SiO₂/C₉-PPV 异质结中 类阴极射线发光及有机电致发光的交互增强 *

刘 明† 衣立新 滕 枫 徐 征 徐叙镕

(北方交通大学光电子技术研究所,信息存储、显示与材料开放研究实验室,北京 100044) (2002 年 7 月 26 日收到 2002 年 9 月 17 日收到修改稿)

用夹在两层 SiO₂ 之间的发光聚合物 C₉-PPV 作成器件,在交流电激发下得到了超出有机电致发光黄绿色发光的蓝色发光.通过对器件光学特性的研究,发现这种发光源于 SiO₂ 中加速电子直接碰撞激发有机发光层而引起的 类阴极射线发光.使用非对称结构,得到了类阴极射线发光与有机电致发光相互增强的混合发光.

关键词:混合发光;类阴极射线发光;有机电致发光 PACC:7860H,7860F

1.引 言

自从 1990 年 Burroughes 等^[1]首次在共轭聚合物 聚对苯乙炔(PPV)上观察到电致发光现象后,美国 Heeger 等^[2,3]又在 PPV 衍生物 MEH-PPV 材料中实现 了电致发光.他的研究很快引起了科学家的极大兴 趣.目前,已发现在许多共轭聚合物或者其掺杂体 系^[4]上都可以实现电致发光,认为共轭聚合物的电 致发光是一较为普遍的现象.在关于各种聚合物电 致发光的报道中,基于 PPV 及其衍生物的电致发光 的研究较多.由于不同的共轭聚合物及其不同的衍 生物,具有不同的物理化学性能,这也为有机薄膜电 致发光的选材提供了较大的选择范围.

就薄膜电致发光而言,无机电致发光材料,如 Ⅱ-\\[族材料,多为电子输运型,稳定性好,当前的困 难是难于获得蓝光,而共轭聚合物发光材料多是空 穴传输型,易于发出各色可见光,需要匹配电子传 输层以提高器件的发光亮度和效率,当前稳定性也 尚难保证.如果把这两类发光材料结合起来,可以使 有机材料和无机材料优势互补,解决它们的问题.我 们利用无机材料的原初特性,如绝缘性或半导性^[5] 作了简单的复合,曾用 Ⅲ-\\[族材料的电子传输特 性,与 PPV 结合制备了有机-无机复合电致发光器 件 发现复合器件的有机电致发光亮度和效率均提 高近 10 倍^[6].另一种复合是利用无机材料的深层次 的二次特性,如电子倍增或者加速电子与有机材料 复合.在 PPV/ZnS:Mn 中,既可得到 Mn离子的发光, 来自于过热电子的碰撞激发,又可得到 PPV 的发 光,来源于载流子的复合^[7].许秀来等^[8,9]用 SiO₂ 加 速电子,不仅得到了八羟基喹啉铝(Alq₃)的激子发 光,而且得到了 Alq₃ 最低未占据分子轨道(LUMO) 上的电子与最高占据分子轨道(HOMO)上的空穴的 直接复合发光(450nm),我们称之为类阴极射线 发光.

既然在电子输运型的 Alq₃ 中得到了类阴极射 线发光,在空穴型的 PPV 中又如何呢?我们以 PPV 作为发光层夹在两层 SiO₂ 之间制成器件^[10,11],证明 了 SiO₂ 的加速电子特性同样可引起 PPV 的类阴极 射线发光,并在非对称结构中,这一类阴极射线发光 与有机电致发光实现了交互增强.

2.实验

制备了4种结构的器件: A为 ITO/PPV/Al; B为 ITO/SiO₂/PPV/Al; C为 ITO/PPV/SiO₂/Al; D为 ITO/SiO₂/PPV/SiO₂/Al.

[†] 通讯联系人.Tel:010-51688018, Fax:010-51688605.E-mail:lumines228@hotmail.com

^{*} 国家自然科学基金(批准号 29992530 和 19974002)和北京市自然科学基金(批准号 2032015)资助的课题.

