菲涅耳衍射区和夫琅和费衍射区的动态部分 相干光散斑场特性*

滕树云¹) 程传福^{1,2}) 刘 $= 2^{\circ}$ 刘立人¹) 徐至展¹)

¹(中国科学院上海光学精密机械研究所,上海 201800)
 ²(山东师范大学物理系,济南 250014)
 (2002年5月13日收到2002年7月4日收到修改稿)

研究了菲涅耳衍射区和夫琅和费衍射区动态部分相干光散斑的特性.利用部分相干光互强度传播的理论,得 出了在部分相干光照明时,由运动散射体产生的动态散斑光强时空交叉的自相关函数的一般形式,并由此得出了 散斑沸腾和平移的一般规律.通过适当选择光源和调整光路参数,在实验上得到了菲涅耳和夫琅和费衍射区的部 分相干光散斑,对夫琅和费面上的动态部分相干光散斑的平移和沸腾现象进行了定性研究;采用光子计数及数据 自动采集的方法,对部分相干光散斑随时间的演化及动态部分相干光散斑的沸腾进行了定量测量.这些实验结果 与理论结果相符合.

关键词:部分相干光动态散斑,时空交叉相关函数,沸腾 PACC:4225H,4225F

1.引 言

对由相干光照明运动散射体产生的动态散斑场 特性的研究^[1-5],是散斑现象及其统计规律研 究^[6-8]中的重要内容,并且动态散斑及其随时间空 间的演化在粗糙度测量^[9]、速度测量^[10,11]和医学诊 断^[12,13]等许多研究领域获得应用,因此动态散斑成 为目前散斑研究中十分活跃的课题之一.到目前为 止,已有众多文献对基于典型光学系统和应用问题 中的动态相干光散斑作了大量研究,其中最新成果 包括多次调制的动态散斑^[14]、三维动态散斑^[15]和散 射体的纵向运动产生的动态散斑^[16]等.

众所周知,非相干扩展光源所发出的光经过一 定的空间传播后成为部分相干光,由其照明所产生 的散斑场称为部分相干光散斑,它与相干光照明产 生的散斑有许多不同之处,并且在光学干涉计量术 的应用中显示出许多优点^[17—19].但就我们所知,至 今尚未见对部分相干光动态散斑进行研究的报道. 采用非相干光源照明时,照明光在物面上形成的相 干区域一般很小,使散斑场仅存在于散射屏表面附 近很小的空间区域中,而在研究动态散斑特性有意 义的夫琅和费或菲涅耳衍射区域内,散斑场中的颗 粒状结构则由于来自表面上不同区域的散射光波的 非相干叠加而消失,因此在该区域内一般难以观察 到部分相干光散斑,本文首先对部分相干光照明所 产生的动态散斑的相关特性进行了理论分析,其次 在实验上通过提高光源的相干性和调整散射孔径的 大小 在菲涅耳和夫琅和费衍射区成功地得到了部 分相干光散斑 并对夫琅和费面上部分相干光动态 散斑的相关、沸腾及平移等特性和现象进行了观察 研究:为了验证本文的理论结果,针对夫琅和费衍射 区内散斑光强较弱的实际情况,建立了专门的散斑 光强测量系统 对夫琅和费面的部分相干光动态散 斑光强随时间的演化及其相关进行了测量,测量结 果与理论结果符合得很好,本文的工作对于部分相 干光动态散斑及其应用研究的开展是有益的尝试。

2. 部分相干光动态散斑的理论分析

在图 1 所示光学系统中,扩展非相干光源 σ 位 于 S 面上,光源发出的光波通过光学干涉滤光片 F

^{*}国家自然科学基金(批准号 69978012)资助的课题.

