$Gd_3Co_{29-x}Cr_x$ 新相化合物的结构与磁性

王文全¹²⁾ 闫 羽¹⁾ 王向群¹⁾ 王学凤¹⁾ 苏 峰¹⁾ 金汉民¹⁾

¹(吉林大学物理学院,长春 130023) ²(吉林大学超硬材料国家重点实验室,长春 130023)

(2002年5月31日收到2002年7月15日收到修改稿)

制备出具有室温单轴磁晶各向异性的非间隙型 Co 基 Gd₃ Co_{29-x} Cr_x 化合物($x = 6.5 \ an 7.0$)_x 射线衍射和磁性 测量表明所有单相化合物均属于单斜晶系 _Nd₃(Fe ,Ti)₂,型结构和 A 2/m空间群.Gd₃ Co_{29-x} Cr_x 化合物的居里温度在 x = 6.5 时为 412 K ,x = 7.0 时为 359 K. Gd₃ Co_{29-x} Cr_x 化合物在 x = 6.5 时磁化强度随温度的变化曲线表明 ,在居里 温度以下的某一温度处有一补偿点 ,在补偿点处求得晶格分子场系数 $n_{RT} = 3.3 \ T f.u./\mu_B$.

关键词:Gd₃ Co_{29-x} Cr_x 化合物, x 射线衍射, 磁晶各向异性 PACC:6110,7530G,7530K

1.引 言

近年来,一种具有 Nd₃(Fe,Ti)₂,型结构的稀土-铁基金属间化合物 R_3 (Fe,M)₂(R = 稀土,M = 稳定元素)和它们的间隙化合物如 Sm₃(Fe,Ti)₂,N_y, Sm₅(Fe,Ti)₂,C_y因显示出优良的永磁性能而引起人 们极大的兴趣¹⁻³¹.像具有 ThMn₁₂型结构的 R(Fe, T)₂和具有 Th₂Zn₁₇型结构的 R_2 Fe₁₇化合物一样,具 有单斜结构和 A 2/m空间群的 Nd₃(Fe,Ti)₂,型结构 被证明可以从 CaCu₅型结构衍变而来.Nd₃(Fe,Ti)₂, 型结构是具有六角的 Th₂Zn₁₇型结构和具有 ThMn₁₂

 $R_{2}(\operatorname{Fe}_{1-x}M_{x})_{17} + R(\operatorname{Fe}_{1-y}M_{y})_{12} = R_{3}(\operatorname{Fe}_{1-z}M_{z})_{29}.$ (1)

在 Nd₃(Fe ,Ti)₂,型结构中 稀土 R 有两个晶位,过渡 族有 11 个晶位 ,即 1 个 2c 位、1 个 4g 位、1 个 4e 位、4 个 4i 位和 4 个 8i 位.由于 R_3 (Fe ,M)₂,化合物 一般都不具备室温单轴磁晶各向异性^[41],不能直接 用作永磁材料.尽管间隙化合物 Sm₃(Fe ,Ti)₂,N_y 和 Sm₃(Fe ,Ti)₂,C_y 具有室温单轴磁晶各向异性,但是 和所有间隙化合物一样,化合物 Sm₃(Fe ,Ti)₂,N_y 和 Sm₃(Fe ,Ti)₂,C_y 的高温稳定性不尽如人意,因而限 制了它在宽温度范围内的应用.新近,阳东等人以 Co 替代 Gd₃(Fe ,Cr)₂,中的 Fe 原子,成功地制备了 Gd₃(Fe_{1-x}Co_x)₂,Sc_x(0.0 $\leq x \leq 0.6$)化合物,并发现随 Co 含量的增加 ,Gd₃(Fe_{1-x}Co_x)₂₅Cr₄ 的磁晶各向异性 在 $x \ge 0.4$ 时由易面磁晶各向异性转变为单轴磁晶 各向异性^[5],遗憾的是在 x > 0.6 的单相化合物没有 成功制备出来 ,所以无法讨论在 3:29 型化合物中 Co 次晶格对磁晶各向异性的贡献.为了研究 Co 基 R_3 (Co ,M)₂₉新相化合物的结构与磁性 ,我们用 Cr 作为稳定元素成功地制备出 Gd₃Co_{29-x}Cr_x 化合物(x= 6.5 和 7.0),并对其结构与磁性进行了研究.

