垂直磁记录薄膜实施剩余磁化测量时退磁场的补偿

冯洁

(上海交通大学微纳米科学技术研究院,上海 200030) (2002年4月23日收到2002年6月7日收到修改稿)

对于垂直磁记录薄膜,进行剩余磁化强度的测量时,必须补偿退磁场,提出一种新方法,在直流退磁剩磁和等 温剩磁测量中采用有效反向磁场来直接补偿退磁场,从而可以正确地得出垂直磁记录薄膜的 △M 曲线并评价晶粒 间的磁相互作用,还采用了三种方法来确定其中的关键参数——退磁因子.结果表明, c 轴垂直取向的钡铁氧体薄 膜中,晶粒间的磁相互作用是交换偶合型的;而 Co-Cr-Ta 薄膜中,晶粒间磁相互作用是静磁相互作用.

关键词:退磁场补偿,直流退磁剩磁(DCD),等温剩磁(IRM),△M曲线 PACC:7560E,7550S,7540B

1.引 言

为了实现高密度垂直磁记录,降低记录介质的 噪声是非常必要的.磁记录介质的噪声被认为与磁 介质中粒子之间的磁相互作用有密切关系,而剩余 磁化测量(remanence measurements)对于评价粒子之 间的磁相互作用^[1],及研究磁化反转机制,如激活体 积(activation volumes)等是非常有用的.但是,对于具 有垂直各向异性的磁记录薄膜,由于存在很强的退 磁场,在实施剩余磁化测量时,必须补偿退磁场才能 得到正确的结果.

最近,Thamm和 Hesse^[2]提出了一种新的方法来 评价粒子之间的磁相互作用,该方法没有采用剩余 磁化测量,而是利用初始磁化曲线和磁滞回线来评 价粒子间的磁相互作用.Bottoni等人^[3]用这种方法, 并通过使倾斜的磁滞回线直立从而补偿退磁场的方 法评价了 CoCr 垂直磁记录薄膜的粒子间磁相互作 用.但是由于非剩余磁化测量方法不能给出激活体 积,不能用于研究磁化反转机理,我们认为在实施剩 余磁化测量时,直接补偿退磁场仍然是必要的.本文 对垂直磁记录薄膜实施剩余磁化测量时,发展了一 种新方法来直接补偿退磁场;并采用三种方法来确 定退磁因子,利用此方法评价了钡铁氧体垂直磁记 录薄膜及 Co-Cr-Ta 薄膜中粒子之间的磁相互作用.

2. 理论模型

通常所指的剩余磁化测量包括两个内容,一是

直流退磁剩磁测量(dc demagnetization remanence measurement),简称 DCD 测量;另一个是等温剩磁测量 (isothermal remanent magnetization),简称 IRM 测量.按 照 Henkel 方法可以从 DCD 及 IRM 曲线计算获得评 价粒子之间磁相互作用的 ΔM 曲线^[3].以 DCD 测量 为例 其测量步骤可分为三步(如图1所示),第一步 使被测样品在一个方向上达到磁饱和;第二步在样 品上施加一个方向相反的磁场 H:第三步使反向磁 场为零,并测量样品的剩磁. Ikeda 等人^[4]曾在步骤 三评价样品剩磁时,通过使用 M, 轴取代 M 轴从而 实现退磁场的补偿(M,修正).其中M,轴的斜率等 于磁滞回线在 H。处的斜率,他们认为由于存在退磁 场 实测样品的剩磁应为 *M*', 而非 *M*., 但是,我们 发现虽然 M'。的值不同于 M。然而归一化以后,修 正后的 DCD 曲线即 M'a 随反向磁场 H 的变化关系 与原 DCD 曲线即 M_d 随反向磁场 H 的变化关系几 乎完全一致(如图 2 所示).因此我们认为 M. 修正 并未实现退磁场的补偿,本文考虑到步骤二中也存 在退磁场 因此实际加在样品上的反向磁场并非表 观磁场 H,我们在此引入了有效反向磁场 H_{eff}的概 念并进行了退磁场修正,称为有效场修正(H_{eff}修 正).考虑退磁场后,实际加在样品上的有效反向磁 场 H_{eff}应该为

$$H_{\rm eff} = H - N M_{\rm eff} , \qquad (1)$$

其中 N 为退磁因子 M_{eff} 为此时样品的磁化强度.修 正后的 DCD 曲线应该为有效场 H_{eff} 的函数 M_{d} (H_{eff}).

