Lí(Al_xCo_{1-x})O₂ 晶体中 Co³⁺ 电子态的变化及 对结构演化的影响

郝万军¹) 李 畅¹) 魏英进¹) 陈 岗¹) 许 武²)

¹(吉林大学汽车材料教育部重点实验室和材料科学系,长春 130023)
 ²(中国科学院长春光学精密机械与物理研究所,长春 130022)
 (2001年12月25日收到2002年9月4日收到修改稿)

研究了应用于锂二次电池正极的新型高能量密度存贮材料 L($Al_x Co_{1-x}$)O₂(x = 0.1-0.5)的磁性.发现 Al³⁺的 掺杂可导致 Co³⁺中 d 电子自旋态发生变化 即有部分 d 电子进入高自旋态.伴随 Co³⁺中电子状态的改变 材料结构 演化也发生了相应变化 表现为 c/a比增大明显减缓 较好地解释了材料结构对 Vegard 定律的正偏离.这对材料的 微观结构与性能设计具有重要意义.

关键词:锂电池材料;L(Al_xCo_{1-x})O₂,磁性,自旋态,结构演化 PACC:8100,3130,6110

1.引 言

L($Al_x Co_{1-x}$)O₂ 材料是一种新型高能量密度存 贮锂二次电池正极材料 ,相比于传统的正极材料 LiCoO₂ ,具有更高的工作电压、更高的能量密度以及 更轻的重量和更低的价格.自从 Ceder 等^[1]在 Neture 上首次提出该材料以来 ,得到人们广泛关注^[2,3] ,被 认为是有望代替传统的 LiCoO₂ 材料的新的'量子工 程 "材料^[1].我们采用溶胶-凝胶(sol-gel)方法成功地 合成了这种新型材料^[4] ,并采用 Raman 光谱及 x 射 线衍射(XRD)方法研究了掺 Al 后 Li($Al_x Co_{1-x}$)O₂ 材料的结构演化^[5,6].

为进一步研究 Al^{3+} 掺杂对材料的影响,本文研 究了 $Li(Al_x Co_{1-x})O_2$ 的磁性. Co 及以 Co^{3+} 为中心的 过渡 金 属 配 合物的 磁性研究人们作了 较 多 工 作^[7-12],而固溶体 $Li(Al_x Co_{1-x})O_2$ 材料由于刚刚提 出,其磁性尚无人研究.估计其原因主要在于 Co^{3+} 外层为 6 个 d 电子,皆位于 t_{2g} 轨道,属低自旋态,对 结构影响不大,故不为人重视.本文研究发现, Al^{3+} 掺杂可导致 Co^{3+} 中 d 电子自旋态发生变化:从完全 的低自旋态进入到混合自旋态,即有部分 d 电子进 入高自旋态的 a_{ig}轨道.而 Co³⁺ 电子自旋态的改变导 致材料微观结构发生变化 较好地解释了材料结构 对 Vegard 定律的正偏离.这对材料的微观结构与性 能设计具有重要意义.

2. 样品制备

将适量的硝酸铝、硝酸钴和碳酸锂按比例溶于 一定量的水中,边搅拌边加入一定量的柠檬酸,使之 形成均匀透明的溶液,加热蒸发掉部分水后,最终形 成溶胶.将溶胶在 120℃下烘干,形成凝胶,将凝胶 研细后以 100℃·h⁻¹的升温速率在指定温度下烧结 完成.

3. 实验仪器

磁性测量

采用美国 VSM CONTROLLTER MODEL 7300 型 振动样品磁强计.磁场范围 ± 8 × 10⁵ A·m⁻¹,时间常 量为 0.1s,扫描时间为 10min.

x 射线测试

采用日本理学 D/max-rA 型转靶 x 射线衍射仪.

^{*}教育部留学回国基金(批准号(2002)科技字(236)资助的课题.

结的 Li(Al_x Co_{1-x})O₂ 材料(x = 0.1,0.2,0.3,0.4, 0.5 对应样品 A, B, C, D, E)的 H-M 曲线.可以看

出(a)(b)(d)(e)图呈较好的线性,为顺磁性.而

(c)图在顺磁性基础上,出现了微弱的铁磁性,且各

其顺磁磁化率计算结果见表 1. 从数值看,磁化 率比较低. 与 ABO3 结构化合物 LaCoO3 中的 Co³⁺ 的

样品皆为不饱和磁矩.

相比,量级相同,值稍大^[13].

工作条件:管压为 50kV,管流为 150mA,CuKα线,λ = 0.15405nm,石墨单色器,为 DS:1°,SS:1°,RS: 0.6mm,RS_m 0.6mm.测试条件:步宽为 0.02°,停留时 间为 0.2s,量程为 4000,扫描范围(2θ):10°—75°.