后可以看作是准单色光 照明位于 r_0 平面的运动散 射物体 观察面 r 与物面平行 .以 u^{-1} (r_s , r_0)表示光 源上位于 r_s 点处的单位发光面积在物面上 r_0 点处 形成的准单色光波的复振幅 ,物体的透过率函数用 $F(r_0, t)$ 表示 , $P(r_0)$ 表示物体的散射孔径 ,则通过

图 1 形成部分相干光动态散斑的光学系统的示意图

物体后的动态光波可写为

u(*r*_s,*r*₀,*t*) = *u*⁻(*r*_s,*r*₀)*F*(*r*₀,*t*)*P*(*r*₀).(1) 整个光源在物面 *r*₀₁和 *r*₀₂两点产生的光波的互 强度为^[20]

$$J_{0}^{-}(\mathbf{r}_{01},\mathbf{r}_{02}) = \int_{\sigma} u^{-}(\mathbf{r}_{s},\mathbf{r}_{01}) u^{-*}(\mathbf{r}_{s},\mathbf{r}_{02}) d^{2}\mathbf{r}_{s}.$$
(2)

物面后两点出射光波的互强度 $J_0(\mathbf{r}_{01}, \mathbf{r}_{02}, t)$ 与(2) 式具有相同的形式 则由(1)(2)式得

 $J_{0}(\mathbf{r}_{01},\mathbf{r}_{02},t) = J_{0}(\mathbf{r}_{01},\mathbf{r}_{02})F(\mathbf{r}_{01},t)$ × $F^{*}(\mathbf{r}_{02},t)P(\mathbf{r}_{01})P^{*}(\mathbf{r}_{02})(3)$ 假设光学系统的点扩展函数为 $K(\mathbf{r}_{0};\mathbf{r}),$ 根据互强 度的传播公式,观察面上 \mathbf{r}_{1} 和 \mathbf{r}_{2} 两点光波的互强 度为

$$J(\mathbf{r}_{1},\mathbf{r}_{2},t) = \iint J_{0}(\mathbf{r}_{01},\mathbf{r}_{02},t) K(\mathbf{r}_{01},\mathbf{r}_{1})$$

$$\times K^{*}(\mathbf{r}_{02},\mathbf{r}_{2}) d^{2}\mathbf{r}_{01} d^{2}\mathbf{r}_{02}. \quad (4)$$

由互强度的定义可知,观察面上的光强为 ((r, t)= ((r,r,t),由以上各式可得观察面上的光强的 表达式为

$$I(\mathbf{r}_{01}, t) = \iint J_0^-(\mathbf{r}_{01}, \mathbf{r}_{02}) K(\mathbf{r}_{01}, \mathbf{r}) \\ \times K^*(\mathbf{r}_{02}, \mathbf{r}) F(\mathbf{r}_{01}, t) F^*(\mathbf{r}_{02}, t) \\ \times P(\mathbf{r}_{01}) P^*(\mathbf{r}_{02}) d^2 \mathbf{r}_{01} d^2 \mathbf{r}_{02}.$$
(5)

由于运动物体的透过率函数 $F(\mathbf{r}_0, t)$ 的随机性,使 得观察面的光强 $I(\mathbf{r}, t)$ 是随时间和空间随机变化 的函数,因此观察面上的光强以动态散斑的形式 存在.

通常情况下 散斑图样用光强涨落的时空交叉 相关函数 $R_{\Delta}(r_1, r_2; t_1, t_2)$ 来描述 其定义如下:

$$R_{\Delta l}(\mathbf{r}_{1}, \mathbf{r}_{2}; t_{1}, t_{2})$$

$$= [l(\mathbf{r}_{1}, t_{1}) - l(\mathbf{r}_{1}, t_{1})]$$

$$\times [l(\mathbf{r}_{2}, t_{2}) - l(\mathbf{r}_{2}, t_{2})]$$

= $R_{h}(\mathbf{r}_{1},\mathbf{r}_{2};t_{1},t_{2}) - I(\mathbf{r}_{1},t_{1})^{2}$, (6) 其中 表示系综平均. 若散射体表面足够粗糙,则 $F(\mathbf{r}_{0},t)$ 满足复高斯矩定理^[1]和 Goodman 的 δ -相关 表面模型^[21]. 当它以一定的速度**v** 在物面内运动时, 有

$$F(\mathbf{r}_{01}, t_1)F^*(\mathbf{r}_{02}, t_1)F(\mathbf{r}_{03}, t_2)F^*(\mathbf{r}_{04}, t_2) = \delta(\mathbf{r}_{01} - \mathbf{r}_{02})\delta(\mathbf{r}_{03} - \mathbf{r}_{04})$$