2. 实验方法

纯度为 99.9%的 Gd, Co, Cr 按名义成分 Gd₃Co_{29-x}Cr_x(5≤x≤8)配料,利用电弧炉在高纯氩 气保护下将组成元素熔炼成合金,将熔炼好的合金 锭子在高纯氩气保护下分别于 1403 K 温度下退火 72 h,然后水淬.

利用 x 射线粉末衍射和热磁曲线测量(磁场约 为 0.05 T)研究样品的相组成并确定单相样品的晶 格常数 .利用超导量子磁强计(SQUID)和振动样品 磁强计(VSM)分别测量了 5 到 300 K 和 300 K 到居 里温度以上的热磁曲线 ,单相化合物的居里温度 T_c 可以从 M^2 -T 曲线中把 M^2 外推到零而获得 .饱和磁 化强度 M_s 是从 M- $B^{-1/2}$ 曲线中把 $B^{-1/2}$ 外推到零而 得到的 .为了测量磁晶各向异性场 将研磨好的粉末 与环氧树脂均匀混合放在直径为 $\phi_3 \times 10$ mm 聚四氟 乙烯管中 ,对于室温具有单轴磁晶各向异性的化合 物 装好样品的聚四氟乙烯管放在 1 T 左右的外场 中,使聚四氟乙烯管的轴线和外场平行,因此,圆柱 轴的方向就是易磁化方向(EMD);使聚四氟乙烯管 的轴线和外场垂直,那么轴线方向就是难磁化方向 (HMD).室温和5 K 下的磁晶各向异性场 B_a 分别通 过在室温下奇点检测法即 SPD 法^[6]和5 K 下 ΔM -H ($\Delta M = M_{easy} - M_{hard}$)曲线把 ΔM 外推到零得到, M_{easy} 和 M_{hard} 分别从易磁化曲线和难磁化曲线获得.

3. 结果与讨论

x 射线衍射和热磁曲线分析表明 ,具有 Nd₃(Fe , Ti)₂,型结构和 A 2/m空间群的单相 $Gd_3 Co_{29-x} Cr_x$ 化 合物可以在 x = 6.5 和 7.0 得到.晶格常数可以从粉 末样品的 x 射线衍射谱中获得 ,其值列于表 1.从表 1 可以看到 ,由于 Cr 原子半径比 Co 原子半径大 ,所 以 $Gd_3 Co_{29-x} Cr_x$ 化合物的晶胞体积随 Cr 含量的增 加而增加.

表 1 Gd₃Co_{22.5}Cr_{6.5}和 Gd₃Co₂₂Cr₇化合物的结构与磁性参数

化合物	a/nm	b/nm	c/nm	β (°)	V/nm ³	易磁化方向 (室温)
Gd ₃ Co _{22.5} Cr _{6.5}	1.0414	0.8390	0.9521	97.0	0.8266	轴
$\operatorname{Gd}_3\operatorname{Co}_{22}\operatorname{Cr}_7$	1.0412	0.8381	0.9576	97.0	0.8277	轴
化合物		$M_{\rm s}$	<i>B</i> _a (5K)	<i>B</i> _a (293K) K ₁	μ_{Co}
	10/K	(μ _B /f.u.) /T	/T	(MJ/m ³)) /µ _B
Gd ₃ Co _{22.5} Cr _{6.5}	412	3.2	5.3	1.9	0.20	0.79
$\operatorname{Gd}_3\operatorname{Co}_{22}\operatorname{Cr}_7$	359	5.5	4.6	1.5	0.25	0.71

