钙钛矿型稀土锰氧化合物 Nd_{0.5}Sr_{0.4}Pb_{0.1}Mn_{1-x}Fe_xO₃ 中 Mn 位的 Fe 替代效应*

鲁 31^{1} 李庆安²) 邸乃力²) 成昭华²)

¹(內蒙古包头师范学院物理系,包头 014030)
 ²(中国科学院物理研究所磁学国家重点实验室,北京 100080)
 (2002年9月25日收到,2002年10月16日收到修改稿)

对 $M_{0.5} S_{10.4} Pb_{0.1} Mn_{1-x} Fe_x O_3$ 系列多晶样品的结构,磁和转变特性进行了实验研究.在 *x* = 0.00—0.10 的范围内 获得了单相样品, Fe³⁺ 的替代并没有引起整个系列的结构变化,然而 Mn 位的掺杂却强烈地抑制了 $Nd_{0.5} Sr_{0.4} Pb_{0.1}$ MnO₃ 的铁磁性和金属—绝缘体转变.在低掺杂情况下(*x* ≤ 0.06)Mn 被 Fe 替代,金属—绝缘体转变温度 *T*_P 平均下 降了 19K,当 *x*≥0.08 铁磁金属态完全过渡为绝缘态.这主要归因于 Fe³⁺ 的渗入影响了化合物 e_g 电子浓度和抑制 了双交换作用.

关键词:磁结构,磁性,磁转变温度T_P,双交换作用 PACC:7530E,7220M,7215G,7570P

1.引 言

自从在具有钙钛矿结构的稀土锰氧化合物中发 现超大磁电阻(CMR)效应以来,由于CMR效应在磁 记录、读写、存储和传感器等方面具有巨大的应用前 景 近年来 越来越多的人开始致力干钙钛矿型稀土 锰氧化合物 $Ln_{1-x}A_x$ MnO₃(Ln = La, Pr, Nd 等, A =Ca Sr ,Ba ,Pb 等)的研究^[1-6] ,茶丽梅等人^[7]蜒究了 双层锰氧化物的物理性质,起初,人们主要通过稀土 位的替代来调整 Mn-O-Mn 键角和 Mn-O 键长, 控制双交换作用和超交换作用间的竞争.试图改变 锰氧化合物的磁性和输运性质,后来人们认识到, Mn 位的替代对交换作用的影响更为直接.到目前为 止人们已经在化合物 Ln1-*A*MnO3 的 Mn 位上做 了多种过渡金属离子的替代^{8-15]},其基本规律粗略 地说随替代量的增加,磁转变温度和金属—绝缘体 转变温度 T,降低,电阻值和磁电阻增大.值得指出 的是,被替代的是 Mn3+ 还是 Mn4+ 对磁性和输运性 质的影响不同.如果 Mn4+ 被替代,则直接降低了空 穴载流子的浓度.人们所用替代的化合物大多为 LCMO 体系, 替代元素大多为 Ni, Ti, Sn, Ge 等.

 $Ahn^{[16]}$ 等较早地研究了 Fe^{3+} 替代 $Na_{1-x} Ca_x Mn_{1-y}$ Fe_yO₃ 的输运性质 ,Sur^[12]等研究了 Fe^{3+} ,Ge⁴⁺ 分别 替代对 La_{2/3}Ca_{1/3}MnO₃ 的磁性和输运性质的影响 ,近 来 L^{{13]}等研究了 Ge⁴⁺ 和 Sn⁴⁺ 替代 Mn 对 La_{0.5} Ca_{0.5} MnO₃ 的晶格影响.因而进一步 NSMO 体系在 Mn 上 的替代效应无疑对磁性、磁电阻效应的物理起源是 很有必要的.基于此 本文研究了 Nd_{0.5} Sr_{0.4} Pb_{0.1} MnO₃ 中 Mn 位上的 Fe³⁺ 替代效应.

2. 实验方法

2.1. 样品制备

采用传统的高温固相反应法,制备了多晶样品 Nd_{0.5}Sr_{0.4} Pb_{0.1} Mn_{1-x} Fe_xO₃(简写 NSPMFO, x = 0.00, 0.01 0.02 0.04 0.06 0.08 0.10). 按要求的名义组 分称量纯度为 99.99% 以上的 Nd₂O₃ SrCO₃ ,MnCO₃, Fe₂O₃ ,PbO 粉料,放入玛瑙碾钵中充分研磨均匀后, 所有样品在 800℃下的空气中先预烧 12h,然后分别 用球磨机充分研磨 2h 后,分别压片后再进行烧结样 品.烧结条件分别在 1000℃,1050℃,1100℃,1180℃

^{*} 中国科学院百人计划资助的课题.

时,通高纯的混合气($30\% O_2 + 70\%$ Ar),分别煅烧 24h 然后随炉温自然冷却至室温.最后得到 $\Phi =$ 10mm 厚约 2mm 的外观平整、黑亮、坚硬而无裂纹 的样品.

2.2. 样品的测量

用 Rikagu 型转靶 x 射线衍射仪检测样品的单相 性,通过样品的衍射图谱获得晶体结构和晶格参数; 磁性测量用 SQUID 磁强计完成;电阻测量采用标准 四端引线法,利用超导量子磁强计,在 5K—325K 温 度内测量完成.根据 *M-T* 曲线,在高温区对出现顺 磁性部分的 *M-T* 曲线的线性部分进行拟合,其拟合 直线与 x 轴的交点定为居里温度 T_c , *R-T* 曲线的峰 值电阻对应的温度为金属—绝缘体转变温度 T_p ,如 图 χ a)和(b)给出的典型样品所示.

