970nm 抽运下 Er³⁺/Yb³⁺/Tm³⁺共掺碲酸盐 玻璃的发光特性*

戴世勋^{1,2}[†] 杨建虎¹ 柳祝平¹ 温 磊¹ 胡丽丽¹ 姜中宏^{1,2}

¹(中国科学院上海光学精密机械研究所,上海 201800)
 ²(华南理工大学光通讯材料研究所,广州 510641)
 (2002年6月7日收到 2002年8月14日收到修改稿)

研究了 E^{3+}/Yb^{3+} 共掺、 Tm^{3+}/Yb^{3+} 共掺、 $E^{3+}/Yb^{3+}/Tm^{3+}$ 共掺碲酸盐玻璃在 970nm 抽运下的荧光光谱和上转换 光谱性质 ,测试了 E^{3+} 离子的⁴ $I_{11/2}$ 和⁴ $I_{13/2}$ 能级荧光寿命变化情况.结果发现 $E^{3+}/Yb^{3+}/Tm^{3+}$ 共掺碲酸盐玻璃的常规 荧光谱线在 1450—1700nm 区域明显加宽 ,并在 1630nm 有一荧光峰 ,可能是 Tm^{3+} :¹ $G_4 \rightarrow {}^3F_2$ 跃迁产生. 上转换发光 研究表明 ,由于碲酸盐玻璃声子能量低的缘故 ,三种共掺系统下都存在上转换发光现象.在 $E^{3+}/Yb^{3+}/Tm^{3+}$ 共掺 中 ,上转换机理受 E^{3+}/Yb^{3+} 之间、 Tm^{3+}/Yb^{3+} 之间、 E^{3+}/Tm^{3+} 之间三者共同相互作用影响 ,其中 E^{3+} 与 Tm^{3+} 离子 之间存在的交叉弛豫过程降低了 E^{3+} 离子在可见光范围的上转换强度.

关键词:Er³⁺/Yb³⁺/Tm³⁺共掺,碲酸盐玻璃,荧光,上转换光谱 PACC:7855,4255R,7840

1.引 言

目前,以碲酸盐玻璃为基质的掺铒或掺铥玻璃 主动光纤由于其增益带宽宽,能满足宽带放大器需 求,已成为光纤材料研究的热点^[1-5].一些著名的光 纤材料研究单位纷纷将碲酸盐基质的掺铒或掺铥光 纤作为研究重点.例如 Southampton 大学光电子研究 中心和 NTT 公司专门成立了宽带放大器用的碲酸 盐玻璃基质掺铒、掺铥光纤研究小组.目前宽带玻璃 主动光纤基础应用研究主要集中在两个方面:一是 如何在碲酸盐玻璃中提高掺 $Er^{3+} 在 1.55 \mu (^{4}I_{13/2} \rightarrow$ $^{4}I_{15/2})^{6,7]$ 或掺 $Tm^{3+} 在 1.47 \mu (^{3}F_{4} \rightarrow ^{3}H_{4})^{8,9]$ 荧光带 宽和发光效率;二是如何降低由于碲酸盐玻璃声子 能量低而引发的 Er^{3+} , Tm^{3+} 离子上转换现象^[10,11].

本文研究了 $Er^{3+}/Yb^{3+}/Tm^{3+}$ 三掺碲酸盐玻璃光 谱性质以及上转换机理.目的是为了验证一种新的 想法,即能否在碲酸盐玻璃中通过 $Er^{3+}/Yb^{3+}/Tm^{3+}$ 三种稀土离子共掺方式,在 wavelength division multiplexing (简称 WDM)系统的通信波段实现更宽波段 增益放大;另一方面,碲酸盐玻璃声子能量低,是 Er³⁺和Tm³⁺离子上转换发光材料有力候选基质,但 较少对三掺碲酸盐玻璃上转换发光进行系统研究. 本工作还有助于深入研究三掺碲酸盐上转换材料.

2.实 验

为了更加深入地研究 $Er^{3+}/Yb^{3+}/Tm^{3+} = 掺碲酸$ 盐玻璃发光基质,使用了 Er^{3+}/Yb^{3+} 离子共掺 ErYb1样品和 Tm^{3+}/Yb^{3+} 离子共掺 TmYb1 样品作对比实 验.表 1 列出具体编号及相应组成情况.玻璃熔制实 验用纯度 \ge 99.9% 的 Te_2O_3 , ZnO, La_2O_3 Tm_2O_3 , Yb_2O_3 , Er_2O_3 作为原料,按配方精确称取原料约 30g放入 50ml 的铂金坩埚中,于 900℃左右的硅碳棒电 炉中熔化 30—35min,然后经搅拌、澄清后,浇注在铁 模上 移入预热到一定温度(T_g 以上 30℃左右)的马 弗炉中退火.将玻璃加工成尺寸为 $10mm \times 10mm \times$ 1.5mm 两大面抛光以供测试用.