图 1 DCD 曲线测量步骤及退磁场修正示意图,*M*_r 修正:☆ 为 *H*,○为 *M*'_d;*H*_{eff} 修正:★为 *H*_{eff},•为 *M*_d;*H*_{eff} = *H* – *NM*_{eff}

图 2 *M*_r 修正前后的 DCD 曲线 ,○为修正前 , × 为 M, 修正

IRM 测量也可按照同样的方法进行退磁场修 正 图 3 为 IRM 测量的有效场修正示意图,测量之 前应对样品进行交流或热去磁.修正后的 IRM 曲线 为归一化的剩磁与有效场的关系曲线 $M_i(H_{eff})$.最 后,按照 Henkel 方法计算得到评价粒子之间磁相互 作用的 ΔM 曲线.考虑到退磁场的影响 ΔM 曲线不 应该表述为表观反向场 H 的函数,而应该表述为有 效反向磁场 H_{eff} 的函数,

 $\Delta M(H_{\text{eff}}) = M_{d}(H_{\text{eff}}) - (1 - 2M_{1}(H_{\text{eff}})).$ (2) 更进一步 利用修正后的 DCD 曲线和磁黏滞系 数(magnetic viscosity coefficient,它可以通过测量时间 依赖的剩磁获得),我们可以得到磁涨落场(magnetic fluctuation field)的值,从而计算出磁化反转时的激活

体积,研究磁化反转机理,

图 3 IRM 曲线测量步骤及退磁场修正示意图,*M_r*修正:☆ 为*H*,○为*M*'_i;*H*_{eff}修正:★为*H*_{eff},・为*M*_i;*H*_{eff} = *H* - *NM*_{eff}

3. 样品和测量

本研究采用四种具有垂直各向异性的磁记录薄 膜作为样品,它们是纯钡铁氧体薄膜(BaM)添加了 1 wt%SiO₂的钡铁氧体薄膜(BaM:SiO₂)成分为 BaAl₂Fe₁₀O₁₉的铝取代钡铁氧体薄膜(Al-BaM)和 Co-Cr-Ta薄膜.DCD和IRM测量均采用震动式样品 磁强计(VSM)来实施.IRM测量之前,三种钡铁氧体 薄膜被加热到超过居里温度的550℃;Co-Cr-Ta薄膜 则采用交流去磁.采用原子力显微镜(AFM)测量薄 膜中晶粒的平均直径D;采用 x 射线衍射的数据 计算得到晶粒的平均高度 δ .样品的磁学性质列于 表 1 中.可以看出,所有的样品都显示出很强的垂直 各向异性,表现在垂直矫顽力 H_{cl} 远大于面内矫顽 力 H_{cl} .

表1 样品的磁学性质

样品	$4\pi M_{\rm s}/10^{-1}{\rm T}$	$H_{\rm c\perp}/79.6 {\rm kAm^{-1}}$	$H_{\rm c//}/79.6 {\rm kAm^{-1}}$
BaM	4.8	2.7	0.34
BaM SiO ₂	4.2	4.2	1.23
Al-BaM	2.5	3.5	0.68
Co-Cr-Ta	4.4	1.5	0.51

4. 结果和讨论

图 4 显示了 4 种条件下 BaM 薄膜的 DCD 曲线, 它们是没有任何修正;*M*,修正后;有效场修正后(取 退磁因子为 0.7) 同时进行 *M*,修正和有效场修正后 等4种情况.可以看出,无论是否进行有效场修正,*M*, 修正对 DCD 曲线都没有实质的影响,而有效场修正 对 DCD 曲线有很大的影响.从方程(1)和图3,可以看 出退磁因子 *N* 实际上决定了有效反向磁场 *H*_{eff}的大 小.因此,要进行有效场修正,必须确定退磁因子 *N* 的大小.本文用3种方法来确定样品中退磁因子 *N* 的大小并进行比较,下面将分别进行讨论.

