掺铒铋酸盐玻璃的光谱性质和热稳定性研究*

杨建虎 戴世勋 温 磊 柳祝平 胡丽丽 姜中宏

(中国科学院上海光学精密机械研究所,上海 201800)(2002年4月11日收到 2002年6月26日收到修改稿)

测试了铋酸盐玻璃 (85 - x)Bi₂O₃-(10 + x)B₂O₃-5Na₂O(x = 0 5, 10, 15, 20, 25 mol%)中 Er³⁺离子的吸收光谱、荧 光光谱、荧光寿命及热稳定性.应用 Judd-Ofelt 理论计算了铋酸盐玻璃中 Er³⁺离子的强度参数(Ω_2 =(3.52—3.86)× 10⁻²⁰ cm², Ω_4 =(1.38—1.52)×10⁻²⁰ cm², Ω_6 =(0.93—1.17)×10⁻²⁰ cm²),应用 McCumber 理论计算了 Er³⁺离子的受 激发射截面(σ_e =(7.0—9.5)×10⁻²¹ cm²)及 Er³⁺离子⁴I_{13/2}→⁴I_{15/2}发射谱的荧光半高宽(FWHM = 57—79nm),测得了 Er³⁺离子⁴I_{13/2}能级荧光寿命(τ_m = 2.65—1.59ms),分析了玻璃的热稳定性能.研究了 Er³⁺离子各种光谱参数对成分 的依赖性,发现随着玻璃中 B₂O₃ 含量的增加,强度参数, Ω_i (t = 2, 4, 6、荧光半高宽(FWHM),热稳定性均相应增加, 而测得的荧光寿命却减小.比较了不同基质玻璃中 Er³⁺离子的光谱特性,结果表明掺铒铋酸盐玻璃更适合于掺 Er³⁺光纤放大器实现宽带和高增益放大.

关键词:铋酸盐玻璃,光谱性质,成分依赖性,Er³⁺离子 PACC:7855,4255R,7840

1.引 言

随着计算机网络及数据传输业务的飞速发展, 长距离传输系统对提高数据传输容量的需求日益增 长,传统的石英掺铒光纤放大器由于其较窄的放大 带宽(~30nm)已不能满足这种需求^[12]. 许多研究 者就如何扩大硅质 EDFA 的放大带宽进行了许多研 究^[3-7]但不能从根本上解决石英基质 EDF 增益的 带宽限制,因此,寻找一种新型的光纤放大器用掺铒 光纤基质材料以实现宽带和高增益放大非常关键. 近年来,研究人员把精力集中于磷酸盐玻璃^[89]、氟 磷酸盐玻璃^{10]}、氟化物玻璃^{11]}、碲酸盐玻璃^{12-14]}以 及含铋基质玻璃^{15-17]}等.掺铒碲酸盐玻璃在光通讯 第三窗口 1.55 μ m 处具有较大的受激发射截面(σ_a = 7.5 × 10⁻²¹ cm²)和较宽的荧光半高宽(FWHM = 65nm) 是光纤放大器实现宽带放大较为吸引人的 基质材料[18] 但其较差的玻璃热稳定性[12]、严重的 上转换发光性质^{19]}以及原料价格的昂贵使其很难 得到实用化.Tanabe 等人报道了一种含铋基质玻璃, 显示了较好的光学性能^{15]}本文研究了一种新型的 掺铒铋酸盐玻璃,分析了其吸收和荧光光谱性质及 热稳定性能,应用 Judd-Ofelt 理论计算了强度参数 $\Omega_i(t=2A_6)$,应用 McCumber 理论计算了受激发射 截面,研究了 Er^{3+} 离子各种光谱参数随玻璃成分变 化的情况.比较了 Er^{3+} 离子在不同基质玻璃中的光 谱特性,研究表明铋酸盐玻璃具有更好的光学性能, 更有利于光纤放大器实现宽带和高增益放大.

