越重要的作用^[4].甚至在一些与原子 和分子物理学相关的应用科学技术领域,这类结果 也能够对其中的某些物理事例做出精确的微观解释 和有意义的理论预言^[5].

本文根据电荷转移过程中能量区域的划分原则^[6]利用原子轨道展开法对多电荷离子 O⁵⁺和中性 H 原子碰撞过程中电子俘获动力学进行了理论研究.离子 O⁵⁺ 是典型的多电荷离子 ,H 虽然是最简单的原子 ,但其在最近的研究中仍有着较好的应用^[7].为了能够在普通计算机上完成大数值计算 ,在计算中借鉴了 two-collision center 的方法^[8]和半经典近似理论^[9] ,将 O⁵⁺离子的原子核和 1s 与 2s 轨道上的 3 个电子做了心核近似^[10],而仅有俘获的 *n*1轨道上的 1 个电子是活跃的.在这种情况下 相对于固定

的碰撞参数 b, O^{5+} 离子可以被看作是沿着经典的 直线轨道做相对运动,而电子的状态则用量子力学 方程式来描述,采用这一方法不仅有效地减小了数 值计算量,而且还确保了计算的精度.为了修正相互 作用过程中的分子效应,计算中借鉴了 Rankin 等人 的方法[11],在波函数的展开式中加入了电子转移因 子(electron-translation factor)和开关函数(switching function)以便使近似计算中边界条件的确定更符合 物理实际.为了进一步提高计算的准确性,在 Configuration Interaction(CI)中使用了 32 个 Slater-type 轨道 作为基函数,并且对所有的计算参数进行了优化处 理,为了验证所做的近似是否合理以及所使用的计 算参数和 Slater 轨道指数是否准确,首先对 O⁵⁺ + H 系统的初始状态的相互作用势能进行了数值计算, 并且与实验值进行了比较,由于计算值与实验值符 合得很好 于是确认了近似方法的合理性及计算参 数和 Slater 轨道指数的可靠性.这样,在碰撞参数 b= 8.0a.u. 碰撞速度 v = 220.0a.u. 的条件下完成了 8个∑状态随时间变化的电子俘获概率的理论 计笪

本文计算全部采用 a.u.(Hartree)单位.

2. 物理模型

多电荷 O⁵⁺ 离子和中性 H 原子碰撞的相互作用

^{*}黑龙江省自然科学基金(批准号 :A200015 和黑龙江省教育厅科学技术研究项目(批准号 955017)资助的课题。

[†]E-mail :wangliguang@21cn.com

过程中,考虑只有 H 的一个电子被俘获,其物理过 程可以表示为

 $O^{5+}(1s^22s) + H(1s) \rightarrow O^{4+}(1s^22snl) + H^{+}$. 由于使用了心核近似,其中只有一个电子被俘获,这样 2 个原子核与 4 个电子的六体系统被简化为三体问题.于是在使用高斯型赝相互作用势的价键组态^[12]来表示电子状态的情况下,该系统的Schrödinger方程可以表示为

 $H\Psi(R,r) = E(R,r)\Psi(R,r),$ (1) 其中 R 是 O⁵⁺离子与 H 原子的核间距离,r 是电子 的坐标,E 是系统的能量.系统的哈密顿算子 H 具 有如下的形式:

$$H = T + H_{\rm e} , \qquad (2)$$

其中 T 是系统动能 H_e 是电子的哈密顿算子 ,这样 就得出了电子满足的 Schrödinger 方程

$$i \frac{\partial \varphi(R(t), r)}{\partial t} = H_e \varphi(R(t), r). \quad (3)$$

电子波函数可以被展开为

$$\varphi(R(t),r) = \sum_{i} a_{i}(b,v,t)\phi_{i}(r,t)F_{i}(R,r),$$
(4)

其中 a_i 和 ϕ_i 是基函数 , b 和 v 分别是碰撞参数和碰 撞速度 . F_i 是电子转移因子 , 其具体形式是

$$F_i = \exp\left[\frac{i}{2}v \cdot rf_i(R,r)\right].$$
 (5)

(2)式中的电子哈密顿算子的具体形式是

$$H_{\rm e} = T_{\rm e} + \sum_{i} \left[V_{l}(r_{ia}) + \frac{2}{r_{ib}} \right] + \frac{1}{r_{12}}, \quad (6)$$

