弱噪声极限下二维布朗运动的随机共振现象*

康艳梅 徐健学 谢 勇

(西安交通大学建筑工程与力学学院非线性动力学研究所,西安 710049) (2002年1月16日收到2002年9月28日收到修改稿)

在弱噪声极限下,应用多维 Fokker-Planck 方程的与时间有关问题方面的理论,推导了对称双稳势阱中二维布 朗粒子的概率跃迁速率,并基于绝热近似理论研究了弱噪声极限下受小幅低频周期力驱动的二维布朗运动的随机 共振现象.与以前的结果相比,所得到的信噪比与阻尼系数的大小无关.精确的数值模拟结果进一步说明了所得的 信噪比的适用性.

关键词:二维布朗运动,弱噪声极限,随机共振,信噪比 PACC:0547,7270,3270F

1.引 言

在研究古气象学中地球上冰川年代的周期发生 这一现象的过程中,科学家通过对受迫非线性动力 学的研究,发现弱的周期扰动能够被随机涨落放大. 地球轨道弱的周期偏移加上随机涨落,增强了冷、暖 两种不同气候类型之间跃迁的周期性,产生了一种 类似于传统意义上的共振,但又不是严格意义上的 共振被称为随机共振¹⁻⁷¹.

对于气候模型这类双稳系统,随机共振的机理 能够由粒子在两个势阱之间跃迁的松弛尺度——平 均首通时间来解释,考虑周期驱动过阻尼布朗运动

 $\dot{x} = x - x^3 + \epsilon \cos(\Omega t) + \eta(t)$, (1) 式中 $\eta(t)$ 是强度为 *D* 的 Gaussian 白噪声 , $\epsilon \cos(\Omega t)$ 为弱周期力. - 1 和 1 为无外部激励时系统(1)的两 个稳态 0 为势垒. 当 $\epsilon = 0$ 时 ,系统(1)从 - 1 到 0 的 平均首通时间 T(-10,D)和从 1 到 0 的平均首通 时间 T(10,D)相等且仅依赖于噪声强度 *D*. 设 *D_R* 表示使 $T(-10,D) = \frac{1}{2} \frac{2\pi}{\Omega}$ 成立的 *D* 值 ,*D_M* 表示使 系统(1)的周期响应幅值 *A_{sR}*(*D*)达到最大的 *D* 值 , Jung 和 Hangg^{{51}观察到 *D_R* = *D_M*. 正是这一点赋予双 稳系统中噪声和弱周期力的这一协作现象以" 共振 " 的涵义.20年来随机共振已成为很多领域广泛研究 的课题^[3],如噪声环境下弱信号的检测^[8],神经元信 息编码^[9—11],以及电磁场理论^[12]等领域,涉及的物 理系统不仅包括多稳系统^[5—8],而且包括可兴奋系 统等神经元模型^[9—11],阈值系统^[12]和空间分布式系 统^[13]等.而随机共振本身已成为刻画周期驱动的随 机非线性系统响应的功率谱放大因子和信噪比以及 敏感性(susceptibility)等量化指标表现出非单调行为 的一类现象的专门术语^{3,14,15]}.

但是,对随机共振的大部分研究都停留在数值 计算和模拟实验的水平上.从理论水平看来,只能对 少数特殊的系统作出准确的解析结果.如 Melnikov^[13]与 Berdichevsky等^[14]通过 Laplace 变换分 别研究了理想的 Schmitt 触发器模型和方势阱中的 随机共振现象.对于复杂一些的系统只能采用近似 方法来定量或定性地做出理论解释.各种各样的近 似方法已被用于双稳或单稳系统,如 McNamara 等^[6] 采纳速率方程方法研究绝热近似下小幅周期驱动的 随机双稳系统,以及后来 Jia 等^[7]基于 McNamara 方 法研究了受加性和乘性噪声同时作用的双稳系统. 此外,还有线性响应理论^[3],本征表象微扰展开理 论^[16],矩阵连分法^[17],以及矩方法^[15]等都被用于双 稳或单稳系统的研究.无论上述方法各自局限性的 大小,它们大都限于处理过阻尼极限的布朗运动的

^{*} 国家自然科学基金(批准号:19972051和10172067)资助的课题.