2. 实 验

2.1. 样品制备

玻璃组成为(85 - x)Bi₂O₃-(10 + x)B₂O₃-5Na₂O (x = 0.5,10,15,20,25 mol%),根据 B₂O₃ 含量由小 到大,依次命名为 YB1,YB2,YB3,YB4,YB5,YB6.样 品制备所需原料均为分析纯,分别以 Bi₂O₃,H₃BO₃, Na₂CO₃ 的形式引入. Er³⁺ 离子掺杂浓度为 0.5mol%,以高纯 Er₂O₃(99.99%)引入.称取混合料 50g,充分混合,搅拌均匀,放入铂金坩埚中于 800— 900℃的硅碳棒电炉中加热 1h,将融熔液倒入预热 的铁模中,成型后移入 350℃高温的退火炉中退火,

^{*} 国家自然科学基金(批准号 60207006)资助的课题.

退火速度为 10℃/min.其中样品一部分加工成 20mm ×10mm×3mm 大小进行吸收光谱测试,一部分加工 成斜边为 3cm,锐角为 15°的直角三角形进行折射率 测试,为了避免荧光俘获效应,一部分加工成 3mm ×3mm×1mm 大小进行荧光光谱和荧光寿命测试.

2.2. 性能测试

折射率测试采用最小偏向法 , n_{d} 通过公式 n_{d} = sin(0.5(δ_{min} + α))/sin(0.5 α)计算 ,其中 δ_{min} 为 587.6nm 处测得的最小偏向角 , α 为三角形棱镜的 锐角 ,这里 α = 15°.

密度测试采用排水失重法 纯水为浸没液体.实验测得样品(85 - x)Bi₂O₃(10 + x)B₂O₃-5Na₂O(x = 0.5,10,15,20,25 mol%)的折射率、密度及 Er³⁺离子浓度如表 1 所示.

表 1 玻璃(85 - x)Bi₂O₃(10 + x)B₂O₃-5Na₂O(x = 0.5,10,15,20, 25 mol%)的折射率、密度及 Er³⁺离子浓度

玻璃	密度((g/cm ³)	折射率	Er ³⁺ 浓度 (10 ²⁰ ion/cm ³)
YB1	6.978	2.145	1.34
YB2	6.758	2.112	1.39
YB3	6.518	2.072	1.44
YB4	6.234	2.030	1.50
YB5	5.995	1.990	1.55
YB6	5.648	1.945	1.59

吸收光谱测定应用 PERKIN-ELMER-LANBDA 900UV/VIS/NIR 型分光光度计,测量范围为 350— 1700nm,测量波长步长为 0.5nm.荧光光谱应用法国 J-Y 公司产 TIAX550 型荧光光谱仪测量 *9*70nmLD 作 为抽运源. Er³⁺离子⁴ I_{13/2}能级荧光寿命可以直接由 HP546800B100-MHz 型示波器读出.

热稳定性测试采用差热分析法(DTA),温度范 围为 300—750℃,升温速度为 10℃/min.

所有测试均在室温下进行.

3. 结果和讨论

3.1. 吸收光谱和 Judd-Ofelt 理论分析

图 1 为 Er³⁺ 离子在玻璃(85 - x)Bi₂O₃(10 + x) B₂O₃-5Na₂O(x = 0,5,10,15,20,25 mol%)中的吸收 光谱.每一个吸收峰值均由 Er^{3+} 离子激发态能级标示.随着 B_2O_3 含量由 10mol% 增加到 35mol%, Er^{3+} 离子⁴ $I_{13/2}$ 能级吸收峰值波长由 1531nm 降低至 1526nm 而⁴ $I_{15/2}$ →⁴ $I_{13/2}$ 跃迁的积分吸收截面由 $5.96 \times 10^{-19} cm^2$ 增加至 $7.03 \times 10^{-19} cm^2$,如图 2.样品的紫外吸收截止波长也随 B_2O_3 含量增加向长波方向移动.由于 Er^{3+} 离子的能级结构基本上不随玻璃成分的变化而变化,这里只给出了 Er^{3+} 离子在玻璃 $60Bi_2O_3-35B_2O_3-5Na_2O$ 中的能级图,如图 3.