^{*}国家自然科学基金(批准号 160207006)及上海市科学技术委员会光科技项目(批准号 22261046)资助的课题。

 $^{^{\}dagger}\text{E-mail}$: daisx@mail.shcnc.ac.cn

	表1 玻璃组成
编号	玻璃组成/mol%
ErYb1	$70 {\rm TeO_2}\hbox{-}24.5 {\rm ZnO}\hbox{-}5 {\rm La}_2 {\rm O}_3 \hbox{-}5 {\rm Yb}_2 {\rm O}_3 \hbox{-}0.5 {\rm Er}_2 {\rm O}_3$
TmYb1	$70 {\rm TeO_224.5ZnO5La_2O_35Yb_2O_30.5Tm_2O_3}$
ErYbTm1	$70 {\rm TeO_2}\hbox{-}24 {\rm ZnO}\hbox{-}5 {\rm La}_2 {\rm O}_3\hbox{-}5 {\rm Yb}_2 {\rm O}_3\hbox{-}0.5 {\rm Er}_2 {\rm O}_3\hbox{-}0.5 {\rm Tm}_2 {\rm O}_3$
ErYbTm2	$70 {\rm TeO_2}\hbox{-}23 {\rm ZnO}\hbox{-}5 {\rm La}_2 {\rm O}_3\hbox{-}5 {\rm Yb}_2 {\rm O}_3\hbox{-}0.5 {\rm Er}_2 {\rm O}_3\hbox{-}1.5 {\rm Tm}_2 {\rm O}_3$

吸收光谱用 PERKIN-ELMER 公司 LANBDA 900UV/VIS/NIR 型分光光度仪测得.常规荧光谱和 上转换荧光谱测试采用了一台功率为 2W、工作波 长为 970nm 的激光二极管(LD)作为为抽运源,荧光 由 Jobin-Yvon 公司的 TRIAX550 型光谱仪记录. Er³⁺ 离子⁴I_{11/2}能级和⁴I_{13/2}能级寿命测量分别采用 800 和 970nm 的 LD 激发,发光信号经探测器、单色仪和光 电倍增管放大后,传递到示波器,通过荧光衰减曲线 确定荧光寿命.以上所有样品测试都在室温同一条 件下进行.

3. 实验与结果

图 1 给出 ErYbTm1 样品的的吸收光谱. 从图 1 可见, Er^{3+} , Yb^{3+} , $Tm^{3+} =$ 港碲酸盐玻璃在紫外区到 近红外范围内存在多处吸收,由于碲酸盐基质玻璃 的紫外吸收截止波长约位于 350nm 附近, 所以 Er^{3+} 离子或者 Tm^{3+} 离子由基态向更高能级(例如: Er^{3+} 离子的 $^4G_{9/2}$, Tm^{3+} 离子的 1D_2 等)的跃迁无法在吸收 光谱中显示. 各吸收峰所对应的稀土离子及能级在 图 1 中标出.表 2 列出 Er^{3+} , Yb^{3+} 和 Tm^{3+} 离子具体 能级对应的峰值波长以及相应的波数. 根据表 2 确 定的 Er^{3+} , Yb^{3+} 和 Tm^{3+} 离子的能级结构如图 2 所示.

图 1	ErYbTml	玻璃的吸	收光谱

表 2	ErYbTm	三掺碲酸盐玻璃的吸收峰位
-----	--------	--------------

	Er ³⁺ 离子			Tm ³⁺ 离子			Yb ³⁺ 离子		
	吸收能级	峰值波长	对应波数	吸收能级	峰值波长	对应波数	吸收能级	峰值波长	对应波数
	92 42 86 92	/nm	$/\mathrm{cm}^{-1}$	92 42 86 92	/nm	$/\mathrm{cm}^{-1}$	9X 4X 8E 9X	/nm	/cm ⁻¹
1	⁴ I _{13/2}	1530	6536	${}^{3}F_{4}$	1700	5617	${}^{2}F_{5/2}$	974	10267
2	$^{4}I_{11/2}$	976	10246	3 H ₅	1213	8403			
3	⁴ I _{9/2}	800	12500	3 H ₄	793	12610			
4	⁴ F _{9/2}	652	15337	${}^{3}F_{3}$	689	14355			
5	${}^{4}S_{3/2}$	545	18349	${}^{3}F_{2}$	663	15083			
6	$^{2}\mathrm{H}_{11/2}$	521	19194	$^{1}G_{4}$	465	21210			
7	${}^{4}\mathrm{F}_{7/2}$	488	20492						
8	${}^{4}F_{5/2}$	451	22173						
9	2 H _{9/2}	407	24570						
10	4 G _{11/2}	378	26455						

