纳米 CdS-磺化聚苯胺(SPAn)多层复合膜的 光学特性研究*

马锡英 施维林

(绍兴文理学院理学院物理系 / 紹兴 312000) (2002 年 4 月 28 日收到 2002 年 8 月 26 日收到修改稿)

研究了利用层-层自组织生长法制备的磺化聚苯胺-CdS 纳米晶体复合膜的光学特性.研究发现,随样品中 CdS 纳米晶体尺寸的减小,量子尺寸效应明显增强,在紫外吸收谱中表现为吸收边出现了明显蓝移;在光致发光谱中,不仅激子直接复合产生的带边发射产生了蓝移,而且陷阱态复合产生的宽带发射也发生了蓝移.还发现样品经低 温退火处理后,激子复合产生的带边发射显著增强,发射带宽随纳米尺寸的减小而变窄.这说明退火后 CdS 纳米晶 粒的有序性和均匀度显著增加.

关键词:CdS 纳米晶体, SPAn, 吸收, 发光 PACC: 8185, 7865, 0765

1.引 言

近年来 半导体纳米晶体的光学特性引起了研 究人员的极大兴趣,这是由于当纳米粒子的粒径与 超导相干波长、玻尔半径及电子的德布罗意波长相 当时,量子尺寸效应十分显著,与此同时,大的比表 面使处于表面态的原子、电子与处于纳米晶体内部 的原子、电子的行为有很大差别 这种表面效应和量 子尺寸效应对纳米微粒的光物理、光化学及非线形 光学性质都具有很大影响12].当半导体从块体转变 为纳米粒子后 具有了体材料所不具备的许多新的 光学特性,光学特性的改变是因为随着粒度的减小, 光学带隙增大^[3].例如,随粒度的变化,纳米晶体表 现出结构性的吸收和发射特性41.通过控制纳米晶 体的粒度,可以控制材料的光学特性51,从而实现纳 米晶体在光电子方面的应用,虽然目前制备纳米晶 体的方法很多,如分子束外延法(MBE),有机化学气 相沉积(MOCVD) 显微刻蚀加工方法和化学制备法 等.然而,由于纳米晶粒具有很大的表面-体积比,它 们很容易聚结在一起^[6].为了解决这一问题,研究人

员尝试了多种制备和控制纳米晶体尺寸的方法,包括应用溶胶-凝胶和有机物作包裹体等^[7-12].本文我 们采用在磺化聚苯胺中制备 CdS 纳米晶粒来克服聚 结现象,研究发现所形成的纳米晶粒无聚结现象产 生,并通过层-层自组织化生长形成多层 CdS-聚合物 复合膜,进而研究了其光学特性.

2. 实 验

分别在 10,20 和 30℃ 温度条件下,运用 Cd(NO₃),溶液和 H₂S 气体,依据以下化学方程式 (1),通过对胶体溶液进行选择性沉淀,制备 CdS 纳 米晶粒,

Cd(NO₃)₂ + H₂S = CdS + 2HNO₃. (1) 磺化聚苯胺 (SPAn)制备过程如下:

将苯胺氧化后成为聚苯胺,再用硫酸磺化.化学 方程式表述如下:

^{*} 国家自然科学基金(批准号 :60276025)资助的课题.

选择玻璃为载体,依次用酒精、丙酮清洗、去离 子水冲洗,最后用氮气吹干.然后放入 SPAn 溶胶液 中 5min 后取出,用氮气吹干.再放入 CdS 胶体溶液 中 5min 后取出仍用氮气吹干.由于 SPAn 具有正电 性,CdS 具有负电性,因此,当含有 SPAn 的玻璃浸入 到 CdS 胶体溶液中时,CdS 晶粒便附着到 SPAn 分子 上,并聚合形成纳米晶体.重复上述过程,层-层自组 织化生长,从而形成 CdS-SPAn 复合膜.结构如图 1 (a)和(b)所示.本文我们将分析 10,20 和 30℃温度 条件下交替生长的层数为 20 层的三种粒度的 CdS 样品.

我们采用紫外-可见光谱(UV-VIS) (议分析室温 下样品的吸收特征,荧光光谱仪观察样品的光致发 光特征.