[†]Tel 1029 – 2668751(O) 2669951(H) E-mail ;jxxu@mail.xjtu.edu.cn

研究,解决多维问题和复杂系统方面的解析结果尚 不多见.就一般布朗运动而言^[18],相应的随机微分 方程为

 $\ddot{x} = -\gamma \dot{x} + ax - bx^3 + \varepsilon \cos(\Omega t) + \xi(t), (2)$ 式中 $a, b, \gamma, \varepsilon \pi \Omega$ 为正常数 $\xi(t)$ 为 Gaussian 白噪 声 ,满足 < $\xi(t)$ $\xi(0) > = 2\gamma D\delta(t)$.由于参量 a, b, γ $\gamma \varepsilon ,\Omega$,以及噪声强度 D都有很大的变化范围 ,所 以当阻尼系数 γ 不是很大时 ,或者说很小的情形 , 研究周期驱动随机系统(1)的响应也具有重要的意 义^[18,19].但文献[18,19]的重点都放在模拟仿真和 实验研究上面 ,文献[19]给出的基于绝热近似下的 一维概率流的解析推导仍然没有摆脱大阻尼的假 设.因为系统(2)在相平面上是二维的 ,这启发我们 把具有梯度势的二维 Fokker-Planck(缩写为 FP)方程 的与时间有关问题的理论^[20]推广到系统(2)的具有 非梯度广义势的二维 FP 方程 ,并且可能得到适用 于任何阻尼的理论结果 ,特别是适合于阻尼很小的 布朗运动.

本文把弱噪声极限下二维 Ω expansion theory of green function with linearized drift force (缩 写 为 L\OmegaEGF)理论和标度理论^[20]应用于研究 $\varepsilon = 0$ 时系 统 2)的概率跃迁速率,并根据 McNamara 等的绝热 近似理论研究系统 2)的随机共振现象.首先介绍无 激励时非梯度系统 2)的非线性性质与 $\varepsilon = 0$ 时系统 (2)的平稳概率分布.接下来应用弱噪声极限下的二 维 LΩEGF 理论和标度理论,推导 $\varepsilon = 0$ 时系统 (2)在 不同势阱之间的概率跃迁速率.然后应用绝热近似 理论导出变化很慢的弱周期力驱动时系统(2)响应 的信噪比.精确的数值模拟结果进一步说明和证实 了,所得的信噪比对于双稳系统中随机共振现象的 研究具有较为重要的意义.

2. 模型与方程

在(2)式中让 ε, D 取零值得到自治的确定性模 型方程

$$\begin{cases} \dot{x} = \gamma, \\ \dot{y} = -\gamma \gamma + ax - bx^3. \end{cases}$$
(3)

显然(3)式是一个非梯度系统. 令 $\dot{x} = 0$, $\dot{y} = 0$ 解得 奇点 $A(\sqrt{\frac{a}{b}} \ \beta)$, $O(0 \ \beta)$, $B(-\sqrt{\frac{a}{b}} \ \beta)$. 系统(3)在 奇点 $A \ \pi B$ 处的线性化矩阵的特征值为 $\beta_{12} = \frac{-\gamma \pm \sqrt{\gamma^2 - 8a}}{2}$. $\beta_1 \ \pi \beta_2$ 的实部均为负,所以 $A \ \pi$ *B* 为稳定的结点或焦点.系统(3)在奇点 *O* 处的线 性化矩阵的特征值为 $\lambda_{12} = \frac{-\gamma \pm \sqrt{\gamma^2 + 4a}}{2}$.显然 $\lambda_1 > 0$, $\lambda_2 < 0$,奇点 *O* 是不稳定的鞍点.过鞍点的稳 定和不稳定轨道就是鞍点的稳定流形和不稳定流 形,其中稳定流形构成了两个稳态的吸引域的边界, 不稳定流形连接着这三个奇点(如图 1 所示).