图 2 Er³⁺, Yb³⁺ 和 Tm³⁺ 离子能级结构及 Er³⁺/Yb³⁺ 共掺、Tm³⁺/Yb³⁺ 共掺上转换过程示意图

从图 1 和图 2 可以看出 , Er^{3+} $\stackrel{4}{\cdot}I_{15/2} \rightarrow {}^{4}I_{9/2}$ 跃迁与 Tm³⁺ $\stackrel{3}{\cdot}H_6 \rightarrow {}^{3}H_4$ 跃迁在 800nm 波长附近重叠 ,同时 Yb³⁺ $\stackrel{2}{\cdot}F_{7/2} \rightarrow {}^{2}F_{5/2}$ 跃迁吸收和 $Er^{3+} \stackrel{4}{\cdot}I_{15/2} \rightarrow {}^{4}I_{11/2}$ 跃迁吸 收在 975nm 附近重叠 采用波长为 970nm LD 抽运正 好与此吸收波段耦合 ,可有效提高抽运效率 .

图 3 为 970nm 抽运下 ErYb1, ErYbTm1 和 ErYbTm2 玻璃的荧光光谱. 对不含 Tm³⁺ 离子的 ErYb1 样品而言,荧光峰中心波长位于 1530nm 附 近 荧光半高宽(FWHM)约为 55nm,高于硅酸盐玻 璃基质中两倍左右^[12]荧光半高宽对应的波长范围 为 1511—1566nm,覆盖了 WDM 通讯系统中部分 S 波段(1490—1530nm)和整个C波段(1530— 1560nm). ErYbTm1 和 ErYbTm2 样品的荧光谱与 ErYb1 相比,有两个特点,一是荧光谱线带宽宽,并 且出现了两个荧光峰,分别位于 1530 和 1630nm,这 是非常独特的现象,在1530nm处荧光半高宽为 55nm 在 1630nm 处荧光半高宽为 53nm 后者范围位 于 WDM 系统中超 L 波段(1610-1640nm)区域 二是 ErYbTm1 和 ErYbTm2,荧光强度只有 ErYb1 的 1/10 左右,说明引入Tm³⁺离子后,Er³⁺与Tm³⁺离子之间 发生了能量转移,导致 Er³⁺ ⁴I_{13/2}→⁴I_{15/2}跃迁效率急 剧下降.ErYbTm1 和 ErYbTm2 荧光形状一样,但后者

比前者的荧光强度略低.另外需要说明,实验中测试 TmYbl 样品,在 1400—1800nm 之间没有观察到荧 光.表 3 列出 ErYb1, ErYbTm1 和 ErYbTm2 中的 Er^{3+} 离子⁴ $I_{11/2}$ 和⁴ $I_{13/2}$ 能级荧光寿命,可以看出在 ErYb 共 掺中引入 Tm^{3+} 离子明显地降低了 Er^{3+} 离子⁴ $I_{13/2}$ 能 级荧光寿命,并且随着 Tm^{3+} 离子含量增加, Er^{3+} 离 子⁴ $I_{13/2}$ 能级荧光寿命由 2.8ms 缩短到 1.30ms,但是 Er^{3+} 离子⁴ $I_{11/2}$ 寿命却保持在 45 μ s 左右变化不大.

图 3 ErYb1 , ErYbTm1 和 ErYbTm2 玻璃的荧光光谱

表 3 Er³⁺离子的⁴ I_{11/2}和⁴ I_{13/2}能级荧光寿命

	ErYb1	ErYbTm1	ErYbTm2
τ ⁴ I _{13/2} /ms[970nm 激发]	2.8	1.45	1.30
τ ⁴ I _{11/2} /μ [800nm 激发]	45	43	44

图 4 为 ErYb1 和 TmYb1 样品在 970nm 抽运下的 上转换荧光谱. 对 ErYb1 而言,在 400—900nm 之间 主要共有 5 处上转换荧光,按照波长由大到小的顺 序依次为 800 660 547 532 A77nm 对照图 2,容易辨 认依次分别对应于 Er^{3+} : ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$, Er^{3+} : ${}^{4}F_{9/2} \rightarrow$ ${}^{4}I_{15/2}$, Er^{3+} : ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, Er^{3+} : ${}^{4}F_{7/2}$ $\rightarrow {}^{4}I_{15/2}$ 跃迁,其中 550nm 绿光和 650nm 红光上转换 谱线强,与实验中肉眼明显观察到强的红绿色上转 换现象一致.