C₉-PPV 聚合物是采用脱氯化氢方法制备的,其 分子式如图 1 所示.将 C₉-PPV 聚合物溶于氯仿溶剂 中 配制成 2mg/ml 的稀溶液,然后将 C₉-PPV 溶液甩 涂到干净的透明电极(ITO)玻璃或者 SiO₂ 层上.ITO 使用之前用去离子水清洗多次,再用酒精超声清洗, 最后在红外灯下烘干.用电子束蒸发的方法将 SiO₂ 沉积在 ITO 玻璃衬底上,在 SiO₂ 沉积的过程中,系 统的真空度在 1.33×10^{-4} Pa 左右,用石英震荡测厚 仪监测薄膜的厚度,衬底温度保持在 180° ,蒸发速 率为 0.2nm·s⁻¹.使用热蒸发的方法镀上阴极 AI,在 1.33×10^{-3} Pa 下以 0.1nm·s⁻¹的蒸发速率沉积.SiO₂ 和 PPV 的厚度分别为 50—200 和 50nm.器件的驱动 条件为 10^{2} — 2×10^{4} Hz 的正弦电压.用 SPEX 分光光 度计测试光致发光和电致发光.

图 1 C₉-PPV 聚合物的分子式

3. 结果与讨论

3.1. 类阴极射线发光

我们在无机电致发光中已经证明 SiO₂ 具有加 速电子的功能和高的电场迁移率^[12],加速后的电子 能量可以提高到大于 10eV^[13-15],这些过热电子有足 够的能量直接碰撞激发发光中心使其发光.因此,我 们用分层优化结构,以 C₉-PPV 代替无机 EL 材料作 为发光层,使在 SiO₂ 中加速后的电子具有足够的能 量,直接激发发光层中的发光材料使其发光,这就如 同阴极射线发光,所不同的是此处的高能电子是在 固体中而不是在真空中加速,故称之为固态类阴极 射线发光,它是传统的高真空阴极射线(CRT)理论 在固态有机、无机电致发光器件中的新发展和应用. "固态类阴极射线发光"是徐叙镕于 1989 年提出分 层优化薄膜电致发光方案^[5,16—19]以后又提出的一个 新概念,通常意义的阴极射线发光是用电子枪发射 热电子,在高真空中的电场作用下加速形成高能电 子,然后打到荧光屏的荧光粉上,使荧光粉中发光中 心基态电子激发到激发态,最后经弛豫发光.固态类 阴极射线发光则是利用具有电子加速能力的半导体 (如 SiO₂)作电子加速层,使在此固体中的电子在高 场作用下加速成为过热电子,这些过热电子碰撞发 光材料,使发光材料的基态电子被激发到激发态,激 发态的电子经弛豫回到基态而发出光子.由于 SiO₂ 和发光层界面处晶格结构一般很难完整,使得这种 现象在无机材料中较难观察到,而在有机材料中观 察这种现象就容易多了,因为相邻分子间的相互作 用较弱,单分子行为较强.

图 2 为器件 *D* 和 *A* 在 5000Hz 交流电压驱动下 的电致发光.很显然,此发射不是通常的有机电致发 光的注入和复合过程产生的,因为通过 SiO₂ 注入不 了空穴;又由于 PPV 中电子的迁移率很小,约为 10⁻⁵ cm²·V⁻¹s⁻¹,而电场约为 10⁵—10⁶V·cm⁻¹,电子 在其中的速度很小,所以该发射也不可能是一般场 致发光的碰撞激发,因此,它只能来源于 PPV 外部 电子的直接碰撞激发,也就是类阴极射线发光.由图 2 可见,在蓝光区域出现了谱线,这说明在 SiO₂ 中加 速的电子已经具有足够大的能量来激发 PPV 产生 蓝色发光.

图 2 器件 D(曲线 a)和 A(曲线 b)的交流电致发光光谱与器件 A 的光致发光光谱(曲线 c)比较

3.2. 类阴极射线发光的证明

为了辨认这里出现的两个发光峰的来源,我们 作了两方面的分析.首先,测试了器件 A 的光致发 光谱(图 2)受阈值下电场的影响(图 3);其次,测量 了器件 D 的电致发光光谱随电压的变化(图 4).

图 3 器件 D 在电场调制下的光致发光(360nm 激发)

图 4 器件 D 的交流电致发光光谱随驱动电压的变化关系(f = 5kHz)

从图 4 中可以看出,器件在 570 和 450nm 均有 发光 570nm 处的发光峰对应于 PPV 的光致发光(曲 线 *c*)或者 PPV 的有机电致发光(曲线 *b*),很多实 验说明它来源于激子发光.

在无机电致发光中,我们已详细研究了激发中 心的离化,并发现离化概率随电场的升高而变 大^[20-22].此处激子的发光峰570nm的解离也将导致 发光随电场的升高而减弱.为了证明这一点,我们取 PPV的光致发光,产生570nm峰,然后加上电场,并 逐步提高.为了避免电致发光的混入,所用电压都限 于器件的阈值电压以下.从图3中可以看出,器件*D* 的光致发光强度随着所加电压的升高而降低.当电 压升到20V时,它的光致发光降低到未加电场时的 73%.显然,高于这个激子能级的其他能级上的所有 电子也都将被离化,所以517nm峰符合激子发光峰 的性质.