Judd-Ofelt理论^{20 21}常用来计算稀土离子在不

图 1 玻璃(85 - x)Bi₂O₃(10 + x)B₂O₃-5Na₂O(x = 0,5,10,15, 20 25 mol%) 中 Er³⁺离子的吸收光谱

图 2 玻璃(85 - x)Bi₂O₃(10 + x)B₂O₃-5Na₂O(x = 0,5,10,15, 20 25 mol%)中 Er³⁺离子吸收峰值波长和积分吸收截面随成分 的变化

图 3 玻璃 60Bi₂O₃-35B₂O₃-5Na₂O 中 Er³⁺ 离子的能级图

同基质中的光谱参数如强度参数 $\Omega(t=2 A f)$ 自 发辐射跃迁概率、荧光分支比、辐射寿命等. Ω_{t} 2 4 6)常用来分析玻璃基质的对称性、稀土离子与 阴离子键 $R \rightarrow 0$ 的共价性等^[22]. Ω_2 , Ω_4 和 Ω_6 大小 可以根据实验测得的吸收光谱通过最小二乘法获 得^[22,23].图 4 为玻璃(85 - x)Bi₂O₃-(10 + x)B₂O₃-5Na₂ Q(x = 0 5, 10, 15, 20, 25 mol%)中 Er³⁺ 离子强度 参数 $\Omega(t=2AG)$ 随成分变化的情况.三个强度参 数 $\Omega_{i}(t=2, A, 6)$ 均随 B₂O₃ 含量增加而单调增加. 根据 Tanabe 等人^[24]的研究 , Ω_2 与玻璃基质的对称 性有关,对玻璃成分的变化最敏感,而 Ω_{α} 则与稀土 离子与阴离子氧键的共价性有关,并随共价性的增 强而减小^{25]}.稀土离子与阴离子氧的共价性与稀土 离子周围的配位环境有关,这可以通过玻璃成分或 结构的调整来控制^{10]}. B₂O₃ 是一种玻璃形成体,当 玻璃中加入 B₂O₃ 以后 , 硼离子将与三个或四个氧离 子配位. 随 B, O, 含量的增加, 玻璃中倾向于与 Er³⁺ 离子配位的非桥氧数量将减小 更多的氧离子将与 玻璃形成体 B³⁺ 离子配位,因此 Er—O 键的共价性 减弱 Ω_6 值相应增加.表 2 为不同基质玻璃中 Er^{3+} 离子强度参数 $\Omega_{i}(t=2 A f_{0})$ 的比较 ,可以看出除了 氟磷酸盐玻璃外,铋酸盐玻璃中 Ω_6 值大于其他玻 璃基质中的值,说明 Er—O 键在铋酸盐玻璃中具有 较弱的共价性.

根据电负性理论^[28],阴阳离子间电负性差值越小,阴阳离子键共价性越强,Bi,B,O的电负性值分

别为 1.8 2.0 和 3.5 ,Bi—O 键和 B—O 键的电负性 差值分别为 1.7 和 1.5 因此 B—O 键的共价性强于 Bi—O 键 的 共 价 性. 随 着 玻 璃 中 B₂O₃ 含 量 的 增加 ,B—O 键对稀土离子周围的配位环境的影响越 来越明显 ,Er—O 键共价性变弱 , Ω_6 值相应增加.

图 4 玻璃(85 - x)Bi₂O₃(10 + x)B₂O₃-5Na₂O(x = 0,5,10,15, 20 25 mol%)中 Er³⁺离子强度参数 $\Omega(t = 2, 4, 6)$ 随成分的变化

表 2 不同基质玻璃中 Er³⁺ 离子强度参数的比较

1101函	$\Omega_2/$	Ω_4 /	$\Omega_6/$
以垴	$(10^{-20} \mathrm{cm}^2)$	($10^{-20} \mathrm{cm}^2$)	($10^{-20} \mathrm{cm}^2$)
磷酸盐[26]	4.70	1.00	0.55
锗酸盐 ^[26]	5.81	0.85	0.28
氟磷酸盐 ^[26]	2.91	1.63	1.26
硅酸盐 ^[26]	4.23	1.04	0.61
碲酸盐[27]	4.74	1.62	0.64
YB6	3.86	1.52	1.17