 $- \delta(\mathbf{r}_{01} - \mathbf{r}_{04} - \mathbf{v}_{7})\delta(\mathbf{r}_{03} - \mathbf{r}_{02} - \mathbf{v}_{7}),$ (7) 其中 $\tau = t_2 - t_1$.如果仅限于讨论入射光在物面两点 的互强度只通过两点的位置差的形式依赖于两点的 坐标 ,令 $\Delta \mathbf{r}_0 = \mathbf{r}_{03} - \mathbf{r}_{01}$,则由(4)—(7)式可得

$$R(\mathbf{r}_{1} \ \mathbf{r}_{2} \ \mathbf{\dot{\tau}} \) = \iint J_{0}^{-} (\Delta \mathbf{r}_{0} + \mathbf{v}\tau) J_{0}^{-*} (\Delta \mathbf{r}_{0} + \mathbf{v}\tau) \\ \times K(\mathbf{r}_{0} \ \mathbf{\dot{r}}_{1}) K^{*} (\mathbf{r} + \Delta \mathbf{r}_{0} - \mathbf{v}\tau \ \mathbf{\dot{r}}_{1}) \\ \times K(\mathbf{r}_{0} + \Delta \mathbf{r}_{0} \ \mathbf{\dot{r}}_{2}) K^{*} (\mathbf{r} + \mathbf{v}\tau \ \mathbf{\dot{r}}_{2}) \\ \times P(\mathbf{r}_{0}) P^{*} (\mathbf{r}_{0} + \Delta \mathbf{r}_{0} - \mathbf{v}\tau) \\ \times P(\mathbf{r}_{0} + \Delta \mathbf{r}_{0}) P^{*} (\mathbf{r}_{0} + \mathbf{v}\tau) H^{2} \mathbf{r}_{0} d^{2} \Delta \mathbf{r}_{0}.$$

$$(8)$$

根据部分相干光理论中的范西特-泽尼克(Van Cittert-Zernikc)定理^[20],入射光波在物面上坐标差为 Δr_0 的两点引起的光波互强度为

$$J_0^{-}(\Delta \boldsymbol{r}_0) = \int_{\sigma} \mathcal{S}(\boldsymbol{r}_s) \exp(-ik\Delta \boldsymbol{r}_0 \cdot \boldsymbol{r}_s/R) d^2 \boldsymbol{r}_s ,$$
(9)

其中 $S(\mathbf{r}_{s})$ 为准单色扩展光源的单位面积的发光强 度函数 $k = 2\pi/\lambda$ λ 为准单色光波的平均波长 R 为 光源平面至物平面的距离.

当观察面处于菲涅耳衍射区内时,光学系统的 点扩展函数为

$$K(\mathbf{r}_{0};\mathbf{r}) = (1/i\lambda z) \exp(ikz) \exp(ik + \mathbf{r} - \mathbf{r}_{0} + 2/2z),$$
(10)

其中 z 为物面至观察面的距离.将(9)(10)式代入 (8)式 注意到 $J_0^-(\Delta r_0)$ 实际上为光源函数 $S(r_s)$ 的 傅里叶变换 经过一些较为繁琐的运算后,便可得到 菲涅耳衍射区内光强涨落的时空交叉相关函数

$$R_{\Delta f}(\mathbf{r}_{1},\mathbf{r}_{2};\tau) = R_{\Delta f}(\Delta \mathbf{r};\tau)$$

$$= (1/\lambda^{4}z^{4})\{S[-R(\Delta \mathbf{r} - \mathbf{v}\tau)/z]$$

$$\stackrel{\wedge}{\sim} S[-R(\Delta \mathbf{r} - \mathbf{v}\tau)/z]\}$$

$$\times |FT\{P(\Delta \mathbf{r}_{0})P^{*}(\Delta \mathbf{r}_{0})$$

$$-\mathbf{v}\tau)\}\Big|_{J_{\Delta \mathbf{r}_{0}} = (\Delta \mathbf{r} - \mathbf{v}\tau)\lambda z}|^{2}, \quad (11)$$

其中☆和 × 分别表示相关和卷积运算,*FT*表示傅 里叶变换, $f_{\Delta r_0}$ 为傅里叶变换的谱坐标,其中 △ $r = r_2$ - r_1 .