图 4 没有任何修正及经其他各种退磁场修正后的 BaM 薄膜的 DCD 曲线 (〇)为修正前 ,×为 M_r 修正 (△)为 H_{eff} 修 正(N = 0.7),+为 H_{eff} 修正和 M_r 修正

4.1. 退磁因子 N 的确定

图 5 为 BaM 薄膜取不同的退磁因子 N 进行有 效场修正后的 DCD 曲线.可以看出,曲线的斜率随 着退磁因子 N 的增加变得越来越陡峭.当外部施加 的反向磁场 H 为零时 样品实际承受的磁场并不是 零,而是退磁场 – NM_{eff}.当有效反向磁场 H_{eff}的值小 于 NM_{eff}时,样品的剩磁 M_d 测量不出来,因此,DCD 曲线中的这部分不存在.当退磁因子 N 等于 1 时, 发现计算得出的有效反向磁场 H_{eff}并未随着外加磁 场 H 的增加而单调增加,这是不合理的,因此这时 的 N 值是不合理的.本文通过以下方法估算出退磁 因子 N :当 DCD 曲线的斜率最大同时保证 H_{eff}随着 外磁场 H 的增加而单调增加,此时的 N 值被认为 是样品的退磁因子.按照这个方法,BaM 薄膜的退磁 因子 N 应该为 0.7.

第二种方法是利用磁滞回线来确定退磁因子 N.如图6所示,一个理想的磁滞回线因为退磁场的 存在而倾斜,补偿了退磁场后 H。附近的磁滞回线 的斜率应该为无穷大,从而可以反推退磁场的大小. 实际的磁滞回线在 H。附近并非是一条直线,本文 采用样品磁滞回线的最大值来估算退磁因子 N,其 方程为

$$N = dH/dM.$$
(3)

第三种方法通过计算圆盘形磁体的退磁因子 N的方法近似得出钡铁氧体六角形片状晶粒的退磁因子.在自由空间里考虑一个具有高宽比为 8/ D的圆盘形磁体,它的退磁因子 N能够计算得出, 我们把这个 N 值近似认为是钡铁氧体六角形片状 晶粒的退磁因子.表 2 为本文所用样品的晶粒尺寸 以及用以上三种方法得到的退磁因子 N 的值.可以 看出,三种方法得到的退磁因子 N 值是相互一致 的,因此,本文用 DCD 曲线估算出的退磁因子 N 值 是合理的.由于 Co-Cr-Ta 薄膜具有很小的晶粒尺寸, 它的退磁因子 N 仅为 0.4;而 Al-BaM 薄膜的晶粒非 常扁平,它的退磁因子 N 达到了 1.0.

图 5 BaM 薄膜取不同的退磁因子 N 进行有效场修正后的 DCD 曲线 ,●为 N = 0(未修正),△为 N = 0.4 ,▲为 N = 0.7, ○为 N = 1

图 6 利用磁滞回线来确定退磁因子 N 的示意图

化2 计出口出程人 计以及用一个门口符 到口区 网络 1 //							
样品	δ/nm	D /nm	δ/ D	<i>N</i> (DCD 曲线)	<i>N</i> (磁滞回线)	<i>N</i> (计算值)	
BaM	30	~ 120	0.25	0.7	0.68	0.72	
BaM SiO ₂	28	~ 200	0.14	0.8	0.85	0.86	
Al-BaM	20	~ 95	0.21	1.0	1.0	0.78	
Co-Cr-Ta	30	~ 45	0.67	0.4	0.5	0.42	

表 2 样品的晶粒尺寸以及用三种方法得到的退磁因子 N

4.2. 晶粒间磁相互作用的评价——Δ*M* 曲线

图 7 为 BaM 薄膜取不同的退磁因子 N 进行有 效场修正后的 IRM 曲线.与 DCD 曲线类似, IRM 曲 线的斜率随着退磁因子 N 的增加而增加.同时,应 该注意到在 IRM 曲线中,无论退磁因子 N 取何值, 计算得出的有效反向磁场 H_{eff}总是随着外加磁场 H 的增加而单调增加.因此,与 DCD 曲线不同, IRM 曲 线不能用来计算退磁因子 N.

图 7 BaM 薄膜取不同的退磁因子 N 进行有效场修正 后的 IRM 曲线 ●为 N=0(未修正),△为 N=0.4 ▲为 N=0.7

图 8 未经退磁场修正的 4 种薄膜的 △*M* 曲线 ,○为 BaFe₁₂ O₁₉, ×为 BaM SiO₂ ●为 BaAl₂Fe₁₀ O₁₉ ,▲为 Co-Cr-Ta