对于满足选择定则 $\Delta S = \Delta L = 0$, $\Delta J = 0$, ± 1 的 跃迁,除了电偶极跃迁以外,还存在磁偶极跃迁的贡 献^[20,21].为了获得带宽宽且平坦的发射谱,提高电偶 极跃迁的相对比例是非常有效的^[24].磁偶极跃迁的 谱线强度 S_{md} 与基质材料或配位场的性质无关,是 一个常数,而电偶极跃迁 S_{ed} 则是玻璃成分和配位场 的函数.根据 Judd-Ofelt 理论, Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 发 射电偶极跃迁谱线强度可以表示为^[29]

 S_{eff} ⁴ $I_{13/2}$; ⁴ $I_{15/2}$] = 0.0188 Ω_2 + 0.1176 Ω_4 + 1.4617 Ω_6 , 其中强度参数 Ω_i (t = 2 A A)前的系数是单位张量 运算的约化矩阵元,与玻璃基质无关,这里采用了文 献 29 的数据.通过调整玻璃成分,可使 S_{eff} 在一定 范围内变化.表 3 为玻璃(85 - x) Bi_2O_3 (10 + x) B_2O_3 -5Na₂O(x = 0 S,10,15,20,25 mol%)中 Er^{3+} 离 子⁴I_{13/2}→⁴I_{15/2}发射电偶极跃迁和磁偶极跃迁谱线强 度及其比值.表 4 为不同玻璃基质中 Er^{3+} 离子 S_{ed} / ($S_{ed} + S_{md}$)的比较.

表 3 玻璃(85 - x) Bi_2O_3 (10 + x) B_2O_3 - $5Na_2$ O(x = 0.5,10,15, 20,25 mol%)中 Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 发射的电偶极跃迁和磁偶极跃迁谱线强度

1111	$S_{ m ed}$	${S}_{ m md}$	($S_{\rm ed}$ + $S_{\rm md}$)	$S_{ m ed}$
以均	(10^{-20} cm^2)	$10^{-20} \mathrm{cm}^2$) /($10^{-20} \mathrm{cm}^2$)	$\overline{(S_{\rm ed} + S_{\rm md})}$
YB1	2.82		3.54	0.797
YB2	2.93		3.65	0.803
YB3	3.01	0.72	3.73	0.807
YB4	3.09		3.81	0.811
YB5	3.20		3.92	0.816
YB6	3.33		4.05	0.822

表 4 不同基质玻璃中 Er³⁺ 离子⁴ I_{13/2}→⁴ I_{15/2}

发射 S_{ed} ($S_{ed} + S_{md}$)的比较

玻璃	YB6	碲酸盐27]	氟化物 ^{26]}	硅酸盐 ^{26]}	磷酸盐 ²⁶]锗酸盐[30]
$S_{\rm ed}$ ($S_{\rm ed}$ + $S_{\rm md}$) (0.822	0.810	0.683	0.675	0.652	0.568

可以看出, 秘酸盐玻璃中具有较其他基质玻璃 如碲酸盐玻璃、磷酸盐玻璃、硅酸盐玻璃、锗酸盐玻 璃及氟化物玻璃大的 S_{ed} ($S_{ed} + S_{md}$)比值, 可以预测 铋酸盐玻璃中 Er^{3+} 离子更有可能实现宽带放大.

3.2. 荧光光谱和发射截面

图 5 为玻璃(85 - x) Bi_2O_3 (10 + x) B_2O_3 -5 Na_2O (x = 0 5,10,15,20,25 mol%)中 Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 跃迁的荧光发射谱. Er^{3+} 离子在该玻璃中的发射谱 非常宽,并随成分中 B_2O_3 含量的增加而逐渐变宽, 这说明 B_2O_3 的加入使得 Er^{3+} 离子周围配位环境的 变化增大,导致 Er^{3+} 离子荧光发射谱的非均匀加宽 增大.图 6为 Er^{3+} 离子荧光 FWHM 随玻璃成分的变 化.随着 B_2O_3 含量由 10mol%增加到 35mol%, FWHM 由 57nm增加到 79nm.表 5为不同基质玻璃 中对应于 Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 发射的 FWHM 比较, 可见 Er^{3+} 离子在铋酸盐玻璃中具有较大的 FWHM 值,这对于光纤放大器实现宽带放大非常有益.