图 1 方程(3)的不变曲线 参量为 a = 1.0, b = 1.0, y = 0.5

设 P(x ,y ,t)为系统(2) 在 t 时刻处于状态(x , y)的概率密度 ,则 P(x ,y ,t)满足方程

$$\frac{\partial}{\partial t} P(x,y,t) = -\frac{\partial}{\partial x} [yP(x,y,t)]$$
$$-\frac{\partial}{\partial y} [(-\gamma y + ax - bx^{3} + \varepsilon \cos(\Omega t))$$
$$\times P(x,y,t)] + \gamma D \frac{\partial^{2}}{\partial y^{2}} P(x,y,t). \quad (4)$$

当 $\varepsilon = 0$ 时,系统 2)有平稳概率分布 $P_s(x,y)$,即方 程 4)的定态解.应用文献[21]中的结果可得方程 (4)的定态解

$$P_{s}(x,y) = N^{-1} \exp\left(-\frac{1}{D}\left(\frac{1}{2}y^{2} - \frac{a}{2}x^{2} + \frac{b}{4}x^{4}\right)\right),$$
(5)

式中 N^{-1} 为满足全概率归一化条件的常数.由于 $U(x,y) = \frac{1}{2}y^2 - \frac{a}{2}x^2 + \frac{b}{4}x^4$ 不是梯度势,通常称 作广义势函数.由(5)式不难得知,当 D 充分小时, 平稳 概率分布在势函数的两个极小值点即点 $A(-\sqrt{\frac{a}{b}} \rho)$ 和 $B(-\sqrt{\frac{a}{b}}, \rho)$ 处有两个尖峰,并且 集中在这两点的很小的邻域内,即在这两个小邻域 之外没有概率分布.

3. 二维双稳态之间的概率交换

这里应用弱噪声极限下具有梯度势的多维 FP 方程的 LΩEGF 理论和标度理论(见文献 2,20])来 研究无周期激励时具有非梯度势的系统(2)在两个 势阱之间的概率跃迁速率 *R_{AB}*(*t*)和 *R_{BA}*(*t*).虽然这 种推广是直接的,但由此引出的计算量却复杂得多. 限于篇幅,省去了一些中间步骤.

假定 *D*≪1 ,考虑二维 FP 方程

$$\frac{\partial}{\partial t}P(x,y,t) = -\frac{\partial}{\partial x}[yP(x,y,t)] - \frac{\partial}{\partial y}[(-\gamma y + ax - bx^3)P(x,y,t)] - \frac{\partial}{\partial y}[(-\gamma y + ax - bx^3)P(x,y,t)] + \gamma D \frac{\partial^2}{\partial y^2}P(x,y,t).$$
(6)

弱噪声极限下的 LΩEGF 理论和标度理论表明,不同 势阱之间的概率交换主要是在从准稳态到最终定态 的阶段进行的,而完成各势阱内局域平衡所需的时 间(-h(D)阶)远远小于不同势阱之间交换概率而 达到整体平衡所需的时间(exp(1/D)阶),可以认为 在从整个准稳态到实现最终稳态期间,各势阱内的 局域分布都满足定态分布,只是各势阱内的总概率 量随时间变化,并且概率分布集中在以两个势阱的 稳态为中心的很小的邻域内,因而可以对势函数做 适当的线性化处理;两个势阱 A 与 B 之间的分界线 势垒可以认为就是通过鞍点 O(0,0)的稳定流形,其 上的系统都要沿着它向鞍点运动,鞍点就成为势垒 上概率密度最大的点,所以两势阱之间的概率交换 主要在鞍点附近进行,方程(6)的漂移项可以其在鞍 点附近的线性化部分来近似.

为了计算技巧上的简便,先作一个线性变换*T*, 使

$$\begin{pmatrix} x \\ y \end{pmatrix} = T \begin{pmatrix} X \\ Y \end{pmatrix}, T = \begin{pmatrix} 1 & 1 \\ \lambda_1 & \lambda_2 \end{pmatrix},$$
 (7)

则在 T 的作用下系统 2)的两势阱的分界线势垒在 原点与 y 轴相切 ,如图 2.为了便于理论推导 ,我们 将稳态 B 所在的左半平面和 A 所在的右半平面分 别来代替 B 势阱和 A 势阱 ,而把 y 轴近似看作两个 势阱之间的分界线势垒.在弱噪声极限下 ,这样近似 处理是合理的.顺便指出 ,这一部分使用变换后的新 变量 ,但仍用 x ,y 表示 ,并把新变量所表示的势函 数仍记为 U(x, y).