4. 结果与讨论

如图 1(a)(b)(c)(d)(e)所示,为700℃烧

图 1 700℃烧结的 Li(Al_xCo_{1-x})O₂ 材料的 M-H 曲线

 表1
 各样品磁化率

 样品
 A
 B
 C
 D
 E

 $\chi_g/10^{-5}$ 4.444
 4.292
 4.703
 4.610
 4.451

各样品磁化率的变化规律如图 2 所示. 从图 2 上可以明显看出,随 Al^{3+} 掺杂的增多,材料的磁性 呈减弱趋势. 但在 x = 0.3 时,材料 Li($Al_{0.3} Co_{0.7}$)O₂ 出现磁化率异常突变,增大之后,又逐渐减弱. 这说 明, Al^{3+} 的掺杂可能引起了 Li($Al_x Co_{1-x}$)O₂ 材料中 某个具有磁性质的元素的磁矩变化,造成磁化率的 突然增大.由于

$$\chi_{M} = \chi'_{M} + \chi_{M} (金属原子实) + \chi_{M} (配体) + \gamma_{M} (其他离子),$$

所以,对 L($Al_x Co_{1-x}$)O₂ 材料而言, Al^{3+} , O^{2-} , Li^+ 离 子的磁化率在 10⁻⁶量级以下,对材料整体磁导率贡 献微乎其微. Li($Al_x Co_{1-x}$)O₂ 材料的磁化率主要来 源只能是 Co^{3+} .对于过渡金属配合物,其轨道磁矩 发生淬灭,顺磁性主要来源于自旋磁矩. 因此,Li ($Al_x Co_{1-x}$)O₂ 材料磁化率增大的原因可能在于 Al^{3+} 的掺杂引起了 Co^{3+} 中 d 电子自旋态发生了改变.

图 2 不同 Al³⁺ 掺杂下 Lí Al_xCo_{1-x})O₂ 材料磁化率变化

从 L($Al_x Co_{1-x}$)O₂ 材料磁化率变化曲线上看, L($Al_{0.3} Co_{0.7}$)O₂ 的磁化率突然增大,已超出误差范 围,确实是一个突变.按规律来讲,随 Co^{3+} 的减少和 Al^{3+} 的增多, L($Al_x Co_{1-x}$)O₂ 材料磁化率应逐渐降 低.但图 2 中并未出现预计的结果.这表明 Co^{3+} 或 其他金属离子的电子态发生了变化.从材料的磁化 率变化看, Co^{3+} 中 d 电子自旋态可能由于 Al^{3+} 的掺 杂发生了变化. L($Al_x Co_{1-x}$)O₂ 晶体结构属于 $R \overline{3}m$ 空间群¹¹,晶体分子局部 Co—O 六配位构型为 D_{3d} 点群¹⁴¹.图 3 为一般情况下 Co^{3+} 电子自旋排布图 6 个 d 电子分别位于 t_{2g} 和 a_{1g} 轨道上,属低自旋状态.

分析 D_{3d} 轨道能级和电子排布图 3 和图 4 即 D_{3d}

点群结构形变图,可以知道,随 AI^{3+} 的增多, Lí $AI_x Co_{1-x}$ O_2 晶体 c 轴拉长 配位原子出现对 d_{z^2} , $d_{x^2-y^2}$ 轨道的远离和偏移,必然导致 d_{z^2} , $d_{x^2-y^2}$ 能级 不断下降.但为了保持晶体场能不变(XRD 实验和 计算已证明,随 AI^{3+} 掺杂的增多,晶格参量虽发生 变化,但晶体内部结合力不变^[4,6]),必然造成配位原 子相互靠近缩紧.这在结构上造成 a 轴缩短,使 d_{xy} , d_{yz} , d_{xz} 轨道能级上升.而 d_{xy} 能级不断上升,能级间 隔 Δ 将不断减小.这极有可能在 AI^{3+} 掺杂到一定含 量时, a_{1g} 低轨道上的两个 d 电子有部分克服分裂能 Δ 进入到较高的 e_g 空轨道上去.从而形成低-高混 合自旋态,使 Lí $AI_x Co_{1-x}$ O_2 材料自旋磁矩发生突 变 也造成磁化率发生跃变.而接着随磁性离子 Co^{3+} 的减少,在混合自旋态状态下,Lí $AI_x Co_{1-x}$ O_2 材料磁性又逐渐减小.

磁性的变化实际上将影响结构的变化.从理论 上分析,由于自旋态的突然变化,材料的结构也将发 生突变.这将从 Li(Al_x Co_{1-x})O₂ 材料结构 c/a 比变 化上得以验证.

如图 5 所示,为 700℃烧结的 L($Al_x Co_{1-x}$)O₂ 材 料的 *c*/*a* 图.从图 5 上可以发现,结构 *c*/*a* 随 Al³⁺掺 杂的增多,确实在 *x* = 0.3 处有明显的斜率变化,并 严重偏离 Vegard 定则.XRD 谱和 Raman 光谱分析表 明^[5 6],700℃烧结的 L($Al_x Co_{1-x}$)O₂ 材料为单一相, ICP 分析表明,材料成分配比准确.因此,分析其结 构的突变,与图 2 所示规律有惊人的符合.也再次证 明了 Al³⁺ 的掺杂导致 Co³⁺ 中电子自旋态发生了 突变.