按照方程(2)所表述的 Henkel 方法,采用退磁 场修正前后的 DCD 曲线及 IRM 曲线,可以得到退磁 场修正前后的 ΔM 曲线 它可以用来评价晶粒间的 磁相互作用. 一般认为 ΔM 曲线中的正峰表明晶粒 间的磁相互作用为交换耦合型的、而负峰表明晶粒 间的磁相互作用为静磁相互作用[5].图 8 为未经退 磁场修正的 BaM ,BaM SiO, ,Al-BaM 薄膜和 Co-Cr-Ta 薄膜的 ΔM 曲线 所有样品都只显示出负的很宽的 峰 这显然不符合实际情况 也说明退磁场修正的必 要性.图9显示了这4种样品经过有效场 H_{aff}修正后 的 ΔM 曲线.当有效反向磁场 H_{eff} 的值小于 NM_{eff} 时 样品的剩磁 M_a 测量不出来 ,DCD 曲线中的这部 $分不存在(见图 5) 因此 \triangle M 曲线的这一部分也无$ 法测量.经过有效场 Heff 修正后 ,BaM ,BaM :SiO2 ,和 Al-BaM 薄膜的 ΔM 曲线由宽的负峰变成窄的正峰, 表明这三种薄膜中晶粒间的磁相互作用是交换耦合 型的:而 Co-Cr-Ta 薄膜的 ΔM 曲线仍然保持为负峰, 表明其中的晶粒间磁相互作用是静磁相互作用.

图 9 4种薄膜样品经过有效场 *H*_{eff}修正后的 △*M* 曲线, ○为 BaFe₁₂O₁₉(*N* = 0.7); ×为 BaM :SiO₂(*N* = 0.8); ●为 BaAl₂Fe₁₀ O₁₉(*N* = 1); 本为 Co-Cr-Ta(*N* = 0.4)

本研究中,我们还用了磁力显微镜(MFM)来观 察薄膜中磁畴的情况.图 10 为 BaM 和 Al-BaM 薄膜 在残留磁化状态下的 MFM 像.我们发现,虽然 Al-BaM 薄膜的晶粒比 BaM 薄膜的晶粒要小,Al-BaM 薄 膜却显示出更大的磁畴,而且每个磁畴都比晶粒尺 寸大.这个结果表明 Al-BaM 薄膜中,晶粒间的交换 耦合型磁相互作用更强,这个结果与△M 曲线的结 果是一致的.

图 10 BaM 和 Al-BaM 薄膜在残留磁化状态下的 MFM 像

5.结 论

对于具有垂直各向异性的磁记录薄膜,在实施 剩余磁化测量时,必须补偿退磁场才能得到正确的 结果.本文提出了一种新方法在测量 DCD 和 IRM 曲 线时,直接补偿退磁场,进而得到退磁场修正后的 △*M* 曲线,从而正确地评价了垂直磁记录薄膜中的 晶粒间磁相互作用.

结果表明, BaM, BaM; SiO₂,和 Al-BaM薄膜中晶 粒间的磁相互作用是交换耦合型的;而 Co-Cr-Ta薄 膜中的晶粒间磁相互作用是静磁相互作用.如果要 将钡铁氧体薄膜用于高密度垂直磁记录介质,必须 进一步降低其晶粒间的交换耦合型相互作用.

本研究工作是在日本东京工业大学,电子物理工学科, 直江·中川研究室完成的,特此致谢。

- [1] Henkel O 1964 Phys. Stat. Solidi 7 919
- [2] Thamm S and Hesse J 1996 J. Magn. Magn. Mater. 154 254
- [3] Bottoni G ,Candolfo D and Cecchetti A 1998 IEEE Trans. Magn. 34 1660
- [4] Ikeda Y ,Sonobe Y ,Uchida H and Toyooka T 1996 IEEE Trans. Magn. 32 3828
- [5] Bottoni G 1991 J. Appl. Phys. 69 4499

Compensation for the demagnetizing field in remanence measurements of perpendicular magnetic recording films

Feng Jie

(Research Institute of Micro/Nanometer Science and Technology ,Shanghai Jiaotong University ,Shanghai 200030 ,China) (Received 23 April 2002 ; revised manuscript received 7 June 2002)

Abstract

It is necessary to compensate for the demagnetizing field in remanence measurements of perpendicular magnetic recording films. In this paper a new method of compensating for the demagnetizing field is proposed and an effective reverse field H_{eff} is used to evaluate the dc demagnetization remanence curves isothermal remanent magnetization curves and the ΔM plots for perpendicular magnetic recording films. The demagnetization factor N is important for this method and three methods are used to estimate the value of N. The results of the ΔM plots indicate that the intergranular interactions in Ba ferrite films seem to be of exchange coupling while those in Co-Cr-Ta films are of magnetostatic interactions.

Keywords : compensate for demagnetizing field , DCD , isothermal remanent magnetization , ΔM measurement **PACC** : 7560E , 7550S , 7540B