图 2 系统 2)在变换 T 作用下的不变曲线 参量为 a = 1.0, b = 1.0,γ = 0.5

方程(6)在 T 的作用下变为

$$\frac{\partial}{\partial t}P(x,y,t) = -\frac{\partial}{\partial x}\left[\left(\lambda_{1}x + \frac{b(x+y)^{3}}{\lambda_{2}-\lambda_{1}}\right)P(x,y,t)\right] - \frac{\partial}{\partial y}\left[\left(\lambda_{2}y - \frac{b(x+y)^{3}}{\lambda_{2}-\lambda_{1}}\right)P(x,y,t)\right] + \frac{D\gamma}{\left(\lambda_{2}-\lambda_{1}\right)^{3}}\left(\frac{\partial^{2}}{\partial x^{2}} - 2\frac{\partial^{2}}{\partial x\partial y} + \frac{\partial^{2}}{\partial y^{2}}\right)P(x,y,t).$$
(8)

将(8)式的漂移项在鞍点线性化得到

$$\frac{\partial}{\partial t}P(x,y,t) = -\frac{\partial}{\partial x}[\lambda_1 x P(x,y,t)] - \frac{\partial}{\partial y}[\lambda_2 y P(x,y,t)] + \frac{D\gamma}{(\lambda_2 - \lambda_1)^2} \left(\frac{\partial^2}{\partial x^2} - 2\frac{\partial^2}{\partial x \partial y} + \frac{\partial^2}{\partial y^2}\right)P(x,y,t).$$
(9)

方程(9) 是一个具有线性漂移项和常数扩散项的精确可解的 FP 方程.它的满足初始分布 P(x, y, t_0) = (x, x_0) ($y - y_0$) 的解,就是弱噪声条件下无周期激励时系统(2)的转移概率函数 P($x, y, t \mid x_0, y_0, t_0$).它的解 析式可由傅里叶变换方法^[2]导出为

$$P(x,y,t+x_0,y_0,t_0) = \frac{\det(\sigma)^{-1/2}}{2\pi} \exp\left(-\frac{\sigma_{22}(t)(x-u_1(t))^2 - 2\sigma_{12}(t)(x-u_1(t))(y-u_2(t)) + \sigma_{11}(t)(y-u_2(t))^2}{2\det(\sigma(t))}\right) (10)$$

式中 de(σ)表示矩阵 σ 的行列式 ,而 $\sigma(t) = \begin{pmatrix} \sigma_{11}(t) & \sigma_{12}(t) \\ \sigma_{21}(t) & \sigma_{22}(t) \end{pmatrix}$ 为 x 和 y 的协方差矩阵 , $u_1(t)$ 和 $u_2(t)$ 分别为 x 和 y 均值(这里 x 和 y 即表示随机变量又表示随机变量的取值),它们的显式表示从略.

考虑概率从 B 势阱向 A 势阱的流动.于是 取初始概率密度为

$$P(x_0, y_0, t_0) = \begin{cases} N_B(t_0) (\lambda_1 - \lambda_2) \exp\left(-\frac{1}{D} \left[\frac{1}{2} (\lambda_1 x_0 + \lambda_2 y_0) - \frac{a}{2} (x_0 + y_0) \right]\right) & x_0 \leq 0; \\ 0 & x_0 > 0. \end{cases}$$
(11)

(11) 式是由(5) 式经线性变换 T 的作用后取其指数在原点的泰勒展开到二阶项得到的.由(10)和(11) 式可得 无周期激励时系统 2) 在 t 时刻的概率密度

$$P(x,y,t) = \frac{N_B(t)(\lambda_1 - \lambda_2)}{\sqrt{\pi}} \exp\left(-\frac{\lambda_2(\lambda_2 - \lambda_1)}{2D(\lambda_1 + \lambda_2)}y^2\right) \times \int_{-\infty}^0 \exp\left(-x_0^2 + 2\sqrt{\frac{-\lambda_1(\lambda_1 + \lambda_2)}{2D}}x_0x - 4\lambda_2\sqrt{\frac{-\lambda_1}{2D(\lambda_1 + \lambda_2)}}x_0y\right) dx_0.$$
(12)