用振动样品磁强计测量化合物在低场(B = 0.05 T)下的磁化强度 M 与温度 T 的关系.所得样 品的 Gd₃Co_{22.5}Cr_{6.5}化合物的居里温度 T_{c} 为 412 K; Gd₃Co₂₂Cr₇化合物的居里温度 T_{c} 为 359 K,并分别 列于表 1.在 R-T化合物中存在三种交换作用 稀土 次晶格中稀土与稀土间的 R-R 间接交换作用 稀土 次晶格与过渡族次晶格之间的 R-T 间接交换作用,稀土 次晶格与过渡族次晶格内的 T-T 直接交换作用,定们中 过渡族次晶格内的 T-T 直接交换作用最强 ,居里温 度主要由 T-T 的交换作用决定.在 Gd₃Co_{29-x}Cr_x 化 合物中,由于 Cr 原子对磁化强度没有贡献,Cr 的增 加不仅导致减少 Co 原子,而且也降低了 Co 的磁矩 (这一点在下面将讨论),这些都导致 Co-Co 交换作 用的降低,结果导致 Gd₃Co₂₂Cr₇化合物的居里温度 T_{c} 比 Gd₃Co₂₂,Cr₆,5的 T_{c} 低.

图 1 Gd₃Co_{22.5}Cr_{6.5}化合物的粉末样品(谱线 *a*) 常规取向样品 (谱线 *b*)和 Gd₃Co₂₂Cr₇ 化合物常规取向样品(谱线 *c*)的 x 射线 衍射谱

图 1 为 $Gd_3 Co_{22.5} Cr_{6.5}$ 化合物的粉末样品(谱线 *a*) 常规取向样品(谱线 *b*)和 $Gd_3 Co_{22} Cr_7$ 化合物常 规取向样品(谱线 *c*)的 x 射线衍射谱.从图 1 可以 看到 ,与 $Gd_3 Co_{22.5} Cr_{6.5}$ 化合物粉末样品的 x 射线衍射 谱相比 ,常规取向后 $Gd_3 Co_{22.5} Cr_{6.5}$ 和 $Gd_3 Co_{22} Cr_7$ 化合 物的 x 射线衍射 谱的(204)峰十分突出 ,由于 Nd₃(Fe ,Ti)₂₉结构源于 CaCu₅ 结构 ,基于 CaCu₅ 结构 和 Nd_3 (Fe ,Ti)₂₉结构的对应关系^[7]晶面指数可以表 示为

$$\begin{pmatrix} h \\ k \\ l \end{pmatrix}_{3:29} = \begin{pmatrix} -2 & -2 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} h \\ k \\ l \end{pmatrix}_{1:5} , \quad (2)$$

因而可以知道 Nd₃(Fe ,Ti)₂₉结构中的(204)峰对应于 CaCu₅ 结构中的(001)峰.这表明 Gd₃Co_{22.5} Cr_{6.5}和 Gd₃Co₂₂Cr₇ 化合物在室温下是单轴磁晶各向异性 的.为了验证上述结论,我们用振动样品磁强计测量 了室温下的磁化强度 M 与垂直外场方向和取向方 向之间夹角 θ 的关系(外场强度 B = 0.5 T).我们认 为,如果化合物是单轴磁晶各向异性的,在 0°—180° 之间 M- θ 曲线上会出现一个极大值.图 2 为 Gd₃Co_{22.5}Cr_{6.5}化合物在室温时所测定的 M- θ 曲线. M- θ 曲线上出现一个极大值进一步证明了纯 Co 基 3:29 型化合物 $Gd_3 Co_{29-x} Cr_x(x = 6.5 和 7.0)$ 在室温 表现为单轴磁晶各向异性,这对于探索 $C_0 基 3$:29 型永磁材料的应用具有重要的意义.

图 2 Gd₃Co_{22.5}Cr_{6.5}化合物在室温时(外场强度 B = 0.5 T) 测量的磁化强度 M 与垂直外场方向和取向方向之间夹角 θ 的关系曲线

图 3 Gd₃Co_{22.5}Cr_{6.5}化合物在 5 K 时(a)和 293K 时(b)的易磁 化方向、难磁化方向的磁化曲线及 SPD 法曲线 ○为易磁化 方向 ●为难磁化方向