表 5 不同基质玻璃中 Er^{3+} 离子受激发射截面 (σ_e^{peak})和荧光 FWHM 的比较

玻璃	YB4	碲酸盐 ^[27]	硅酸盐[27]	磷酸盐[8]	锗酸盐[31]
折射率	2.030	2.019	1.585	1.569	1.625
$\sigma_{\rm e}{}^{\rm peak}/10^{-21}{\rm cm}^2$	8.0	7.5	5.5	6.4	5.68
FWHM/nm	75	65	40	37	53
$\sigma_{\rm e} \times {\rm FWHM}$	600	487.5	220	236.8	301

图 5 玻璃(85 - x) Bi_2O_3 (10 + x) B_2O_3 - $5Na_2$ O(x = 0.5,10,15,20, 25 mol%)中 Er^{3+} 离子 1.55µm 处的发射光谱

图 6 玻璃(85 - x)Bi₂O₃(10 + x)B₂O₃-5Na₂O(x = 0,5,10,15, 20 25 mol%) 中 Er³⁺ 离子 1.55µm 处荧光 FWHM 随成分的变化

根据 McCumber 理论^[32],Er³⁺离子⁴I_{13/2}→⁴I_{15/2}跃 迁的受激发射截面可以根据吸收截面求得,其表示 式为

 $\sigma_{\alpha}(\lambda) = \sigma_{\alpha}(\lambda) \exp[(\epsilon - h\nu)/kT],$

式中 h 为普朗克常数 k 为波尔兹曼常数 ϵ 为温度 T 下将一个 Er^{3+} 离子从基态⁴ $I_{15/2}$ 激发到⁴ $I_{13/2}$ 能级所 需要的自由能.吸收截面 σ_a 和自由能 ϵ 可以分别由 吸收光谱和文献[33]的方法求得.图 7 为玻璃 60Bi₂O₃-35B₂O₃-5Na₂O 中 Er³⁺ 离子的吸收截面及计 算得到的受激发射截面.表 5 为不同基质玻璃中 Er³⁺ 离子受激发射截面(σ_e)的比较,可见铋酸盐玻 璃中有较大值.受激发射截面与玻璃的折射率成正 比,铋酸盐玻璃具有比其他基质玻璃大的折射率,因 此 Er³⁺ 离子具有较大的受激发射截面.

图 7 玻璃 60Bi₂O₃-35B₂O₃-5Na₂O 中 Er³⁺ 离子的吸收截面 和由 McCumber 理论计算的发射截面

受激发射截面(σ_{e})和荧光 FWHM 对于光纤放 大器实现宽带和高增益放大非常重要.光纤放大器 的带宽特性可以用 FWHM × σ_{e} 的乘积来衡量,乘积 越大,说明带宽特性越好.不同基质玻璃中 Er^{3+} 离 子 1.55 μ m 发射 FWHM × σ_{e} 乘积的比较如表 5 所 示,秘酸盐玻璃中具有较大的 FWHM × σ_{e} 值,说明 其带宽特性较好.

3.3. Er³⁺离子⁴I_{13/2}能级荧光寿命

图 8 为玻璃(85 - x)Bi₂O₃-(10 + x)B₂O₃-5Na₂O (x = 0.5,10,15,20,25 mol%)中 Er³⁺离子⁴I₁₃₂能级 荧光寿命随 B₂O₃ 含量变化的情况.随着 B₂O₃ 含量 由 10mol% 增加到 35mol%,荧光寿命相应的由 2.65ms减小至 1.59ms.与其他基质玻璃相比,铋酸 盐玻璃中 Er³⁺离子的荧光寿命偏低.可能的原因 是:1)铋酸盐玻璃相对较高的折射率.根据 Judd-Ofelt 理论计算得到 Er³⁺的辐射寿命随玻璃基质折 射率的增加而减小,因此测得的荧光寿命也相应减 小 2)B₂O₃较高的声子能量(~1400cm⁻¹)使得玻璃 中无辐射跃迁概率较大,荧光寿命降低 3)OH⁻的影 响.由于 Er³⁺离子 1.55 μ m 发射谱与 OH⁻ 吸收峰有 较大程度的重叠,OH⁻的存在也使荧光寿命降低.已 有作者研究了锗碲酸盐玻璃³⁴¹及磷酸盐玻璃³⁵¹中 OH⁻对 Er³⁺离子寿命的影响.在我们的实验中,并 没有采取除 OH⁻措施.