导出(12)式的过程中我们用了准稳态近似条件 $\exp\left(\frac{1}{D}\right) \gg t - t_0 \gg 1$ 以及经过的时间不是特别长, 还不足以改变一个势阱内的概率总量这一假设.对 方程(9)等号两边在左半平面上积分,得到

$$\frac{\mathrm{d}}{\mathrm{d}t}P_{B}(t) = \frac{D\gamma}{(\lambda_{1} - \lambda_{2})^{2}} \times \int_{-\infty}^{+\infty} \mathrm{d}y \,\frac{\partial}{\partial x}P(x,y,t)\Big|_{x=0}.$$
 (13)

将(12) 武代入(13) 武 得到

$$\frac{\mathrm{d}}{\mathrm{d}t}P_{B}(t) = -N_{B}(t)D_{\sqrt{-\frac{\lambda_{1}}{\lambda_{2}}}}.$$
 (14)

在弱噪声极限下,局域平衡时各势阱内概率分 布满足定态分布且集中在稳态点 A 与 B 附近,所以 在 t 时刻 B 势阱内的概率密度近似取为

$$P_{B}(x,y,t) = N_{B}(t)(\lambda_{1} - \lambda_{2})\exp\left\{-\frac{1}{D}\left[U(B) + \frac{1}{2}\left[\lambda_{1}(\lambda_{1} - 2\lambda_{2})(x + \frac{\lambda_{2}\sqrt{\frac{a}{b}}}{\lambda_{2} - \lambda_{1}})^{2}...\right] + \frac{1}{2}\left[\lambda_{1}(\lambda_{1} - 2\lambda_{2})(x + \frac{\lambda_{2}\sqrt{\frac{a}{b}}}{\lambda_{2} - \lambda_{1}})^{2}...\right] + \frac{1}{2}\left[\lambda_{1}(\lambda_{1} - 2\lambda_{2})(x + \frac{\lambda_{2}\sqrt{\frac{a}{b}}}{\lambda_{2} - \lambda_{1}}) + \frac{1}{2}\left(\lambda_{2} - \lambda_{1}\right)^{2}...\right] + \frac{1}{2}\left[\lambda_{1}(\lambda_{1} - 2\lambda_{2})(x + \frac{\lambda_{2}\sqrt{\frac{a}{b}}}{\lambda_{2} - \lambda_{1}}) + \frac{1}{2}\left(\lambda_{2} - \lambda_{1}\right)^{2}\right] + \frac{1}{2}\left[\lambda_{1}(\lambda_{1} - 2\lambda_{2})(x + \frac{\lambda_{2}\sqrt{\frac{a}{b}}}{\lambda_{2} - \lambda_{1}}) + \frac{1}{2}\left(\lambda_{2} - 2\lambda_{1}\right) +$$

式中 $U(B) = -\frac{a^2}{4b}$ 为势函数 U(x, y)的极小值.类似

于(11)(15)式由(5)式经线性变换 T 作用后取其指数在 B 点的泰勒展开到二阶项得到.将(15)式在整 个平面上积分,可近似得到 t 时刻 B 势阱内的概率

$$P_{B}(t) \approx \frac{2\pi D N_{B}(t)}{\sqrt{\beta_{1}\beta_{2}}} \exp\left(-\frac{U(B)}{D}\right). \quad (16)$$

由(14)和(16)式可导出在弱噪声极限下从 B 势阱向 A 势阱的概率跃迁速率,即

$$R_{BA}(t) = \frac{\sqrt{\beta_1 \beta_2}}{2\pi} \sqrt{-\frac{\lambda_1}{\lambda_2}} \exp\left(\frac{U(B)}{D}\right). \quad (17)$$

类似于上面的推理可得到从 A 势阱向 B 势阱的概 率跃迁速率

$$R_{BA}(t) = \frac{\sqrt{\beta_1 \beta_2}}{2\pi} \sqrt{-\frac{\lambda_1}{\lambda_2}} \exp\left(\frac{U(A)}{D}\right). \quad (18)$$