对 TmYb1 而言,在 400—900nm 之间主要有两 处上转换荧光,分别位于 475 和 808nm,与 ErYb1 上 转换正好在 477 和 800nm 波段重合,实验中也观测 到了蓝色上转换发光.为进一步验证其上转换跃迁 机理,测试了 475 和 808nm 上转换谱线强度与抽运 功率之间对应关系(见图 5),其中荧光谱线强度用 各荧光带的积分面积表示,结果显示 808nm 的对数 曲线斜率为 2 *4*75nm 对数曲线为 2.8 的直线.

根据上述 ErYb1 和 TmYb1 上转换发光情况,再 加上 Tm³⁺离子在 970nm 没有吸收,可以预测 Er³⁺/ Yb³⁺/Tm³⁺ 三掺碲酸盐玻璃中不会出现新的上转换 荧光峰.图 6 为样品 ErYbTm1 和 ErYbTm2 的上转换 荧光谱,正如前面所预测的那样,引入 Tm³⁺离子后, 在 400—900nm 之间没有出现新的上转换荧光峰,但 上转换各荧光谱线强度发生了变化.另外,ErYbTm1 和 ErYbTm2 的上转换荧光谱线形状和强度都很相似.

图 5 TmYb1 荧光谱线强度随抽运功率变化

图 6 ErYbTm1 和 ErYbTm2 玻璃上转换发光光谱

4.分 析

 Er^{3+}/Yb^{3+} 共掺^[13-15]系统在 970nm 波长抽运下 的上转换发光已有许多研究工作 . Er^{3+}/Yb^{3+} 共掺碲 酸盐玻璃的上转换机理如图 2 所示 ,主要是由 4 个 过程共同作用导致 Er^{3+} 离子被激发到⁴F_{7/2}能级 ,它 们是 :1)Yb³⁺ 与 Er^{3+} 离子之间的能量共振转移 , Er^{3+} 离子吸收一个激发光子从基态⁴I_{15/2}跃迁到⁴I_{11/2}(基态 吸收(GSA)),另外 ,由于 Yb³⁺ 离子掺杂浓度较高(为 Er^{3+} 离子的 10 左右), Yb³⁺ 离子对 970nm 抽运光有 较大吸收 ,大量的 Yb³⁺ 离子入基态被激发到²F_{5/2}态 , Yb³⁺ 离子的²F_{5/2} 与 Er^{3+} 离子的⁴I_{11/2} 之间能量相当 , 两者之间易发生共振能量转移 ;2)Yb³⁺ 与 Er^{3+} 离子 之间的交叉弛豫作用 ,其过程可表示为 Er^{3+} :2 I_{11/2} → ⁴F_{7/2} ,Yb³⁺ :²F_{5/2}→²F_{7/2} ,即处在激发态²F_{5/2}能级上的 Yb³⁺离子跃迁到基态时 ,释放一个光子被处在²I_{11/2} 能级上的 Er^{3+} 离子吸收后跃迁到 $F_{7/2}$ 能级 3)在 $^{4}I_{11/2}$ 能级上的 Er³⁺ 离子激发态吸收(ESA),由于 Er³⁺ 离 子的⁴F_{7/2}态能量差不多是⁴I_{11/2}的两倍,另外,⁴I_{11/2}能 级与⁴I₁₃₂能级间隔约为 3600cm⁻¹,由于碲酸盐玻璃 其声子能量较低(约为700cm⁻¹),两能级之间的声 子阶数较高(约为 $\Delta E/h\omega$,其中 ΔE 为相邻两能级 之间间距 ,ha 为基质声子能量) ,导致无辐射跃迁几 率小 相应在4I112 能级停留时间长 ,容易产生激发态 吸收,处于激发态 ${}^{4}I_{11/2}$ 的 Er^{3+} 离子可再吸收一个激 发光子,跃迁到 ${}^{4}F_{7/2}$ 能级 \mathcal{A})在 ${}^{4}I_{11/2}$ 能级上的 Er^{3+} 离 子合作上转换过程 ,即 Er³⁺(⁴I_{11/2})+ Er³⁺(⁴I_{11/2})→ Er³⁺(⁴F_{7/2})+Er³⁺(⁴I_{15/2}).这4个过程最终使 Er³⁺离 子跃迁到⁴F_{1/2}态⁴,F_{1/2}能级上离子一部分直接以自发 辐射跃迁方式到基态 发射出 477nm 光 ,一部分快速 弛豫到²H₁₁₂态,然后辐射跃迁到基态,发射出 532nm 光,一部分以无辐射跃迁方式到4Sap态,然后辐射跃 迁到基态 发射出 547nm 左右绿光 而 660nm 红光来 I_{132} 能级的 Er^{3+} 离子的激发态吸收到 F_{92} 能级, 再跃迁到基态时所产生的 800nm 光对应 Er³⁺ 离子 $\mathcal{M}^4 \mathbf{I}_{\alpha}$ 态到基态跃迁.