其中 T_e 是电子的动能 ,势函数 V_1 的具体形式是

$$V_{l}(r) = \alpha_{1} \exp\left(-\beta_{l} r^{2}\right) - \frac{\lambda_{d}}{2(r^{2} + \sigma^{2})^{2}} - \frac{\lambda_{q}}{3(r^{2} + \sigma^{2})^{3}} + \frac{5}{r}, \qquad (7)$$

其中 α_l 和 β_l 是与 l 相关的计算参数 ,分别根据原子 谱线数据^[13]做优化后得出的渐近本征值来确定. λ_a 和 λ_q 分别是 Dipole 和 Quadrupole 的极化率 ,利用改 进后的 Dalgarno 方法来计算确定^[14]. σ 是截断半径 , 通过 Hatree-Fock 计算方法求得. Slater 轨道指数通过 变分法优化得出. 计算得出的全部参数和 Slater 轨 道指数分别由表 1 和表 2 给出.

由方程(3)-(7)式,参照 Kimura 等人的方法^[5] 很容易得出与时间相关的半经典偶合方程式

$$-i \frac{da_{j}}{dt} = E_{j}a_{j} + \sum_{i} V_{i}(B + D)_{ji}a_{i} , \quad (8)$$

表1 计算参数

55.726517	α1
- 3.978376	α2
- 1.390824	α3
11.652872	β_1
12.015373	β_2
9.485022	β_3
0.021181	$\lambda_{ m d}$
0.009552	$\lambda_{ m q}$
0.410156	σ

表 2 Slater 轨道指数

	O ⁵⁺		Н
2s	12.976229	1s	2.150042
2p	5.137241		1.000732
3s	2.051082		0.701786
3р	1.772931		0.500022
3d	1.697728	2s	0.570927
4s	1.226796		0.500436
4p	1.129023	2p	0.995487
4d	1.099735		0.498036
4f	1.078596		
5s	1.040762		
5p	0.978323		
5d	0.972287		
5f	0.903568		

其中 B 是电子状态之间的径向偶合矩阵 ,D 是电子转移因子的修正项¹⁵¹.它们的具体形式分别是

$$B = j |-i\nabla_R| i , \qquad (9)$$

 $D = -\frac{1}{2}(E_j - E_i) j | f_i(R, r)r | i$, (10)

其中 *f*(*R*,*r*)是开关函数. 由(8)-(10)式,可以得 出 O⁵⁺离子和 H 原子碰撞过程中电子俘获概率的表 达式

 $P_{i}(b, v, t) = |a_{i}(b, v, t)|^{2}$. (11)

很显然,电子俘获概率是碰撞参数 b、碰撞速度 v 和 时间 t 的函数,这三个变量在 O^{s+} 离子和 H 原子的 碰撞过程中都是非常重要的物理量.根据以上的模 型,选在中能区域内,即 b = 8.0a.u., v = 220.0a.u.的条件下对随时间变化电子俘获概率进行了数值计 算.其时间变量也使用了 a.u. 单位制,它与 SI 单位

制的关系是

1a.u. = $(4\pi\epsilon_0)^2 \hbar^3 / me^4 = 2.4188843 \times 10^{-17} s.$

3. 计算与结果

在计算过程中,为了确保计算结果符合真实碰 撞物理过程,必须检验计算参数和 Slater 轨道指数 的可靠性.为此,首先计算了系统初始状态 O⁵⁺ (1s²2s)+H(1s)的势能,其计算值和实验值^[16]及二 者的差值由表3给出.

	表 3	
计算值	实验值	差值
- 5.573812	- 5.575562	0.001750

仅为 0.3% 的误差说明计算结果和实验值符合 得比较好,从而证明了经过优化所得出的计算参数 和 Slater 轨道指数都是比较准确的,计算方法也是 可靠的.利用所选定的全部参数,完成了 O⁵⁺(1s²2s) + H(1s)系统电子俘获概率随相互作用时间变化的 理论计算,其结果由连续曲线给出,如图 1 和图 2 所示.

图 1 电子俘获概率 (b=8.0a.u.,v=220.0a.u.) — 1Σ,2Σ, -·-·3Σ, ----4Σ

4.结 论

所得出的结果包含了 8 条曲线,它们分别是 12,22,32 A2,52,62,72和82状态,由图1和图2

图 2 电子俘获概率 (b = 8.0a.u., v = 220.0a.u.) — 5∑,6∑, - · - · - 7∑, - - - -8∑

给出.从这些结果中可以看出 O⁵⁺(1s²2s)+ H(1s)系 统随相互作用时间变化的电子俘获概率具有如下 特征:

1. 如果定义电子开始被俘获的时刻为 t = 0 ,图 1 和图 2 的结果显示出,除了 4Σ 状态之外,其他状态的电子俘获基本都发生在 t = 20 到 t = 60 的这段 时刻内.随着时间的延长,电子被俘获的可能性变得 越来越小,这完全符合真实的碰撞物理过程,也为实 验研究确定了一个可以供参考的测量时段.