如果光学系统为夫琅和费衍射系统,即物体位 于透镜的前焦平面上,观察面位于透镜的后焦平面 附近(但不一定在严格的后焦面上,我们仍将其称为 夫琅和费衍射区)则系统的点扩展函数为

$$K(\mathbf{r}_{0};\mathbf{r}) = (1/i\lambda z) \exp(ikz) \exp(ik + \mathbf{r} - \mathbf{r}_{0} + 2/2z) \times \exp(-ik + \mathbf{r}_{0} + 2/2f), \quad (12)$$

式中 z 为透镜到观察面的距离 ,f 为透镜的焦距.同 样将(12)式与(9)式代入(8)式 经一定运算后 ,得到 夫琅和费衍射区内的光强涨落的时空交叉相关函数

$$R_{\Delta f}(\Delta \boldsymbol{r}_{1} ; \tau) = (1/\lambda^{4} z^{4}) \left\{ S \left[-R \left(\frac{\Delta \boldsymbol{r} - \boldsymbol{v} \tau}{z} + \frac{\boldsymbol{v} \tau}{f} \right) \right] \right\}$$

$$\stackrel{\wedge}{\sim} S \left[-R \left(\frac{\Delta \boldsymbol{r} - \boldsymbol{v} \tau}{z} + \frac{\boldsymbol{v} \tau}{f} \right) \right] \right\}$$

$$\stackrel{*}{\sim} + FT \{ P(\Delta \boldsymbol{r}_{0}) P^{*}(\Delta \boldsymbol{r}_{0} - \boldsymbol{v} \tau) \} \Big|_{f_{\Delta \tau}} = \left[(\Delta \boldsymbol{r} - \boldsymbol{v} \tau) \lambda z + \boldsymbol{v} \tau (\lambda f) \right]^{2}. \quad (13)$$

由(11)(13)式的结果可以看出,菲涅耳衍射区和夫 琅和费衍射区内部分相干光动态散斑的时空交叉相 关函数 $R_{\Delta}(\Delta r_1; \tau)$ 均为两项的卷积.第一项为扩展 准单色光源的发光强度函数 $S(r_s)$ 在观察面上的投 影分布的时空交叉的自相关,第二项与孔径函数及 其傅里叶变换有关,它可看作是由相干光波照明时 所产生的动态散斑的时空交叉相关函数^[1].下面就 这两项对动态散斑特性的影响进行讨论.

第一项的存在及其与第二项的卷积使部分相干 光散斑相关区域即散斑颗粒的平均大小为扩展光源 投影分布区域大小与相干光散斑平均大小之和,因 此扩展光源使散斑颗粒的平均大小明显增加.而物 体的运动使 $P(\Delta r_0)$ 和 $P(\Delta r_0 - v\tau)$ 的交叠区域减 小,引起不同时刻的散斑场的退相关,其表现为散斑 场的散斑颗粒形状的不断变化,即所谓散斑沸腾现 象.当物体的运动速度一定时, $P(\Delta r_0)$ 和 $P(\Delta r_0 - v\tau)$ 的交叠区域减小的速度也是一定的,部分相干光 散斑则由于其比较大的颗粒,使其沸腾现象表现得 更为明显.

第一项的宗量在夫琅和费衍射区内为 – R $\left(\frac{\Delta r - v\tau}{z} + \frac{v\tau}{f}\right)$ 在菲涅耳衍射区内为 $R \frac{\Delta r - v\tau}{z}$; 而第二项宗量为物面坐标的傅里叶变换的谱坐标, 在夫琅和费衍射区和菲涅耳衍射区内分别为 $\frac{\Delta r - v\tau}{\lambda z} + \frac{v\tau}{\lambda f} n \frac{\Delta r - v\tau}{\lambda z}$.在夫琅和费衍射区内第一 项和第二项均在时间差 τ 为 $\tau_m = \frac{|\Delta r|}{|v|(1 - z/f)}$ 时达 到最大,在菲涅耳衍射区内两项均在 τ 取 $\tau_m = \frac{|\Delta r|}{|v|}$ 时达到最大.由此可推及它们的卷积即动态散斑的 时空交叉相关也在同样的时间差时达到最大.其物

理含义为,在时间间隔 τ 内,散射体的运动使得某 点处的部分相干光散斑场移动至相距为 Δr 的点 处,当然同时伴随着散斑场的退相关.这样的平移特 性与相干光照明时散射的平移特性是一样的.由此 可知,部分相干光动态散斑的平移特性与照明光的 相干性无关.这正是部分相干光散斑干涉计量术的 基础^[19].