4. 随机共振

假定 _€ 充分小,即周期是阈下激励并且振幅足 够小以致可以用小参数展开求解;假定 Ω≪1,即信 号变化足够慢以致系统有足够的时间在一个驱动周 期内实现局域平衡,从而能够满足绝热近似理论的 条件.应用文献 2,6 的结果可得 FP 方程(4)的准 稳态解

$$P_{s}(x,y,t) = N(t)\exp\left(-\frac{1}{D}\left(\frac{1}{2}y^{2}\right) - \frac{a}{2}x^{2} + \frac{b}{4}x^{4} - x\varepsilon\cos(\Omega t)\right).$$
(19)

将准势函数

$$\widetilde{U}(x,y,t) = \frac{1}{2}y^2 - \frac{a}{2}x^2 + \frac{b}{4}x^4 - x \varepsilon \cos(\Omega t)$$
看作 $U(x,y)$ 代入(17)和(18)式得到

$$\overline{R}_{BA}(t) = \frac{\sqrt{\beta_1 \beta_2}}{2\pi} \sqrt{-\frac{\lambda_1}{\lambda_2}} \exp\left(\frac{1}{D}\left(-\frac{a^2}{4b} + \sqrt{\frac{a}{b}} \epsilon \cos(\Omega t)\right)\right). \quad (20)$$

$$\bar{R}_{AB}(t) = \frac{\sqrt{\beta_1 \beta_2}}{2\pi} \sqrt{-\frac{\lambda_1}{\lambda_2}} \exp\left(\frac{1}{D}\left(-\frac{a^2}{4b} -\sqrt{\frac{a}{b}} \exp\left(\frac{a}{b}\right)\right)\right). \quad (21)$$

此即在弱噪声极限下受低频弱周期信号激励时系统 (2)在两势阱之间的概率跃迁速率。

借助于绝热近似下的速率方程方法的思想,可 以把系统 2)简化为两态模型.把(20)和(21)式代入 两态模型的公式^[2,6],可得到系统(2)在弱周期力驱 动下的响应的信噪比

$$SNR = \frac{\frac{a}{b}\varepsilon^{2}\sqrt{\beta_{1}\beta_{2}}}{4D^{2}}\sqrt{-\frac{\lambda_{1}}{\lambda_{2}}}\exp\left(-\frac{1}{D}\frac{a^{2}}{4b}\right)$$
$$\times \left(1 - \frac{\frac{1}{D^{2}}\frac{a}{b}\varepsilon^{2}\frac{\beta_{1}\beta_{2}}{\pi^{2}}\left(-\frac{\lambda_{1}}{\lambda_{2}}\right)\exp\left(-\frac{1}{D}\frac{a^{2}}{2b}\right)}{2\left[\frac{\beta_{1}\beta_{2}}{\pi^{2}}\left(-\frac{\lambda_{1}}{\lambda_{2}}\right)\exp\left(-\frac{1}{D}\frac{a^{2}}{2b}\right) + \Omega^{2}\right]}\right)^{-1}.$$

由(22)式,可以得到 SNR 随 D 的非单调行为, 及随 ε 和 Ω 等参数的变化曲线.这些曲线明显呈现 出非常漂亮的单峰结构 (22)式从理论上证实了弱 噪声极限下布朗运动中的随机共振现象.从(22)式 的变化曲线上可以看到,当 γ 一定时随着信号角频 率 Ω 的增大,使信噪比取得最大值的 D 也越来越 大.这是由于双稳系统中,随机共振的发生是信号周 期和无信号激励时随机系统的平均首通时间相匹配 的结果,而信号的角频率越大,其周期越短,而使两 个势阱之间的平均首通时间与信号周期匹配的 D 值就越大.因而,信噪比(22)式在直观意义上是正确 的.由于在上述推导过程中并没有对 γ 做任何限 制,所以从理论上讲,所得到的信噪比在绝热近似的 条件下适合于任意阻尼的弱周期驱动双稳系统.所 得信噪比丰富了小阻尼布朗运动在理论上的结果.