2. 每个状态的电子俘获概率都随时间呈现震 荡状态,分别有几个峰点和谷点,这正是被俘获电子 除随原子核一起有一个相对运动之外,其自身也在 绕着原子核的轨道上运动,即某一时刻接近入射离 子,而另一时刻却远离入射离子而产生的结果.

3. 结果显示除了 3∑ 状态的电子俘获概率可以 达到 1 之外,其他状态均不能达到概率 1,而 3∑ 状态的最大电子俘获概率延续的时间又是极短的,这 说明在固定碰撞参数和碰撞速度的情况下,并不是 每一个状态都会有电子转移,而这是符合电子俘获 过程的动力学基本原理的.

4. 在文献 10]中,我们曾经完成了电子俘获概 率随碰撞参数变化的研究,这里又讨论了系统电子 俘获概率随时间变化的情况.如果能够同时考虑两 个变量,将电子俘获概率同时作为碰撞参数 b 和碰 撞速度 v 的函数来研究,将有可能更好地揭示多电 荷离子和原子相互作用过程的动力学机理,这是有 待进一步研究的内容.

- [1] Janev R K, Presnyakov L P and Shevelkov V P 1985 Physics of Highly Charged Ions (Berlin Springer-Verlag) p126
- [2] Burke P G, Lissner W B, Hummer D G and Percival E C 1983 Atoms in Astrophysics (London Plenum) p139
- [3] Janev R K 1995 Atomic and Molecular Process in Fusion Edge Plasma New York Plenum) p208
- [4] Rizzi A 1997 J. Anal. Chem. 15 358
- [5] Kimura M and Lane N F 1989 Advance in Atomic Molecular and Optical Physics(New York :Academic) p92
- [6] Zhou X X and Li B W 1999 Acta Phys. Sin. 48 1426(in Chinese) [周信效、李白文 1999 物理学报 48 1426]
- [7] Dong L F et al 2002 Chin. Phys. 11 419

- [8] Fritsch W and Lin C D 1984 J. Phys. B 17 3271
- [9] Tseng H C and Lin C D 1998 Phys. Rev. A 58 1966
- [10] Wang L G et al 1999 Chinese J. Atomic and Mol. Phys 16 417(in Chinese J 王利光 等 1999 原子与分子物理学报 16 471]
- [11] Rankin J and Thorson W R 1978 Phys. Rev. A 18 1990
- [12] Wang L G 2001 Chinese J. Atomic and Mol. Phys. 18 213(in Chinese J 王利光 2001 原子与分子物理学报 18 213]
- [13] Bashkin S and Stoner J R 1975 Atomic Energy Levels and Grotorian Diagrams (Amsterdam North-Holland) p32
- [14] Delos J B 1981 Rev. Mod. Phys. 53 287
- [15] Lebena C F, Thorson W R and levy H 1971 Phys. Rev. A 4 900
- [16] Gargaud M and McCarroll R 1985 J. Phys. B 18 463

Calculation of electron capture probabilities in collisions of O⁵⁺ ion with H atom *

Wang Li-Guang¹⁽²⁾ Wang Jun¹

¹) College of Science , Southern Yangtze University , Wuxi 214036 , China)

²) (Department of Physics, Heilongjiang University, Harbin 150080, China)

(Received 7 April 2002; revised manuscript received 26 June 2002)

Abstract

A method, in which the wave function is expanded with the atomic orbitals added to the electron transfer factor to correct the boundary condition, is used to study the collisions between O^{5+} ion and H atom. After calculating the initial channel potential energy of O^{5+} + H system, the good agreement between calculation and experiment shows that optimized calculation factors are highly reliable. The electron capture probabilities vs time in the interaction of O^{5+} ion with H atom (8Σ states) are calculated at an impact factor b = 8.0 a.u. and an impact speed v = 220.0 a.u. by using the core approximation and the optimized factors.

 $Keywords: {\rm O}^{5\,+}\,$ ion , H atom , collision , electron capture probability PACC: 3400 , 1460 , 0250

2期

^{*} Project supported by the Natural Science Foundation of Heilongjiang Province, China Grant No. A200015) and by the Science Technology Foundation of Education Department of Heilongjiang Province (China Grant No. 955017).