图 8 玻璃(85 - x)Bi₂O₃-(10 + x)B₂O₃-5Na₂O(x = 0,5, 10,15 20 25 mol%)中 Er³⁺离子⁴I_{13/2}能级荧光寿命随成分 的变化

3.4. 玻璃的热稳定性

差热分析方法应用于本研究进行玻璃的热稳定 性能测试.玻璃的析晶开始温度(T_x)和玻璃转变温 度(T_g)之间的差值 $\Delta T(\Delta T = T_x - T_g$)是一个非常 重要的参数,可以用来分析玻璃的热稳定性和光纤 拉制特性. $\Delta T = T_x - T_g$ 越大,说明玻璃稳定性起 好,越有利于预制棒制作和光纤拉制^[36].表6为玻 璃(85 - x)Bi₂O₃-(10 + x)B₂O₃-5Na₂O(x = 0,5,10, 15 20 25 mol%)的 T_x , T_g 及 ΔT 随成分变化的情况 (图9),可见除样品 YB3 外 随着 B₂O₃ 含量的增加, 它们的大小也相应增加.这可能是由于随玻璃中 B₂O₃ 的加入 [BO₃]结构单元增强了玻璃的网络结 构,从而增强了玻璃的形成能力,提高了热稳定性.

表 6 玻璃(85 - x)Bi₂O₃-(10 + x)B₂O₃-5Na₂O(x = 0.5,10,15,20, 25 mol%)中的 T_g , T_x , $\Delta T = T_x - T_g$ 随成分的变化

玻璃	B ₂ O ₃ 含量(mol%)	$T_{\rm g}/^{\circ}\!{ m C}$	$T_{\rm x}$ /°C	$T_{\rm x} - T_{\rm g}/^{\circ}$ C
YB1	10	415	534	119
YB2	15	415	557	142
YB3	20	410	552	142
YB4	25	425	574	149
YB5	30	430	585	155
YB6	35	435	605	170
碲酸盐[27]		325	415	90

图 9 玻璃(85 - x) Bi_2O_3 (10 + x) B_2O_3 -5 $Na_2O(x = 0, 5, 10, 15, 20, 25 mol%)$ 的 T_x , $T_x 及 \Delta T$ 随成分的变化

4.结 论

测量并分析了玻璃(85 - x) Bi_2O_3 {10 + x} B_2O_3 -5 Na_2O (x = 0.5,10,15,20,25 mol%)中 Er^{3+} 离子的吸 收光谱性质.随 B_2O_3 含量由 10mol%增加到 $35mol\% Er^{3+}$ 离子⁴ $I_{15/2} \rightarrow$ ⁴ $I_{13/2}$ 的吸收峰值波长由 1531nm降至 1526nm,积分吸收截面由 5.96×10^{-19} cm^2 增加至 $7.03 \times 10^{-19} cm^2$,紫外吸收截止波长也向 长波方向移动. 应用 Judd-Ofelt 计算了玻璃的强度参数 Ω_i (*t* = 2 *A b*).随着 B₂O₃ 含量的增加 , Ω_2 , Ω_4 , Ω_6 分别由 3.52×10⁻²⁰ cm² ,1.38×10⁻²⁰ cm² ,0.93×10⁻²⁰ cm² 增 加到 3.86×10⁻²⁰ cm² ,1.52×10⁻²⁰ cm² ,1.17×10⁻²⁰ cm² .除了氟磷酸盐玻璃以外 ,铋酸盐玻璃中的 Ω_6 值均大于其他基质玻璃中的值 ,说明铋酸盐玻璃中 Er—O 键存在较弱的共价性.分析比较了不同基质 玻璃中 Er³⁺ 离子⁴ I_{13/2}→⁴ I_{15/2}发射的电偶极跃迁和磁 偶极跃迁谱线强度的大小 ,铋酸盐玻璃中存在较高 的 *S*_{ed} (*S*_{ed} + *S*_{md})值 ,说明掺铒铋酸盐玻璃更有可能 实现宽带且平坦发射.