鉴于上述理论推导为解析近似,有必要说明所 得结果的适用性.在此补充一些在不做任何近似的 条件下数值模拟的结果.在采用文献 22]给出的求 解随机微分方程的数值算法对系统(2)进行模拟的 整个过程中,固定参量 *a* = 1.0, *b* = 1.0, *f*₀ = 0.01, ε =0.1.当所有的参量都给定后,首先对系统(2)的 100个长度为4096时间序列的功率谱进行平均,然 后根据公式

SNR =
$$10\log_{10}(\frac{S(f_0)}{N})$$
 (23)

计算信噪比 .(23)式中 *S*(*f*₀)为平均功率谱在信号 频率 *f*₀ 处的谱高 ,*N* 为噪声功率 ,这里取 *N* 为信号 频率 *f*₀ 周围 10 个点处谱高的平均值 .这里取积分步 长 d*t* = 0.1 ,采样频率 *Fs* = 1 ,频率分辨率为 Δf = 0.001 .通过改变噪声强度 ,最终可以得到一条表征 系统(2)发生随机共振的 SNR 随 *D* 变化的非单调曲 线 .为了将(22)式的结果与数值模拟进行比较 ,并根 据文献 6 第 IV 部分给出的理由 ,将(22)式中的 SNR 变为 10log₁₀($\frac{SNR}{2\pi\Delta f}$).图 3 至 5 给出了在给定阻尼系 数的情形下 ,数值模拟(a)和解析近似(b)的信噪比 随噪声强度的变化曲线.

图 3 SNR 随 D(γ=3.0)的变化曲线 (a)为数值模拟 (b)为解 析近似

比较解析近似(22)式与数值模拟的 SNR 曲线, 不难看出两者在定性性质上基本相同,但在定量上 有所不相同,特别当 D 几乎为 0 时相差更为明显. 这里存在误差的原因在于,解析推导 SNR 时所采用 的基于主方程的速率方程方法的结果只考虑了粒子 在不同势阱之间的跃迁,而忽略了粒子在每个势阱 内的局部运动.当 D 为 0 时,由于系统(2)等号右端 的信号为弱的阈下信号,粒子最终在一个势阱内的 最低点附近做小幅周期振荡;这时不同势阱之间的 概率跃迁速率显然为 0.当 D 非常靠近于 0 但不为 0 时,由(20 承(21)式可知,不同势阱之间的概率跃迁 速率非常小几乎为 0;由数值模拟也可看到,只有当 噪声达到适当的强度时,才能在不太长的时间内观 察到粒子在不同的势阱之间发生跃迁.所以,当 D 非常靠近于0时、系统2)的状态主要由势阱内的局 部动力学支配 然而基于主方程的速率方程方法恰 恰忽略了这一点,速率方程方法并不适用于当D非 常靠近于0时的情形,这就导致由(22)式给出的解 析结果与数值模拟结果有很大的差异.然而,随着 D 逐渐增大但仍满足弱噪声的要求时,虽然势阱内 的局部运动仍然存在,但它的支配地位已逐渐为势 阱间的跃迁所取代, 当 D 不很靠近于 0 即阱间跃迁 占支配地位后 阱内运动的忽略并不会带来太大的 误差 却使问题的处理得到了简化,这时,所得的解 析结果与数值模拟的定性性质符合得较好 即它们 的 SNR 曲线随 D 的变化趋势基本一致,只是从总体 上看来只是解析近似的 SNR 曲线的峰值所对应的 D 值要比数值模拟结果对应的 D 值稍微偏小一些。 这种一致性充分说明了本文的解析近似结果对于研 究二维对称双势阱中的随机共振现象具有较为重要 的意义.

5.总 结

本文把弱噪声极限下具有梯度势的多维 FP 方 程的 I Ω EGF 理论和标度理论应用于具有非梯度势 的二维 FP 方程的研究 ,得到了不同势阱之间的概 率跃迁速率.根据绝热绝热近似理论研究了在弱噪 声极限下二维布朗运动的随机共振现象.所得到的 衡量随机共振的量化指标——信噪比 ,不同与以往 的局限于大阻尼或过阻尼的结果^[2,6,18,19],而是适 合于任何大小的阻尼.数值模拟进一步证实了这个 近似结果的定性性质 ,充分说明了导出的结果对于 研究二维布朗运动 ,特别是小阻尼布朗运动中的随 机共振现象具有一定的指导意义.尽管如此 ,所得信 噪比的适用范围仍然受到参量范围的限制.为了使 所得结果有效 ,务必使周期力振幅 $\epsilon \ll 1$,频率 $\Omega \ll$ 1,以及噪声强度 $D \ll 1$ 但又不能太小.所以 ,寻找更 好的解析结果仍是有待研究的课题.