从图 4 可以看出, Er³⁺ 离子在碲酸盐玻璃中的 上转换现象很强烈,这主要是由于碲酸盐玻璃基质 的声子能量低的缘故,上转换发光对光纤放大器非 常有害,如何降低 Er³⁺离子在碲酸盐玻璃中上转换 发光是很值得研究的一个重要问题.

通过对 TmYb1 样品上转换发光的研究,发现 Tm³⁺/Yb³⁺ 共掺碲酸盐玻璃在 970nm 抽运下也存在 较强的上转换现象,图 5 测试的上转换荧光随抽运 功率的曲线斜率结果表明 *4*76nm 光为三光子过程, 对应于 Tm³⁺ :¹G₄→³H₆ 跃迁,正好与 Er³⁺ :²F_{7/2}→ ⁴I_{15/2}在 474nm 附近重合,而 808nm 光为二光子过程, 对应于 Tm³⁺ :¹H₄→³H₆ 跃迁,正好与 Er³⁺ :⁴I_{9/2}→³H₆ 在 800nm 附近重合.都昭^[15,16]和张龙^[17]等人分别详 细研究了 974nm 抽运下 Tm³⁺ /Yb³⁺ 共掺在非晶五磷 酸盐玻璃和氟化物玻璃中的上转换发光,认为 Tm³⁺ 离子上转换是通过 Yb³⁺ 离子对 Tm³⁺ 离子激发到高能级 而产生上转换荧光,具体过程如下^[16,18,19]:

$$\begin{aligned} Yb^{3+} \stackrel{?}{\cdot}F_{5/2} &+ Tm^{3+} \stackrel{?}{\cdot}H_6 \rightarrow Yb^{3+} \stackrel{?}{\cdot}F_{7/2} &+ Tm^{3+} \stackrel{?}{\cdot}H_5 \\ &\rightarrow Yb^{3+} \stackrel{?}{\cdot}F_{7/2} &+ Tm^{3+} \stackrel{?}{\cdot}F_4 , \qquad (1) \end{aligned} \\ Yb^{3+} \stackrel{?}{\cdot}F_{5/2} &+ Tm^{3+} \stackrel{?}{\cdot}F_4 \rightarrow Yb^{3+} \stackrel{?}{\cdot}F_{7/2} &+ Tm^{3+} \stackrel{?}{\cdot}F_2 \\ &\rightarrow Yb^{3+} \stackrel{?}{\cdot}F_{7/2} &+ Tm^{3+} \stackrel{?}{\cdot}H_4 , \qquad (2) \end{aligned}$$

$$Yb^{3+} \stackrel{2}{\cdot} F_{5/2} + Tm^{3+} \stackrel{3}{\cdot} H_4 \rightarrow Yb^{3} \stackrel{2}{\cdot} F_{7/2} + Tm^{3+} \stackrel{4}{\cdot} G_4.$$
(3)

Yb³⁺离子首先吸收激发能量由基态被激发到 ²F_{5/2}能级,处在激发态的Yb³⁺离子把能量传递给 Tm³⁺离子,从而将基态的Tm³⁺离子激发到³H₅能级,然后快速弛豫到³H₄能级,接着Yb³⁺离子继续向 Tm³⁺离子传递能量,并使之由³H₄激发到³F_{2,3},然后 迅速弛豫到³F₄能级,再一次接收Yb³⁺离子传递的 能量后,Tm³⁺离子被激发到¹G₄能级.整个过程中 Yb³⁺离子充当了直接敏化的作用,TmYb1上转换机 理同样可以用上述过程解释,碲酸盐声子能量低,更 易于产生上转换现象.