下面以一维情况为例,来进一步讨论夫琅和费 衍射区内的动态部分相干光散斑的性质.这种情况 下,光源和物体的孔径均可取作一维的矩形函数,即

 $S(\mathbf{r}_s) = \operatorname{rect} \frac{x_s}{L_s}$, $P(\mathbf{r}_0) = \operatorname{rect} \frac{x_0}{L_p}$,其中 L_s 和 L_p 分别 表示光源和散射孔径尺寸的大小.由(13)式经过一 定的化简运算后,可得归一化的相关函数

$$= \begin{cases} \Lambda \left[-\frac{R}{L_{s}} \left(\frac{\Delta x - v_{x}\tau}{z} + \frac{v_{x}\tau}{f} \right) \right] \times \left\{ \left(\frac{L_{p} - v_{x}\tau}{L_{p}} \right)^{2} \\ \times \operatorname{sinc}^{2} \left[\left(L_{p} - v_{x}\tau \right) \left(\frac{\Delta x - v_{x}\tau}{\lambda z} + \frac{v_{x}\tau}{\lambda f} \right) \right] \\ \tau \leqslant L_{p}/v_{x}; \\ 0 \quad \tau > L_{p}/v_{x}; \end{cases}$$

(14) 式中 Λ 为三角函数 , v_x 为物体的一维运动速度 .由 (14) 式可得出部分相干光动态散斑具有如下性质.

1) 光源的大小对散斑相关的影响.考虑时间间 隔 $\tau = 0$,即冻结某一瞬时的散斑场,则(14)式变为 空间间隔的三角形函数和 sinc 函数平方的卷积.图 2 给出 $\tau = 0$, $L_p = 2$ mm, $\lambda = 577$ nm,f = 240mm和 R = 1m, L_s 分别取不同大小的情况下 $\lambda_{\Delta l}(\Delta x; 0)$ 随 Δx 变化的数值计算结果.可以看出 随光源线度的增大 (空间相干性越差),散斑相关函数主极大的范围越 大,即散斑颗粒的平均大小也越大.

图 2 时间间隔 $\tau = 0$ 时不同尺寸的光源照明下归一化的相干函数随 Δx 的变化曲线

 $\tau_{\Delta x}$ 的时间间隔移动的距离为 Δx . 而相同的时间间 隔 $\tau_{\Delta x}$ 内 物体平移的距离为 $\Delta x_0 = v_x \tau_{\Delta x}$. 由此可得 散斑场的位移与物体位移之间的关系

$$\Delta x = (1 - z/f) \Delta x_0 , \qquad (15)$$

式中的(1 - z/f)称为位移缩放因子,反映了散斑场 与散射体的位移比例关系.在 z < f 时,即观察面位 于焦平面前(靠近透镜的一方)的空间区域内,位移 缩放因子大于0,散斑位移与散射体位移的方向相 同.在 z > f 时,即观察面位于焦平面后面某一位置 处,散斑位移的方向与散射体位移方向相反.对散斑 平移的这一性质在实验室中进行了观察,并得到 证实.

3) 散斑的沸腾.由(14)式可以看出,经过时间间 隔 τ 后,光强涨落的相关函数按因子 $\left(\frac{L_p - v_x \tau}{L_p}\right)^2$ 而 减小.其物理含义为,随着散射体的运动,其中散射 体的一部分移出散射孔径 P(x)以外,同时原来在 散射孔径以外的另一部分散射体移入散射孔径.散 射体移出的部分和移入的部分在细观结构上完全不 同,引起观察面上散斑场颗粒状结构的变化,这正是 前面所说的散斑沸腾.时间间隔 τ 越大,散射体移 入和移出散射孔径的部分就越多,即产生相隔时间 间隔为 τ 的两幅散斑场的散射体相同的部分越少, 因此所产生的散斑场的细观结构的变化也越大,从 而导致散斑涨落的相关函数 $\gamma(\Delta x, \tau)$ 的最大值越 小.当 $\tau \ge L_p/v_x$ 时,散射体原来的部分完全移出散 射孔径,散斑涨落的相关函数降为 0,散斑场变为完 全不相关的. 一般情况下,散斑的平移和沸腾是同时存在的,即散斑场在平移的同时,散斑颗粒的形状不断发生变化.但当观察面处于透镜的焦平面上,即 z = f时, 由(15)式知 $\Delta x = 0$,则散斑场没有平移,只有沸腾,即散射体不断移动只引起在焦平面上的散斑场的颗粒形状不断变化.