图 1 (a)为 CdS 吸附于 SPAn 分子的示意图 (b)为 CdS 多层膜生长示意图

3. 结果与讨论

我们将 10,20 和 30℃不同温度下制备的 CdS-SPAn 纳米晶体的多层复合膜样品分别以 *A*,*B* 和 *C* 符号来表示,对应的紫外 - 可见吸收谱示于图 2 中. 由 *A*,*B* 和 *C* 样品在吸收谱中吸收边的位置,根据 Kayanuma 等^{13]}考虑势垒高度后得到的粒子尺寸与 吸收峰能量之间的比较精确的关系,吸收峰的能量 与粒度的关系为

$$E_{1\rm sls} = E_{\rm g} + \pi^2 \frac{a_{\rm B}}{a} {\rm Ry}^* - 1.786 \frac{a_{\rm B}}{a} {\rm Ry}^* - 0.248 {\rm Ry}^*$$
(4)

式中 a_B 为激子波尔半径 ,Ry 里德伯能 (Rydberg energy),对块 CdS 晶体 $a_B = 2.8$ nm ,Ry = 29meV. 方程 (4)等号右端第二项表示由于量子限制效应使吸收 边产生的移动 ,第三项表示电子-空穴库仑互作用. 由此方程 ,可以得到相应温度下样品中 CdS 纳米晶 粒的粒度 , *A* ,*B* 和 *C* 样品的平均晶粒直径分别为 2.5 3.4 和 5nm.由于带隙的跃迁能也是从吸收谱中 得到,那么应用该方法估算的晶粒平均粒度的精度 受跃迁能精度的限制.在吸收谱中,由于粒度具有一 定的分布特征和声学声子的展宽性,激子吸收峰具 有一定带宽,因此不能很好的分辨.

图 2 CdS 纳米晶体的光学吸收谱 随纳米晶粒尺寸的减小 吸收边发生了显著的蓝移

A,*B*和*C*样品的激子跃迁分别对应图 2 中 420 *A*30 和 440nm 附近的肩形吸收.这些吸收峰对 应于价带中所占据的最高分子轨道(HOMO)到导带 中未占据的最低分子轨道的跃迁(LUMO).随样品 中 CdS 粒度的减小,吸收边表现出明显的蓝移.图 2 中 *A*,*B*和*C*样品对应的 CdS 晶粒带隙分别为 2.87, 2.72 和 2.63eV,正是 CdS 体材料带隙 2.50eV 蓝移 的结果.该结果与 Brus^[14]理论计算的结果基本 一致.

导致吸收边发生蓝移的现象主要与量子尺寸效 应有关,由于颗粒尺寸下降使能隙变宽,这就导致吸 收带向短波方向移动.如果忽略表面效应,激子的振 动强度可表示为

$$f = \frac{2m}{h^2} \Delta E |\mu|^2 + U(0)|^2 , \qquad (5)$$

式中 m 为电子的质量 ΔE 为跃迁能量 , μ 为跃迁偶 极矩 ,当纳米晶粒的半径 $r < a_B$ 时 ,电子和空穴波 函数的重叠 $|U(0)|^2$ 将随粒径减小而增加 ,近似于 $(a_B/r)^3$.因为单位体积微晶的振子强度 $f_{\#}/V$ 体积)决定了体材料的吸收系数 ,粒径越小 , $|U(0)|^2$ 越大 , $f_{\#}/V$ 也越大 ,则激子带的吸收系数随粒径 下降而增强 ,即出现激子增强吸收并蓝移 .其次是由

于表面效应,由于纳米微粒颗粒小,大的表面张力使 晶格畸变,晶格常量变小.第一近邻和第二近邻的距 离变短,键长的缩短导致纳米微粒的键本征振动的 频率增大,结果使吸收谱向高能方向移动.

相应样品的光致发光谱示于图 3. 激发波长为 385nm.从图 3 可以知道,小发光峰对应激子的带边 发射, A, B和C样品的发射峰分别在420 A30和 440nm附近.可以看出,随晶粒粒度的减小,发光峰 也表现出明显的蓝移现象.较大的红光发射带是来 自陷阱态或者缺陷态的发射, A, B和C样品对应的 发射峰位分别在 670,680和 695nm 附近,也出现了 明显的量子尺寸效应.

图 3 CdS 纳米晶体的光致发光谱 小的发光峰为激子带边直接复合辐射 较大的红光发射为陷阱态或者缺陷产生的辐射 施 CdS 纳米晶体尺寸的减小 激子发射带也发生了明显的蓝移

此外,我们对样品退火后的光致发光谱进行了 观察(图4).样品在50℃恒温下退火3h.此温度低于 SPAn 膜的相转变温度(约为80℃).从图4中可以发 现,与未退火发光谱比较(图3),来自带边的激子的 发射明显增强,大约增强了2—3倍,而来自陷阱态 或者缺陷的红光发射强度有所减小.我们可以这样 来理解:因为退火温度远低于有机膜的相转变温度, CdS 晶粒还是紧密地附着在有机分子上;虽然晶粒 的粒度在退火过程中不再长大,但晶粒内部有可能 出现再结晶现象,发生低对称向高对称转变.另一方面,退火使 CdS 晶粒的有序度增加.总之,其趋势使 晶场增强,激发态与基态之间的间距也会增大,这就 使得发光谱出现蓝移.退火后样品中的陷阱态数减 小,因而来自陷阱态的红光发射有所减小.