ErYbTm1 和 ErYbTm2 上转换荧光在谱线形状上 与 ErYb1 相同 但在各上转换荧光谱线强度上很不 一样 ErYb1 中上转换荧光 800 660 547 532 A77nm, 五者相当强度比值为 24.2 31.7 30.2 :12.6 :1.3 ,而 ErYbTm1 比值为 86.8:7.4:3.3:1.4:1.1,可见在 ErYbl 基础上引入 0.5mol% Tm₂O₃ 的 ErYbTm1, 800nm 上转换光强度急剧增强,这主要是 Tm³⁺ 离子 上转换³H₄→³H₆ 跃迁效应产生的缘故 ,另外 ,547 , 532nm 绿光和 660nm 红光强度减弱,其机理可以解 释如下 :当 Er³⁺/Yb³⁺/Ym³⁺ 三种离子共掺时,可以想 像,一部分 Yb³⁺ 与 Er³⁺ 离子之间以 Er³⁺ /Yb³⁺ 共掺 上转换机理相互作用,一部分Yb3+与Tm3+离子之 间以 Tm³⁺/Yb³⁺ 共掺上转换机理相互作用,而 Er³⁺ 离子上转换现象的减弱 ,一方面是因为 Tm³⁺ 离子引 入 ", 抢夺 "了一部分 Yb³⁺ 离子与之作用 ,另一方面 也是因为 Er³⁺ 与 Tm³⁺ 离子之间发生了能量转移 表 3 中 Er³⁺ 离子⁴ I_{13/2}能级荧光寿命随 Tm₂O₃ 含量增加 而降低,也说明了 Er³⁺离子向 Tm³⁺离子进行能量传 递 ,从图 2 可以看出 Er³⁺ .⁴ I_{13/2}能级易将能量传递给 Tm³⁺ ³F₄ 能级. 另外, 仔细分析表 2 数据和图 2 能 级 可以发现 :Er³⁺ 与 Tm³⁺ 离子之间可能存在以下 几种交叉弛豫过程²⁰(见图7):

$$\begin{split} & \operatorname{Er}^{3+} \, {}^{4}S_{3/2} \rightarrow {}^{4}I_{9/2} \ , \quad \operatorname{Tm}^{3+} \, {}^{3}H_{6} \rightarrow {}^{3}F_{4} \ , \quad (\ 4 \) \\ & \operatorname{Er}^{3+} \, {}^{4}S_{3/2} \rightarrow {}^{4}I_{11/2} \ , \quad \operatorname{Tm}^{3+} \, {}^{3}H_{6} \rightarrow {}^{3}H_{5} \ , \quad (\ 5 \) \\ & \operatorname{Er}^{3+} \, {}^{4}F_{9/2} \rightarrow {}^{4}I_{13/2} \ , \quad \operatorname{Tm}^{3+} \, {}^{3}H_{6} \rightarrow {}^{3}H_{5} \ , \quad (\ 6 \) \end{split}$$

 $\operatorname{Er}^{3+} \stackrel{4}{\cdot} \operatorname{F}_{9/2} \rightarrow {}^{4}\operatorname{I}_{15/2}$, $\operatorname{Tm}^{3+} \stackrel{3}{\cdot} \operatorname{H}_{6} \rightarrow {}^{3}\operatorname{F}_{2}$. (7)

 Er^{3+} $\stackrel{4}{\cdot}S_{3/2} \rightarrow^{4}I_{9/2}$ 跃迁能量为 5849 cm^{-1} ,而 Tm^{3+} : $^{3}H_{6} \rightarrow ^{3}H_{4}$ 跃 迁 能 量 为 5882 cm^{-1} ,两 者 仅 相 差 $33cm^{-1}$,所以(4)式交叉弛豫过程完全可能发生.同 样, $Er^{3+} \stackrel{4}{\cdot}S_{3/2} \rightarrow^{4}I_{11/2}$ 跃迁能量为 8103 cm^{-1} ,而 Tm^{3+} : ³H₆→³H₅ 跃迁能量为 8403 cm⁻¹,两者相差 300 cm⁻¹, 所以(5)式的交叉弛豫也是可能的.由于(4)和(5)式 两种交叉弛豫存在,导致 Er³⁺离子⁴S_{3/2}能级上的粒 子数降低,从而上转换绿光强度减弱.同理(6)和 (7)式中两种交叉弛豫导致 Er³⁺离子⁴F_{9/2}能级上的 粒子数降低,从而上转换红光强度减弱.总而言之, 由于 Er³⁺与 Tm³⁺离子之间存在交叉弛豫现象,使 Tm³⁺离子起到了猝灭 Er³⁺离子上转换作用,导致 Er³⁺离子在可见光范围上转换强度减弱.