图 3(a)和(b)分别为 Gd₃ Co_{22.5} Cr_{6.5}化合物在 5 K 时的易磁化方向、难磁化方向的磁化曲线和 293 K 时的易磁化方向、难磁化方向的磁化曲线及 SPD 法 曲线.从 $M-B^{-1/2}$ 曲线中把 $B^{-1/2}$ 外推到零而得到的 Gd₃Co_{22.5}Cr_{6.5}和 Gd₃Co₂₂ Cr₇化合物的饱和磁化强度 M_s 值列于表 1.从表 1 中比较后发现 ,Gd₃Co_{29-x} Cr_x 化合物的饱和磁化强度 M_s 随 Cr 含量的增加而增 n_1 .Gd₃Co_{29-x} Cr_x 化合物中 Co 原子的平均磁矩可以 用下式求得:

$$\mu_{\rm Co} = (3\mu_{\rm Gd} - M_{\rm s})(29 - x), \qquad (3)$$

 μ_{C_0} 为 Co 原子的平均磁矩 , μ_{C_d} 为 Gd 离子的磁矩 , M_s 为化合物的饱和磁化强度 ,这里 Gd 离子的磁矩 取为 7 μ_B .对于 Gd₃Co_{22.5} Cr_{6.5} 化合物 ,由(3)式求得 $\mu_{C_0} = 0.79\mu_B$;对于 Gd₃Co₂₂ Cr₇ 化合物 ,求得 $\mu_{C_0} =$ $0.71\mu_B$.可以看到 Cr 含量的增加导致 Co 原子的平 均磁矩下降 ,而 Co 磁矩的下降又导致了 Gd₃Co_{29-x} Cr_x 化合物的饱和磁化强度 M_s 随 Cr 含量的增加而 增加.

由 ΔM -H($\Delta M = M_{easy} - M_{hard}$)曲线推得 $Gd_3 Co_{22.5}$ Cr_{6.5}和 $Gd_3 Co_{22} Cr_7$ 化合物在 5 K 时的磁晶各向异性 场 B_a 分别为 5.3 和 4.6 T 293 K 时的磁晶各向异性 场 B_a 分别为 1.9 和 1.5 T.磁晶各向异性常数 K_1 可 以通过下式求得:

$$K_1 = M_s B_a/2.$$
 (4)

通过(4)式求得的 5K 时 Gd₃Co_{22.5} Cr_{6.5}和 Gd₃Co₂₂ Cr₇ 化合物的磁晶各向异性常数 *K*₁ 分别为 0.20 和 0.25MJ/m³.

图 4 B = 0.05T 时 $Gd_3 Co_{22.5} Cr_{6.5}$ 化合物磁化强度与温度的关系 曲线 内插图为 $Gd_3 Co_{22.5} Cr_{6.5}$ 化合物在补偿点处的磁化曲线

图 4 为 Gd_3Co_{22} , Cr_{65} 化合物(外场 B = 0.05 T) 从5K到居里温度以上的热磁曲线,在140K附近 都有一个补偿点,在补偿温度点处的磁化曲线通过 超导量子磁强计测得.从图4可以看到,在补偿点, 磁矩和外场的关系是一条过原点的直线. $Gd_{x}Co_{2n-x}$ Cr_x 化合物像 Fe 基 $Gd_3Fe_{24}Cr_5$ 化合物一样⁴都是亚 铁磁耦合,对于 T 晶格或 R 晶格没有磁晶各向异性 的 R-T 金属间化合物, Verhoef 通过 HFFP 方法^[8]描 述了亚铁磁耦合的 R-T 化合物自由粉末在高场下 的磁化行为 如图 5 所示 :当磁场值在 $B_1(=n_{RT} \mid m_R)$ $-m_T$) < B < B_2° (= n_{RT} ($m_R + m_T$)) 之间(其中 n_{RT} 为晶格间分子场系数)磁化强度与磁场之间呈现斜 率为 1/n_{RT}的线性关系,当两次晶格磁矩相等时,描 述外场和磁化强度关系的直线就穿过坐标原点,n_{RT} 的 值 可 以 直 接 从 高 场 磁 化 曲 线 中 获 得. 对 干 Gd₃Co₂₂₅Cr₆₅化合物 从图 4 所示直线的斜率求得晶 格分子场系数 $n_{RT} = 3.3 \text{T f.u.}/\mu_{\text{B}}$.