- [1] Benzi R , Sutera A and Vulpiana A. 1981 J. Phys. A 14 L453
- [2] Hu G 1994 Stochastic Force and Nonlinear System (Shanghai: Shanghai Science and Technology Education Publishing House)p144 (in Chinese)[胡 岗 1994 随机力与非线性系统(上海:上海科技教育出版社)第144页]
- [3] Gammaitoni L , Hang P et al 1998 Rev. Mod. Phys. 70 224
- [4] Wang J F, Liu F, Wang J Y et al 1997 Acta Phys. Sin. 46 2305 (in Chinese)[王嘉赋、刘 峰、王均义、陈 光、王 炜 1997 物理学报 46 2305]
- [5] Jung P and Hanggi P 1991 Phys. Rev. A 44 8032
- [6] McNamara B and Wiesenfeld K 1989 Phys. Rev. E 39 4854
- [7] Jia Y and Yu S N 2000 Phys. Rev. E 62 1869
- [8] Hu G , Gong D C et al 1992 Chin . Phys . Lett . 9 69

- [9] Mizutant S, Sano T et al 1997 leice Trans. Fundamentals E 00 A1
- [10] Nicolis C , Nicolis G et al 1998 Phys. Lett. A 249 8444
- $\left[\begin{array}{c} 11 \end{array} \right] \quad Gong \; Y \; F$, Xu J X et al 1998 Phys . Lett . A $243 \; 351$
- $\left[\begin{array}{c} 12 \end{array} \right] \ \ \, Gong \ P \ L \ and \ Xu \ X \ J \ 2001 \ Phys \ . \ Rev \ . \ E \ 63 \ 31906$
- [13] Melnikov V I 1993 Phys. Rev. E 48 2481
- [14] Berdichevsky V and Gitterman M 1996 J. Phys. A : Math. Gen.
 29 L447
- [15] Evstigneev M, Pankov V et al 2001 J. Phys. A : Math. Gen. 34 2595
- [16] Hu G , Nicolis G et al 1990 Phys. Rev. A 42 2030
- [17] Jung P 1989 Z. Phys. B-Condensed Matter 76 521
- [18] Gammaitoni L , Marchesoni F et al 1989 Phys. Rev. Lett. 23 349

- [19] Wang F Z, Wen X D, Li R and Qin G R 1996 J. Beijing Normal University (Nature Science) 32 47 (in Chinese)[王辅忠、温孝 东、李 蓉、秦光戎 1996 北京师范大学学报 32 47]
- [20] Hu G 1988 J. Phys. A : Math. Gen. 21 365
- [21] Naess A and Moe V 2000 Prob. Engi. Mech. 15 221
- [22] Ronald F F , Gatland I R et al 1988 Phys. Rev. A 38 5938

Stochastic resonance in two-dimensional Brownian motion in the weak noise limit *

Kang Yan-Mei Xu Jian-Xue Xie Yong

 (Institute for Nonlinear Dynamics , School of Architectural Engineering and Mechanics , Xi 'an Jiaotong University , Xi 'an 710049 , China)
 (Received 16 February 2002 ; revised manuscript received 28 September 2002)

Abstract

The theory of L Ω EGF and the scaling theory on multidimensional Fokker-Planck equations with gradient potential are applied to derive the probability transition rate for Brownian motion in a symmetric two-dimensional bistable potential. Based on the rate method in adiabatic elimination, the phenomenon of stochastic resonance is studied in this system. Compared with the known results, the analytic expression for signal-to-noise ratio derived in this study is independent of the intensity of friction *i.e.* not only applicable to an overdamped system, but also applicable to a lightly damped system. Numerical simulations fruther verify the significance of the analytically approximate result.

Keywords: two-dimensional Brownian motion, weak noise limit, stochastic resonance signal-to-noise ratio PACC: 0547, 7270, 3270F

^{*} Project supported by the National Natural Science Foundation of China(Grant Nos. 19972051 and 10172067).