3. 夫琅和费面上的部分相干光动态散 斑沸腾的相关测量

根据光散射理论,由物面上一点散射的光波可 以看作是在以该点为顶点的光锥内传播的,从而在 观察面上某点的光强是来自物面的一区域内的各点 散射光波的贡献之和,观察面距离物面越远,对该点 光强有贡献的物面区域就越大^[22].如图3所示,对 于离物面较远处的*Q*₁点来说,对其光强有贡献的 是物面上大圆内的区域;而离物面较近的*Q*₂点处 的光强是来自小圆内的散射区域的光波的贡献.为 了能够形成部分相干光动态散斑,物面上对观察面 一点的光强有贡献的区域的大小,应该小于扩展非 相干光源在物面上所形成的相干区域的大小,或二 者在相同的量级上.这就决定了在通常的光学系统 中,部分相干光散斑仅存在于物体后面小于一个毫 米的区域内,并且这一效应已在散斑干涉计量术中 被用来测量物体的位移^[18].

图 3 光散射的示意图

但在通常所关心的菲涅耳和夫琅和费衍射区 内,由于上述锥形区域的扩展使得对观察面上一点 的光波有贡献的物面区域增大,从而使部分相干光 散斑光强主要是来自物面光波的非相干叠加,导致 散斑颗粒消失.因此,在这些区域内,由扩展非相干 光源照明所产生的部分相干光散斑在实验上是很难 观察到的,并且就我们所知,这些区域的部分相干光 散斑的性质如散斑对比度、散斑相关等的实验研究 还没有开展过.

由上述分析可知,要获得观察面的散斑场,最直接的方法就是减少对观察面上一点处的光强有贡献 的物面散射区域,这可以通过在物平面上放置一个 尺寸与相干面积的大小相当的孔径来实现.但这样 会使得散斑场的光强极其微弱.另外测量散斑相关 函数要求探测器的窗口要比散斑颗粒的平均大小小 得多,这样以来使探测器接收到的能量更加微弱,以 致实验上难以实现.

因此,在实验上能够观察和测量到菲涅耳和夫 琅和费衍射区的动态部分相干光散斑的关键是采用 亮度高和空间相干性好的扩展非相干光源.在实验 中,实际采用球型超高压汞灯作为照明光源.该光源 在现有的连续发光的非相干光源中,单位面积的发 光强度是最高的,其有效发光面积的直径约为 0.5mm.虽然其时间相干性不是最好的,但与其空间 相干性相匹配^[19].

在动态部分相干光散斑的观察和测量的实验 中,由球形超高压汞灯所发出的光经过干涉滤光片 滤波,仅让波长为λ = 577nm的黄光通过.然后经会 聚透镜,在 S 平面上得到光源的像,并用直径为 0.5mm的针孔对其进行空间滤波.然后以该光源的 像做为次级准单色扩展非相干光源来照明物体(随 机散射屏),该物体置于由交流微分电机驱动的平移 台上,且处于次级光源后 1m 处.根据范西特-泽尼 克定理,可以算得物面上的相干区域的直径约为 1.6mm.物体散射所产生的光波经过一焦距为 240mm的变换透镜,在透镜的后焦平面上得到其傅 里叶变换.

观察动态部分相干光散斑是在严格的夫琅和费 面上进行的,散射孔径取直径为 2mm 的圆孔.图 4 (a)--(h)分别给出了物体位移为 0mm,0.25mm, 0.5mm 0.75mm,1mm,1.25mm,1.5mm 和 1.75mm 时 用 CCD 拍摄的部分相干光动态散斑的照片.从这些 图中可以看出在物体运动过程中散斑颗粒形状的演 变,这些连续的变化与我们得出的在夫琅和费面上 只有沸腾没有平移的结论是一致的.另外,我们相信 这也是在采用具有实际意义的光学参数的实验室条 件下,并在扩展非相干光源照明时,首次在夫琅和费 区内获得的部分相干光散斑图.