应用 McCumber 理论计算了 Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 跃迁的受激发射截面($\sigma_e = (7.0 - 9.5) \times 10^{-21} cm^2$), 测量了 Er^{3+} 离子⁴⁺ $I_{13/2}$ →⁴ $I_{15/2}$ 发射谱的荧光 FWHM = 57-79nm.与其他基质玻璃相比,铋酸盐玻璃中 Er^{3+} 离子具有较大的 FWHM × σ_e ,说明其带宽特性 较好.

测量了 Er^{3+} 离子⁴ $I_{13/2}$ 能级的荧光寿命. 随着 B₂O₃ 含量由 10mol%增加到 35mol%, Er^{3+} 离子荧光 寿命由 2.65ms 降至 1.59ms. 与其他基质玻璃相比, 铋酸盐中 Er^{3+} 离子⁴ $I_{13/2}$ 能级寿命偏低,这可能与铋 酸盐玻璃较高的折射率、 B_2O_3 较高的声子能量以及 OH⁻ 的存在有关.

应用差热分析法分析了玻璃的热稳定性能.随着 B₂O₃ 含量的增加 $\Delta T = T_x - T_g$ 相应增大,说明玻璃 变的更加稳定,更有利于预制棒制作和光纤拉制.

- [1] Ainslie B J ,Craig-ryan S P ,Davey S T et al 1990 IEE Proc. J. Special Issue on optical amplifiers for communication.
- [2] Atkins C G Massicott J F Armitage J P et al 1989 Electron Lett. 25 910
- [3] Barro M R X ,Nykolak G ,DiGiovanni D J et al 1996 IEEE Photo. Tech. Lett. 8 761
- [4] Liang J J, Wang Y Q, Chen W D et al 2000 Acta Phys. Sin. 49 1386 in Chinese J 梁建军、王永谦、陈维德等 2000 物理学报 49 1386]
- [5] Buxens A ,Poulsen H N ,Clausen A T et al 2000 Electron. Lett. 36 821
- [6] Lu Y B , Chu P L 2000 IEEE Photo . Tech . Lett . 12 1616
- [7] Mahdi M A ,Mahamd F R ,Poopalan P et al 2000 IEEE Photo. Tech. Lett. 12 1468
- [8] Jiang S , Luo T , Hwang B C et al 2000 J. Non-Cryst Solids. 263&264 364

- [9] Hwang B C ,Jiang S ,Luo T et al 2001 IEEE. Photo. Tech. Lett. 13 197
- [10] Tanabe S , Yoshii S ,Hirao K et al 1992 Physic Rev. B 45 4620
- [11] Feng Y Hao Z Chen X B et al 1997 Acta Phys. Sin. 46 2454(in Chinese J 冯 衍、郝 昭、陈晓波等 1997 物理学报 46 2454]
- [12] Wang J S , Vogel E M Snitzer E 1994 Optical Materials . 3 187
- [13] Feng X , Tanabe S , Hanada T 2001 J . Am . Ceram . Soc . 84 165
- [14] Mori A ,Kobayashi K ,Yamada M 1998 Electron Lett . 34 887
- [15] Tanabe S Sugimoto N Jto S et al 2000 J. Non-Cryst Solids. 87&89 670
- [16] Kuroiwa Y Sugimoto N ,Ochiai K et al 2001 OFC '. TuI5 1
- [17] Choi Y G ,Kim K H ,Heo J 1999 J. Am. Ceram. Soc. 82 2762
- [18] Mori A , Ohishi Y Sudo S 1997 Electron Lett. 33 863
- [19] Nii H ,Ozaki K ,Ferren M et al 1998 J. Lumin. 76&77 116
- [20] Judd B R 1962 Phys. Rev. 127 750
- [21] Ofelt G S 1962 J. Chem. Phys. 37 511