图 4 退火后 CdS 纳米晶体样品的光致发光谱 与图 2 相比 激 子带的辐射复合显著增强 发射带宽也明显变窄

4.结 论

本文应用层-层自组织生长法成功地在 SPAn 有 机膜中制备了 CdS 纳米晶体,并对其光学性质进行 了研究.根据紫外-可见吸收谱中样品的吸收边位置 得到在 10 20 和 30℃温度条件下制备的 CdS 纳米晶 粒的尺寸分别为 2.5 ,3.4 和 5nm.这些样品的紫外 吸收谱和光致发光谱均表明,激子的吸收和光发射 都表现出随晶粒尺寸减小发生明显的蓝移,这是量 子尺寸效应的表现形式.样品经退火处理后,激子的 发光显著增强,带宽也明显减小,这说明退火后样 品中 CdS 纳米晶粒的有序度和其粒度的均匀性增 强了.

感谢中国空间技术研究院兰州物理所在样品分析中所 给予的帮助和支持.

- [2] Tolbert S H, Herhold A B, Johnson C S and Alivisatos A P 1994 Phys. Rev. Lett. 73 3266
- [3] Hichey S G and Riley D J 1999 J. Phys. Chem. B 103 4599
- [4] Mansur H S , Grieser F , Marychurch M S , Blggs S , Urquhart R S and Furing D N 1995 J. Chem. Soc. Farady Tran. 91 665
- [5] Niinisto L , Leskela M 1993 Thin Solid Films 225 130
- [6] Premachandran R, Banerjee S, John V T, McPherson G L, Akkara J A and Kaplan D L 1997 Chem. Mater. 9 1342
- [7] Breitscheidel B, Zeider J and Schubert U 1991 Chem. Mater. 3 559
- [8] Wang Y, Suna A, Mahler W and Kasowski R 1987 J. Chem. Phys. 87 7315

- [9] Steigerwald M I, Alivisatos A P, Gibson J M, Haris T D, Kortan R, Muller A J, Thayer A M, Duncan T M, Douglas D C and Brus L E 1988 J. Am. Chem. Soc. 110 3047
- [10] Wang W J, Xu J H, Lu X Z, Wang G M and Wang W C 1999 Acta Phys. Sin. 48 1179(in Chinese] 王文军、徐建华、陆兴泽、王恭 明、王文澄 1999 物理学报 48 1179]
- [11] Yang H Q, Wang X, Liu S X, Li Y F, Zhang L Y and Yao X 2001 Acta Phys. Sin. 50 341(in Chinese) 杨合情、王 喧、刘守信、 李永放、张良莹、姚 熹 2001 物理学报 50 341]
- [12] Wang Q Q, Zhao T Y, Yang B F, Niu F, Zhou Z Q and Xun G G
 1999 Acta Phys. Sin. 48 539 (in Chinese) 王取全、赵同云、杨伯
 峰、Niu Feng、周正国、熊贵光 1999 物理学报 48 539]
- [13] Kayanuma Y and Momiji H 1990 Phys. Rev. B 41 10261
- [14] Brus L E 1984 J. Chem. Phys. 80 4403

Study on the optical properties of the nanometer CdS-sulfonic group polyaniline (SPAn) composite multiplayer films *

Ma Xi-Ying Shi Wei-Lin

(Department of Physics , School of Science , Shaoxing College of Arts and Sciences , Shaoxing 312000 , China) (Received 28 April 2002 ; revised manuscript received 26 August 2002)

Abstract

The nanometer CdS-sulfonic group polyaniline (SPAn) polymer multiplayer films were grown in self-assembled layer-bylayer is reported and the optical properties are investigated. The optical measurement results show that the quantum size effect becomes strong with the decrease of the size of CdS nanocrystals. Blue shift appears on the absorb edgea in the absorption spectrum and also on the exciton band-edge emission peaks in the luminescence spectrum. The observed results of the corresponding annealed samples show that the intensity of the band-edge emission from the exciton direct recombination canbe enhanced about two to three times , and the band width becomes narrower than that of the un-annealed sample , indicating that CdS nanocrystals become more ordering , and their sizes become more uniform in the annealed sample.

Keywords : CdS nanocrystals , SPAn , absorption , luminescence PACC : 8185 , 7865 , 0765

^{*} Project supported by the National Natural Science Foundation of China Grant No. 60276025).