从交流驱动下,发光光谱随电压的变化(见图

4)可以看出 发光峰由 570 逐渐向 450nm 移动,继续 增大驱动电压,这种趋势更明显(见图5),并且短波 发射峰有大于 40nm 的蓝移 见图 6). 这里 410nm 左 右的峰对应于 C_a-PPV 的 LUMO 上的电子和 HOMO 上的空穴的直接复合.这一峰值有些起伏,估计它与 聚合物材料的共轭度有关,共轭度大,共轭链长,对 应的 LUMO 和 HOMO 能级差就小;相反,若共轭度 小,共轭链短,对应的 LUMO 和 HOMO 能级差就 大^[23].很可能还有其他如与电场强度有关的原因, 正在进一步研究,这两个发光峰的出现有力地说明 了它们是类阴极射线发光.在 SiO, 中射出的高能电 子(又称过热电子)撞击 C_-PPV 时,产生电子、空穴 对,它们可能直接复合而形成 LUMO 至 HOMO 的电 子跃迁 出现短波长发光 也可能在正负电子的库仑 力吸引下形成激子,出现长波峰的发光,它们都是类 阴极射线发光 而短波发光更突出了类阴极射线发 光的特征.

图 5 器件 *D* 的交流电致发光光谱随驱动电压的变化关系 (*f* = 5kHz)

图 6 器件 *D* 的交流驱动电致发光光谱中短波峰的位置随驱动 电压的变化关系(5kHz)

3.3. 类阴极射线发光的短波发光及长波发光的消 长关系

由图 5 可见,在交流器件中,随着器件驱动电压 的提高,570nm的发光峰逐渐减弱,而对应于电子空 穴直接复合的410nm的发光峰逐渐增强.这是由于 当电压提高时,导带中的电子和价带中的空穴形成 激子的概率下降,同时,激子解离的概率增加.计算 了短波峰与长波峰发光强度的比值随驱动电压的变 化关系,如图 7 所示,此比值随电压的升高而剧增, 直至只有短波发射.实验证明,这一现象在出现类阴 极射线发光的器件中都存在.至于长波峰发光强度 的减少是否直接用于短波峰发光强度的增加,即是 否存在猝灭现象,还需进一步研究.

图 7 器件 D 的交流电致发光光谱中短波峰与长波峰发光 光强度的比值随驱动电压的变化关系(5kHz)

3.4. 类阴极射线发光与有机电致发光的交互增强

前面我们用夹层对称结构证实了类阴极射线发 光的存在.为了比较,我们又制备了器件 B 和 C. 它

图 8 器件 B 的交流电致发光光谱随交流驱动电压的变化关系 (5kHz)

图 9 器件 *C* 的交流电致发光光谱随驱动电压的变化关系 (5kHz)

图 10 器件 B 在电场调制下的发致发光(360nm 激发)

图 11 器件 C 在电场调制下的光致发光(360nm 激发)

们都包括 SiO₂,因而在一定电场以上,它们都会产生 类阴极射线发光.它们的电致发光光谱随电压的变 化规律也与前两个结果一样,分别如图 8 和图 9 所 示 随着驱动电压的升高,570nm 的发光逐渐减弱, 而 420nm 的发光逐渐增强.测量了 *B* 和 *C* 器件 570nm 峰在电场调制下的光致发光,结果表明 570nm 峰随电场的升高而减弱也是由于激子解离造 成的,如图 10 和图 11 所示. 同时,对于这种非对称结构,由于从 SiO₂ 进入 发光层中的电子包括4部分:一般的未被加速的注 入电子;被加速但未达到高能的电子;高能电子(它 激发发光材料时只丢失能量,而不减少数目)及高能 电子激发出的电子.同时,发光层中的空穴也分为两 部分:高能电子激发出的空穴及注入空穴.器件的发 光是所有电子和所有空穴复合的结果.从有机电致 发光看,电子数目增加了,发光增强;从类阴极射线 发光看,由于增加了注入的空穴,它的发光也增强 了,所以这种非对称结构的发光不仅从另一角度说 明了类阴极射线发光的存在,又进一步揭示了类阴 极射线发光与有机发光的相互增强及叠加.