图 7 Er³⁺ 与 Tm³⁺ 交叉弛豫作用

图 3 显示引入 Tm³⁺ 离子导致 Er³⁺ : : $I_{13/2} \rightarrow$ $^{2}I_{15/2}$ 跃迁强度降低 ,是因为 Tm³⁺ 离子通过能量转移由 Er³⁺ : $I_{13/2}$ 能级到 Tm³⁺ : : F_4 能级 ,破坏了 Er³⁺ 离子 $^{4}I_{13/2}$ 与 $^{4}I_{15/2}$ 之间的粒子反转数情况 ,表 3Er³⁺ 离子的 $^{4}I_{13/2}$ 能级荧光寿命降低也说明这一点.最有意思的 是 ErYbTm1 和 ErYbTm2 常规荧光在 1630nm 附近多 出一个荧光峰 ,我们推断该荧光峰不是 Er³⁺ 离子引 起 ,因为尽管 Er³⁺ 离子在 1630nm 有荧光 ,但 Er³⁺ : $^{2}I_{13/2} \rightarrow$ $^{2}I_{15/2}$ 跃迁的中心位置在1530nm ,如果是由于 Er^{3+} 离子在碲酸盐玻璃中非均匀性谱线增宽引起, 但不会导致 1530,1630nm 两处荧光峰强度一样,所 以我们认为 1630nm 荧光峰是 Tm^{3+} 离子跃迁引起, 通过表 2 数据估算能级间各种跃迁的波长值,经分 析最有可能是由 ${}^{1}G_{4} \rightarrow {}^{3}F_{2}$ 跃迁产生,而不是 Tm^{3+} : ${}^{3}F_{4} \rightarrow {}^{3}H_{6}(1700nm)$ 和 Tm^{3+} : ${}^{3}H_{4} \rightarrow {}^{3}F_{4}(1430nm)$ 跃迁 导致,其机理有可能为:Yb³⁺离子对 Tm^{3+} 离子直接 敏化,通过对激活中心 Tm^{3+} 离子的三步能量传递, 最终将 Tm^{3+} 离子激发到 ${}^{1}G_{4}$ 态,然后跃迁到 ${}^{3}F_{2}$ 态, 产生 1630nm 荧光.

5.结 论

对 Er³⁺/Yb³⁺ 共掺、Tm³⁺/Yb³⁺ 共掺、Er³⁺/Yb³⁺/ Tm³⁺ 共掺碲酸盐玻璃在 970nm 抽运下发光特性研 究表明,在碲酸盐玻璃中以 Er3+/Yb3+/Tm3+共掺方 式,可以在1450—1700nm WDM 通讯波段区域内,实 现荧光谱线更为宽的增益.另外,在 1630nm 有一荧 光峰,可能是 Tm^{3+} : $G_4 \rightarrow F_2$ 跃迁产生. 另外,由于 碲酸盐玻璃声子能量低的缘故,三种共掺方式下都 存在上转换发光现象,在 Er³⁺/Yb³⁺ 共掺中,从可见 光到近红外波段范围内存在800,660,547,532, 477nm 5 处上转换荧光,依次分别对应于 Er³⁺ :⁴ L_n $\rightarrow^{4}I_{15/2}$, Er^{3+} ; ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$, Er^{3+} ; ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, Er^{3+} ; ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$, Er^{3+} ; ${}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}$ 跃迁; 在 Tm^{3+}/Yb^{3+} 共 掺中 在可见光到近红外波段存在 475.808nm 两处 上转换荧光,分别为三光子和二光子过程,对应于 Tm^{3+} $: G_4 \rightarrow {}^{3}H_6$ 和 Tm^{3+} $: H_4 \rightarrow {}^{3}H_6$ 跃迁. $Er^{3+}/Yb^{3+}/$ Tm³⁺ 共掺上转换机理受 Er³⁺ /Yb³⁺ 之间、Tm³⁺ /Yb³⁺ 之间、Er³⁺/Tm³⁺之间三者相互作用影响,尤其是 Er³⁺ 与 Tm³⁺ 离子之间存在的交叉弛豫明显降低了 Er³⁺离子在可见光范围的上转换强度.