- [22] Tanabe S ,Ohyagi T ,Soga N et al 1992 Phys Rev. B 46 3305
- [23] Takebe H , Nageno Y , Morinaga K 1995 J. Am. Ceram. Soc. 78 1161
- [24] Tanabe S 1999 J. Non-Cryst Solids . 259 1
- [25] Tanabe S 1993 J. Appl. Phys. 73 8451
- [26] Zou X Jzumitani T 1993 J. Non-Cryst. Solids. 162 68
- [27] Yang J H, Dai S X, Li S G et al Acta Optica Sinica(to be published) (in Chinese J 杨建虎、戴世勋、李顺光等光学学报,即将发表]
- [28] Pauling L 1929 J. Am. Chem. Soc. 51 1010
- [29] Weber M J 1967 Phys. Rev. 157 262

- [30] Porque J Jiang S Hwang B C et al 2000 Proc of SPIE. 3942 60
- [31] Lin H ,Pun E Y B ,Man S Q et al 2001 J. Opt. Soc. Am. B 18 602
- [32] McCumber D E 1964 Phys. Rev. 134 A299
- [33] Miniscalco W J , Quimby R S 1991 Optics Lett . 16 258
- [34] Feng X , Tanabe S , Hanada T 2001 J. Non-Cryst Solids . 281 48
- [35] Liu Z P, Dai S X, Qi C H et al 2001 Acta Photonica Sinica. 30 1413(in Chinese) 柳祝平、戴世勋、祁长鸿等 2001 光子学报 30 1413]
- [36] Drexhage M G ,El-Bayoumi O H ,Moynihan C T et al 1982 J. Am. Ceram. Soc. 65 168

Spectroscopic properties and thermal stability of a new erbium-doped bismuth-based glass *

Yang Jian-Hu Dai Shi-Xun Wen Lei Liu Zhu-Ping Hu Li-Li Jiang Zhong-Hong

(Shanghai Institute of Optics and Fine Mechanics , Chinese Academy of Sciences , Shanghai 201800 , China)

(Received 11 April 2002; revised manuscript received 26 June 2002)

Abstract

The absorption spectra æmission spectra and thermal stability of Er^{3+} -doped (85 - x) Bi_2O_3 (10 + x) B_2O_3 -5Na₂O(x = 0, 5, 10, 15, 20, 25 mol%) glasses were investigated in this work. The Ω_t (t = 2, 4, 6) ($\Omega_2 = (3.52 - 3.86) \times 10^{-20} \text{ cm}^2$, $\Omega_4 = (1.38 - 1.52) \times 10^{-20} \text{ cm}^2$, $\Omega_6 = (0.93 - 1.17) \times 10^{-20} \text{ cm}^2$) parameters were calculated by Judd-Ofelt theory. The stimulated emission cross sections ($\sigma_e = (7.0 - 9.5) \times 10^{-21} \text{ cm}^2$) of the Er^{3+} ion ${}^4\text{I}_{13/2} - {}^4\text{I}_{15/2}$ transition were calculated using the McCumber theory. The FWHM FWHM = 57 - 79 nm) of the ${}^4\text{I}_{13/2} - {}^4\text{I}_{15/2}$ emission and lifetimes of ${}^4\text{I}_{13/2}$ leve ($\tau_m = 2.65 - 1.59 \text{ ms}$) of Er^{3+} ions were measured. The thermal stability of the glasses were analyzed. The compositional dependence of optical parameters of Er^{3+} ions were studied with the increases of B₂O₃ content in the glass. The parameters Ω_t (t = 2, h, h), FWHM and temperature difference of $\Delta T = T_x - T_g$ increase monotonically while the measured lifetime decreases. The optical properties of Er^{3+} in different glass hosts were compared. The results show that our Er^{3+} -doped bismuth-based glass is much more beneficial for optical amplification.

Keywords : Bismuth-based glass , spectroscopy , compositional dependence , ${\rm Er}^{3\,+}$ ion PACC : 7855 , 4255R , 7840

^{*} Project supported by the National Natural Science Foundation of China Grant No. 60207006).