4.结 论

本文成功地制备出具有室温单轴磁晶各向异性 的非间隙型 Co 基 $Gd_3 Co_{29-x} Cr_x$ 化合物(x = 6.5 和 7.0). x 射线衍射和磁性测量表明所有单相化合物 都属于单斜晶系 Nd_3 (Fe ,Ti)₂₉型结构和 A 2/m空间

图 5 Verhoef 通过 HFFP 方法^{8]} 描述的 *R-T* 化合物自由粉末 在高场下的磁化行为曲线

群.具有亚铁磁耦合的 $Gd_{3}Co_{29-x}Cr_{x}$ 化合物的居里 温度在 x = 6.5 时为 412 K, x = 7.0 时为 359 K. $Gd_{3}Co_{29-x}Cr_{x}$ 化合物在 x = 6.5 时磁化强度随温度的 变化曲线表明,在居里温度以下的某一温度处有一 补偿点,在补偿点处求得晶格分子场系数 $n_{RT} = 3.3$ T f.u./ μ_{B} .

- [1] Collocott S J, Day R K, Dunlop J B and Davis R L 1992 Proc. 7th Int. Symp. on Magnetic Anisotropy and Coercivity in Rare-Earth-Transition Metal Alloys (Canberra) pp437—444
- [2] Yang F M , Nasunjilegal B , Wang J L , Pan H Y , Qin W D , Zhao R W , Hu B P , Wang Y Z , Liu G C , Li H S and Cadogan J M 1994 J. Appl. Phys. 76 1973
- [3] Hu B P , Liu G C , Wang Y Z , Nasunjilegal B , Tang N , Yang F M , Li H S and Cadogan J M 1994 J. Phys. Condens. Matter 6 L595
- [4] Han X F , Yang F M , Pan H G , Wang Y G , Wang J L , Liu H L , Zhao R W and Li H S 1997 J. Appl. Phys. 81 7450
- [5] Yang D et al 1999 Acta Phys. Sin. 48 S80(in Chinese 1) 阳 东 等 1999 物理学报 48 S80]
- [6] Asti G and Rinaldi S 1972 Phys. Rev. Lett. 28 1584
- [7] Han X F , Liu H L and Yang F M 1997 Phys. Rev. B 56 8867
- [8] Verhoef R, de Boer F R, Franse J J M, Denissen C J M, Jacobs T H and Buschow K H J 1990 J. Magn. Magn. Mater. 89 176

Structural and magnetic properties of $Gd_3 Co_{29-x}Cr_x$ compounds

Wang Wen-Quan^{1,2}) Yan Yu¹) Wang Xiang-Qun¹) Wang Xue-Feng¹) Su Feng¹) Jin Han-Min¹)

¹⁾ (Department of Physics , Jilin University , Changchun 130023 , China)

² (State Key Laboratory for Superhard Materials , Jilin University , Changchun 130023 , China)

(Received 31 May 2002 ; revised manuscript received 15 July 2002)

Abstract

The novel Co-based Gd₃ Co_{29-x} Cr_x compounds with a Nd₃(Fe ,Ti λ_{29} -type structure have been synthesized successfully for x = 6.5 and 7.0. The crystal structure and magnetic properties of the Gd₃ Co_{29-x} Cr_x compounds have been investigated by x-ray diffraction analysis and magnetic measurements. It has been found that Gd₃(Co ,Cr λ_{29} with x = 6.5 and 7.0 are ferrimagnetic with the Curie temperature of 412 K for x = 6.5 and 359 K for x = 7.0. Temperature dependence of magnetization shows a compensation point of the magnetization at a certain temperature below Curie point. The intersublattice molecular field coefficient , n_{RT} , was derived to be 3.3 T f.u./ $\mu_{\rm B}$ for Gd₃Co_{22.5} Cr_{6.5} on the basis of the magnetization curve at the compensation temperature. It is noteworthy that the Gd₃(Co ,Cr λ_{29} compounds exhibit a favourable easy-axis anisotropy in the whole temperature range below the Curie temperature.

Keywords : $Gd_3 Co_{29-x} Cr_x$ compounds , x-ray diffraction , magnetocrystalline anisotropy **PACC** : 6110 , 7530G , 7530K