图 5 700 °C 烧结的 L($Al_x Co_{1-x}$)O₂ 晶体结构 c/a 比 随 x 的变化

Co³⁺中电子自旋态的突变导致 Li(Al_x Co_{1-x})O₂ 材料结构的变化,其原因在于随Al³⁺掺杂的增多, *c* 轴拉长,*a* 轴缩短,当 Co³⁺中电子自旋态的突变 后,Co³⁺中电子能级升高,使层间结合能加大,必然 导致 *c* 轴拉长减缓.这样,材料结构对 Vegard 定律 的正偏离得到较好地解释.实际上,电子自旋态变化 导致晶格常量发生变化体现在很多方面,如人体血 红蛋白中作为血红素辅基的 Fe²⁺具有载氧能力,其 3d 电子为低自旋排布,离子半径相对小,能嵌入卟 啉环平面内,而脱氧后,3d 电子为高自旋排布,离子 半径相对增大,不能再嵌入卟啉环平面内.另外,元 素周期表中从 Ca²⁺到 Zn²⁺离子半径的起伏,也与电 子自旋态变化有关.

5.结 论

Al³⁺的掺杂改变了 Co³⁺的电子结构 ,使 Co³⁺
 的 d 电子自旋态发生变化 ,出现混合自旋态.有一部
 分进入高自旋态.

2. 高自旋态出现将增强材料的顺磁性.

3. 电子混合自旋态的出现促使材料结构发生 突变,材料结构对 Vegard 定则的严重偏离得到 解释.

4. 部分 d 电子进入高自旋态,将增大电子活性,这预示材料在结构稳定的条件下,将有好的电化 学性能.

- [1] Ceder G et al 1998 Nature 392 694
- [2] Jang Y II, Huang B Y et al 1999 J. Electrochem. Soc. 146 862
- [3] Goodenough J B and Manivannan V 1998 Denki Kagaku 12 1173
- [4] Shi Y, Hao W, Chen G 2000 Chem. J. Chin. Universities 4 497
 (in Chinese] 史延慧、郝万军、陈 岗 2000 高校化学学报 4 497]
- [5] Chen G , Hao W J et al 2000 J. Mater. Res. 3 583
- [6] Hao W Shi Y, Chen G 2001 Chem. J. Chin. Universities 2 21(in Chinese I 郝万军、史延慧、陈 岗 2001 高校化学学报 2 21]
- [7] Thornton G , Tofield B C et al 1982 Solid State Commun. 44 1213
- [8] Richter L , Bader S D et al 1980 Phys. Rev. B 22 3059

- [9] Asai K, Gehring P et al 1989 Phys. Rev. B 40 10982
- [10] Thornton G , Owen I W et al 1991 J. Phys. Condens. Matter 3 417
- [11] Wang W Q, Yang F M, Wang J L et al 2001 Acta Phys. Sin. 50 75公 in Chinese J 王文全、杨伏明、王建立等 2001 物理学报 50 752]
- [12] Zhou X, Liang Y Q, Wang H et al 2001 Acta Phys. Sin. 50 159 in Chinese [周 勋、梁永青、王 海等 2001 物理学报 50 159]
- [13] Bhide V G, Rajoria D S, Rao G R and Rao C N R 1971 Phys. Rev. B 3 1021
- [14] Minoru Inaba, Yasutoshi iriyama et al 1997 J. Raman Spectrosc. 28 613

Hao Wan-Jun¹) Li Chang¹) Wei Ying-Jin¹) Chen Gang¹) Xu Wu²)

¹⁾ (Key Laboratory of Automobile Materials , Ministry of Education and Department of Materials Science , Jilin University , Changchun 130023 , China)

²) Changchun Institute of Optics and Fine Mechanics and Physics , Chinese Academy of Sciences , Changchun 130022 , China)

(Received 25 December 2001; revised manuscript received 9 September 2002)

Abstract

In this paper we have studied the magnetism of a new cathode material with a high energy density, $L(Al_x Co_{1-x})O_2(x = 0.1-0.5)$, which is used in rechargeable lithium batteries. We found that doping Al can change the spin state of d electron in Co^{3+} , leading to the emergence of high spin d electrons. Accompanied with this, there are also some changes of the structure development which is indicated by the obviously decreasing rate of the increasing value of c/a. This explains the positive deviation of the structure from the Vegard law. This is very important to the design of the microstructure and properties of materials.

Keywords : lithium battery material , L($Al_x Co_{1-x} O_2$, magnetism , spin , structure development **PACC** : 8100 , 3130 , 6110

^{*} Project supported by the Science Research Foundation for Returned Overseas Chinese Scholars, the National Education Ministry of China Grant Nd 2002] 126).