在动态部分相干光散斑光强及其相关函数的测 量中,为了克服测量微弱的散斑光强信号的困难,采 用 EG&G 1109 型的光子计数系统,该系统包括光电 倍增管(PMT)及其制冷套、信号放大/甄别器、计数 器等几部分,通常其计数过程为内部时钟触发单稳 触发器 单稳触发器发出的脉冲触发计数器 计数器 开始对由 PMT 输出的并经放大/甄别器鉴别后的光 电子脉冲进行计数.当计数的时间达到预置时间(由 光子计数器前置面板 present N 设置)时,计数停止, 计到的光电子脉冲数显示在光子计数器的前置面板 上 显示时间受前置面板的 Display Hold 开关的控 制 同时光子计数器输出与该计数值成比例的模拟 电压值,显示时间结束后,内部时钟再次触发计数器 进行下一个新的循环计数,在这一计数时间内 模拟 输出将维持上一个计数循环的输出电压 ,直到新的 循环计数结束时被刚计到的计数值的模拟输出代 替.该计数过程完全由光子计数系统的内部回路 控制.

为了实现动态部分相干光散斑光强的自动测 量,需要使光子计数器的计数过程与计算机的数据 采集同步进行.为此在实验中我们改用外部触发信 号触发单稳器,采用 SR245 计算机接口读取光子计 数器的模拟输出信号,SR245 也是由同一外部触发 信号触发的,该触发信号由脉冲发生器产生.此外部 触发信号直接触发计数器,使其对 PMT 输出的光电 子脉冲计数.下一个触发脉冲触发计数器开始下一 个循环的计数,同时触发计算机接口将光子计数器 模拟输出的上一循环的电压值进行模数转换,并由 我们编写的程序控制读入计算机.

在实际测量中,PMT的探测窗口直径为 6µm 的 针孔,且置于夫琅和费面的中心点处.外部触发信号 的频率设置为 10H₄(周期为 100ms),计数的预置时 间取 90ms,散射孔径是 1mm × 6mm 的矩形孔径,物 体的运动速度为 0.2mm·s⁻¹并沿散射孔径的短边方 向运动.应当指出,在一个循环计数的预置时间内,物 体运动的距离对散斑图样变化的影响可以忽略,探测 器所测得的光强可以认为是不变的.图 f(a)给出测到 的光强值 f(r=0,t)随时间 t 的变化曲线(局部),图 f(b)是由该光强数据按照 $R_{\Delta t}(\tau) = R_{\Delta}(r,r;\tau) =$ $[f(r,t) - I] f(r,t+\tau) - I] 计算,并经归一$ 化后得到归一化的光强涨落的自相关函数随时间间

此可以看出理论值和实验值符合得很好。

图 4 (a)--(h)为物体的位移分别处在 0mm 0.25mm 0.5mm 0.75mm ,1mm ,1.25mm ,1.5mm 和 1.75mm 时,在夫琅和费面上拍摄到的部分相 干光动态散斑的照片

图 5 (a)为在严格的夫琅和费面上 r = 0 处实验测得的光强随时间 t 的变化曲线 (b)中的虚线为由(a)计算得到的相关函数 $\gamma(0, \tau)$,实线 为根据(14) 武计算得到的理论曲线

4. 讨论

本文用部分相干光理论对部分相干光照明下的 动态散斑的时空交叉相关特性进行了详细的理论分 析 ,得出菲涅耳衍射区和夫琅和费衍射区内的光强 涨落的时空交叉相关函数的一般形式 ,并对部分相 干光动态散斑的有关特性进行了讨论,其结论与实验上观察到的结果一致.此外本文为了有效地测量 微弱的散斑场光信号,建立了一套专门的数据自动 测量系统,利用该系统对夫琅和费面上的部分相干 光动态散斑的光强进行了测量,测量数据经处理后 得到的相关函数曲线与理论结果符合较好.