- [1] Mori A , Ohishi Y and Sudo S 1997 Electron . Lett . 33 863
- [2] Mori A and Ohishi Y 1998 Optical Fiber Communication Conference Paper WA1 97
- [3] Mori A et al 2000 Electron. Lett. 36 621
- [4] Hu E S et al 2002 Optical Fiber Communication Conference Paper ThR3 513
- [5] Naftaly M et al 2000 Appl. Opt. 39 4979
- [6] Neindre L L et al 1999 J. Non-cryst. Solids 255 97
- [7] Ding Y et al 2000 Opt. Mater. 15 123

- [8] Cho D H , Choi Y G and Kim K H 2000 Chem. Phys. Lett. 322 263
- [9] Choi Y G , Cho D H and Kim K H 2000 J. Non-cryst. Solids 276 1
- [10] Tanabe S , Hirao K and Soga N 1990 J. Non-cryst. Solids 122 79
- [11] Hu Y et al 2001 Proc. SPIE 4282 57
- [12] Miniscalco W 1991 J. Lightwave Technol. 9 234
- [13] Chen X B et al 2001 Spectros. Spect. Anal. 21 271(in Chinese) [陈晓波等 2001 光谱学与光谱分析 21 271]

- [14] Chen X B et al 2000 Acta Phys. Sin. 49 2482(in Chinese] 陈晓 波等 2000 物理学报 49 2482]
- [15] Yang J H et al Acta Opt. Sin. (to be published) (in Chinese] 杨 建虎等 光学学报 待发表]
- [16] Hao Z et al 1997 Acta Phys. Sin. 46 1206(in Chinese] 郝 昭等 1997 物理学报 46 1206]
- [17] Zhang L et al 2001 Chin. Phys. 10 58
- [18] Feng Y et al 1998 Spectros. Spect. Anal. 18 390(in Chinese)[冯 衍等 1998 光谱学与光谱分析 18 390]
- [19] Schuster K et al 1999 Proc. SPIE 3849 116
- [20] Yeh D C et al 1989 Phys. Rev. B 39 80

The luminescence of Er³⁺ ,Yb³⁺ ,Tm³⁺-codoped tellurite glass pumped at **970**nm *

Dai Shi-Xun¹⁽²⁾ Yang Jian-Hu¹⁾ Liu Zhu-Ping¹⁾ Wen Lei¹⁾ Hu Li-Li¹⁾ Jiang Zhong-Hong¹⁽²⁾

¹⁾(Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China)

² (Laboratory of Materials Research for Optics and Communication , South China University of Technology , Guangzhou 510641 , China)

(Received 7 June 2002; revised manuscript received 14 August 2002)

Abstract

The fluorescence and up-conversion spectrum of $\mathrm{Er}^{3+}/\mathrm{Yb}^{3+}$, $\mathrm{Tm}^{3+}/\mathrm{Yb}^{3+}$, $\mathrm{Er}^{3+}/\mathrm{Yb}^{3+}/\mathrm{Tm}^{3+}$ -codoped tellurite glasses pumped by a 970nm laser diode has been studied. The lifetimes of Er^{3+} $\cdot^4 I_{11/2}$ and Er^{3+} $\cdot^4 I_{13/2}$ levels have been measured. It is found that the fluorescence width in the range of 1450—1700nm in $\mathrm{Er}^{3+}/\mathrm{Yb}^{3+}/\mathrm{Tm}^{3+}$ -codoped tellurite glass has been broadened clearly. There is a fluorescence peak at 1630nm which is probably due to Tm^{3+} $\cdot^4 G_4 \rightarrow^3 F_2$ transitions in $\mathrm{Er}^{3+}/\mathrm{Yb}^{3+}/\mathrm{Tm}^{3+}$ -co-doped tellurite glass. Up-conversion phenomena exist in all the three kinds coped tellurite glasses because of its lower phonon energy of host. The addition of Tm^{3+} in $\mathrm{Er}^{3+}/\mathrm{Yb}^{3+}$ -codoped tellurite glasses quenches the up-conversion efficiency of Er^{3+} $\overset{4}{\cdot} S_{3/2}$ green and Er^{3+} $\overset{4}{\cdot} F_{9/2}$ red emissions. The quenching effect is due to the energy transfer between Er^{3+} and Tm^{3+} , especially the cross-relaxation process among them.

 $\label{eq:Keywords: Er^{3+}/Yb^{3+}/Tm^{3+}\ codoped\ ,\ tellurite\ glasses\ ,\ fluorescence\ ,\ up-conversion\ spectrum\ PACC: 7855\ A255R\ ,\ 7840$

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 60207006), and the Light Technology Program from the Shanghai Science and Technology Commission , China (Grant No. 22261046).