4.结 论

我们采取无机夹层结构制备了 C₉-PPV 器件,发 现器件的发光比通常的黄绿光多出了蓝紫光.这种 发光是由于 SiO₂ 中电子的直接碰撞激发所引起的, 它产生的电子、空穴对部分地直接复合发出短波光, 部分地形成激子,发出长波光,我们称它们为类阴极 射线发光.使用非对称器件结构,得到了类阴极射线 发光与有机电致发光的相互增强及叠加.

- [1] Burroughes J H , Bradley D D C and Burn A R 1990 Nature 347 539
- [2] Braun D and Heeger A J 1991 Appl. Phys. Lett. 58 1982
- [3] Gustafsson G , Cao Y and Heeger A J 1992 Nature 357 477
- [4] Deng J B , Li S T , Chen L C , Dong S Z , Sun H H and Wang X 1997 Acta Phys. Sin .(Overseas Edition) 6 921
- [5] Xu X R et al 1990 Acta Polytechnica . Appl . Phys . 170 133
- [6] Teng F, Yang X H, Xu Z and Xu X R 1997 J. Lumin. 18 348 (in Chinese J 滕 枫、杨晓辉、徐 征、徐叙镕、1997 发光学报 18 348]
- [7] Yang X H and Xu X R 2000 Appl. Phys. Lett. 77 1
- [8] Xu X L, Chen X H, Hou Y B and Xu X R 2000 Chem. Phys. Lett. 325 420
- [9] Xu X L, Xu X, Hou Y B, Chen X H and Xu X R 2001 J. Appl. Phys. 89 1082
- [10] Yang X H and Hou Y B et al 1997 Chin. Phys. Lett. 12 947
- [11] Xu X R , Xu X L and Yang X L et al 2000 Chin. J. Lumin. 21 285
- [12] Lou Z D, Xu Z, Xu C X, Yu L, Teng F and Xu X R 1998 Acta Phys. Sin 47 139(in Chinese] 娄志东、徐 征、徐春祥、于

磊、滕 枫、徐叙镕 1998 物理学报 47 139]

- [13] Okamoto S and Kobayashi K 1994 " Proc. Of 1994 Int. Workshop on EL (Beijing : Science Press) p194
- [14] Xu X L , Chen X H , Hou Y B , Xu Z , Yang X H , Yin S G , Wang Z J , XuX , Lau S P and Tay B K 2001 Chem . Phys. Lett. 325 420
- [15] Xu X L , Xu Z , Hou Y B , Chen X H , Wang Z J , Zhang X Q and Xu X R 2001 J. Appl. Phys. 89 1082
- [16] Xu X R et al 1989 Springer Proceedings in Phys. 38 32
- [17] Xu X R et al 1990 J. Crys. Growth 101 1004
- [18] Lei G , Xu Z and Xu X R 1991 J. Lumin . 48&49 881
- [19] Xu X R, Lei G and Shen M Y 1991 Advances in Natural Science 1 62(in Chinese) 徐叙镕、雷 刚、申猛燕 1991 自然科学进展 1 62]
- [20] Lou Z D , Xu Z , Teng F and Xu X R 1997 J. Lumi . 112 72
- [21] Xu X R 1998 Electrochem . Soc . Proc . 24 338
- [22] Xu X R , Lei G , Shen M Y and Zhao G Z 1990 J. Crys. Growth 101 1004
- [23] Wang Z, Yin S, Yang X, Sun Z, Xu X and Zhang X 1999 Chem. Phys. Lett. 307 1174

Mutual enhancement of cathodoluminescence and organic electroluminescence in SiO₂/C₉-PPV heterogeneous junction *

Liu Ming[†] Yi Li-Xin Teng Feng Xu Zheng Xu Xu-Rong

 (Key Laboratory of Information Storage and Display, Institute of Optoelectronics Technology, Northern Jiaotong University, Beijing 100044, China)
(Received 26 July 2002; revised manuscript received 17 September 2002)

Abstract

We have prepared a device of C_9 -PPV sandwiched between two SiO_2 layers and obtained the blue light in addition to the yellow-green emission under ac electric field excitation. By studying the optical characteristics of the device, we found that the emission was induced by direct bombardment of the accelerated electrons from SiO_2 . This emission is termed by us as cathodo luminescence-like emission. By using unsymmetrical structure, we realized mutual enhancement of cathodo luminescence-like and Organic electroluminescence.

Keywords : mixed luminescence , cathodo luminescence-like emission , organic electroluminescence PACC : 7860H , 7860F

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 29992530 and 19974002) and by the Natural Science Foundation of Beijing , China (Grant No. 2032015).

[†]Author to whom correspondence should be addressed. Tel: 010-51688018, Fax: 010-51688605 E-mail: lumines228@hotmail.com