- [1] Liu P S 1987 Fundamentals of statistical optics of speckles(Beijing: Science Press)(in Chinese [刘培森 1987 散斑统计光学基础 (北京 科学出版社)]
- [2] Takai N, Iwai T and Asakura T 1983 Appl. Opt. 22 170
- [3] Yoshimura T 1986 J. Opt. Soc. Am. A 3 1032
- [4] Ulyanov S S 1995 Opt. Lett. 20 1313
- [5] Chang M and Jin Y Q 2000 Acta. Phys. Sin. 49 33(in Chinese)
 [常梅、金亚科 2000 物理学报 49 33]
- [6] Cheng C F et al 1999 Acta. Phys. Sin. 48 1635(in Chinese] 程 传福等 1999 物理学报 48 1635]
- [7] Liu D L , Qi D P et al 2000 Chin . Phys . 9 351
- [8] Zhang N Y et al 2001 Acta. Phys. Sin. 50 865(in Chinese]张宁 玉等 2001 物理学报 50 865]
- [9] Nishibe T , Okamoto T et al 1996 J. Euro . Opt . Soc . Part A :Pure Appl . Opt . 5 975
- $\left[\ 10 \ \right]$ $\ Ma~S~N$ and Lin Q 1986 Appl . Opt . 25 22

- [11] Okamoto T and Asakuara T 1991 J. Mod. Opt. 38 1821
- [12] Tamaki Y , Araie M et al 1996 Curr . Eye Res . 15 543
- [13] Araie M and Muta K 1997 Exp. Eye Res. 64 167
- [14] Sun H , Zhang L Y et al 1999 J. Opt. Soc. Am. A 16 1387
- $\left[\begin{array}{c} 15 \end{array} \right] \ \ \, \mbox{Yura H T}$, Hanson S G et al $1999 \ \, J. \ Opt$. Soc . Am . A $16 \ 1042$
- [16] Sun H et al 1999 Acta Opt. Sin. 19 181(in Chinese 】孙 虹等 1999 光学学报 19 181]
- [17] Cheng C F , Liu W X and Gui W L 1999 Appl . Opt . 38 6687
- $\left[\ 18 \ \right] \quad Tu \ M \ R$, McKelvie J and Dai F L 1989 Appl . Opt . $\mathbf{28} \ 3354$
- [19] Jiang J H et al 1990 Acta. Opt. Sin. 10 440(in Chinese) 姜锦虎 等 1990 光学学报 10 440]
- [20] Born M and Wolf E 1999 Principle of Optics 7th ed(Cambridge : Cambridge University Press)
- [21] Goodman J W 1984 Laser Speckle and Related Phenomena 2nd ed. Daity J C ed Birlin Springer-Verlag)
- [22] Giglio M , Carpineti M and Vailati A 2000 Phys. Rev. Lett. 85 1416

Study on the properties of the dynamic partially coherent speckle in the Fresnel and Fraunhofer diffraction regions *

Teng Shu-Yun¹) Cheng Chuan-Fu¹⁽²⁾ Liu Man²) Liu Li-Ren¹) Xu Zhi-Zhan¹)

1 X Shanghai Institute of Optics and Mechanics , Chinese Academy of Sciences , Shanghai 201800 , China)

² (Department of Physics , Shangdong Normal University , Jinan 250014 , China)

(Received 13 May 2002; revised manuscript received 4 July 2002)

Abstract

We have studied the properties of the dynamic partially coherent speckles in the Fresnel and Fraunhofer diffraction regions. We use the theory of propagation of the mutual intensity in partially coherent light, and derive the general form of the spatio-temporal cross-correlation functions of the dynamic speckle intensities produced by a moving diffusing object. Based on these theoretical expressions, the characteristics of the movement and the boiling of the dynamic partially coherent speckles are discussed. By choosing the proper extended incoherent light source and by adjusting the parameters of the optical setup, we have observed experimentally the partially coherent speckle in the Fresnel and Fraunhofer diffraction regions. Then we study qualitatively the movement and the boiling of the speckles. Using techniques of photon counting and automatic data acquisition, we have measured the temporal evolution of the speckle intensity in the Fraunhofer plane as the object moves, and thus measured the crosscorrelation of the speckles versus the temporal increment. The experimental data are in agreement with the theoretical results.

Keywords : dynamic partially coherent light speckle , spatio-temporal cross-correlation function , the boiling of the speckle PACC : 4225H , 4225F

^{*} Project supported by the National Natural Science Foundation of China(Grant No. 69978012).