3. 实验结果和讨论

图 1 给出了多晶样品 Nd_{0.5} Sr_{0.4} Pb_{0.1} Mn_{1-x} Fe_x O₃ (x = 0.00 0.04)的 x 射线衍射和 Rietveld 精修拟合 图 表 1 给出了室温下所有粉末样品 x 射线衍射 数据.

图 1 x = 0.00 0.04 样品室温下的 x 射线衍射谱和 Rietveld 精修 结果

表1	室温下所有样品的 x 射线衍射数据由 Rietveld	ł						
精修得到的结构参数								

x	a/nm	b/nm	c/nm	$R_{\rm p}/\%$	$R_{ m wp}/\%$	$X^2/\%$
0.00	0.546990	0.542930	0.764430	13.179	17.911	2.566
0.01	0.546980	0.542900	0.764200	11.111	15.101	3.285
0.02	0.546880	0.543460	0.765260	12.912	18.856	5.137
0.04	0.54700	0.542990	0.764980	10.224	14.021	2.949
0.06	0.546680	0.543850	0.765430	9.834	13.671	2.851
0.08	0.546670	0.543800	0.765360	10.049	13.512	2.799
0.10	0.546140	0.544680	0.766350	9.6901	19.777	2.961

在图 1 中看出 Fe 替代 Mn 并没有观测到衍射峰 明显的移动,由表1看到晶格常数随着 Fe 含量的增 加也没有明显的变化,这与预期结果相同,由于 Fe³⁺ 离子的半径(0.64)和 Mn³⁺ 离子的半径(0.66)相 差很小,不仅所有样品晶格常数差不多相同,而且都 具有相同的正交钙钛矿结构,空间群为 Pbnm.这些 结果说明, 锰被铁的替代引起的晶格常数变化很小, 可忽略这种替代引起的 NSPMFO 系列样品的晶格变 化的影响 这样就不必考虑来源于替代的晶格变化 对磁性和磁电阻的影响.图 2(a)和(b)分别给出了 几个典型多晶样品 $Nd_{0.5} Sr_{0.4} Pb_{0.1} Mn_{1-x} Fe_x O_3$ (x = 0.00 0.06 0.08),在 H = 100(Oe)磁场下的热磁曲 线和零场下的电阻 R 随着温度变化的曲线,根据 *M-T*和*R-T*曲线确定了其他样品的居里温度*T*_c和 磁转变温度 T_p 参见表 2.由表 2 和图 2 看出 ,当 0 \leq $x \leq 0.06$ 范围内所有样品随着温度的降低都经历了 从顺磁 PM)到铁磁(FM))转变的同时伴随着绝缘— 金属态转变 但是随着铁掺杂量的增加居里温度和 磁转变温度却降低.对未掺杂的样品(x = 0.00)可知 居里温度 $T_{c} = 273$ K,且转变温度约为 $T_{p} = 215$ K,这 与 Khazenf¹⁰]报道的单晶样品 Nd_{0.5} Sr_{0.36} Pb_{0.14} MnO₃₋₈ $T_{\rm P} = 204 {\rm K}$ 的结果基本相近.然而 $T_{\rm C}$ 与 $T_{\rm P}$ 相差 58K 这可能与多晶样品的颗粒大小和颗粒边界效 应有关.

图 2 (a)和(b)分别表示典型样品(x = 0.00 0.60 0.08)的 M-T 和 R-T 曲线

表 2 给出部分典型样品由 *M-T* 和 *R-T* 曲线得到的 居里温度 *T*_C 和转变温度 *T*_P

$Nd_{0.5}Sr_{0.4}Pb_{0.1}Mn_{1-x}Fe_{x}O_{3}$							
x	$T_{\rm C}/{ m K}$	$T_{\rm P}/{ m K}$					
0.00	273	215					
0.04	200	105					
0.06	180	100					
0.08	163	0					

52 卷

由表 2 和图 2(b)可以看出,少量 3 价锰位上铁 的替代对该化合物的铁磁性产生了相当的抑制作 用.对于 x = 0.06 样品 $T_c = 200K$,相对于未掺杂样 品的 $T_c = 273$ K 下降了 73K ,相当于每 1% 的 Mn 被 Fe 替代下降 16K. 文献 12 报道了 1%的 Mn 被 Fe³⁺ 或 Ge⁴⁺ 替代, T_C 分别下降了 22K 和 28K, 文献 12] 报道了 1%的 Mn 被 Ti⁴⁺ 替代 ,T_c 下降了 31K ,有趣 的是当 x > 0.06 时 T_c 随替代量的增加变化不大, 且 x = 0.10 $T_c = 162$ K.由图 2 和表 2 看出 NSPMF(x=0.00 0.04 0.06 0.08)样品,磁转变温度 T_p的大 小强烈地依赖于铁的掺杂量的多少 在 0≤ x ≤ 0.06 电阻峰向低温区移动,即绝缘—金属态转变温度 T_p 迅速下降 ,由 x = 0.00 的 215K 下降到 x = 0.06 的 100K 相当于 1%的 Mn³⁺被 Fe³⁺ 替代 T_P 下降了约 19K 同时电阻的峰值却增加了 3 个数量级.当 $x \ge$ 0.08转变温度消失,完全变为绝缘态,且 T = 10K 时 电阻值可达 $10^7 \Omega$ 以上. 可见 Fe³⁺ 对 Mn³⁺ 的替代对 $Nd_{0.5}Sr_{0.4}Pb_{0.1}MnO_3$ 的磁性产生了非常显著的影响. 对于具有 ABO, 型的氧化物 , B 位的掺杂不同程度 影响电荷有序和双交换作用的竞争^[14],事实上,当 Mn³⁺被Fe³⁺替代直接降低了化合物中 e, 电子的浓 度的同时也降低了 Mn³⁺ /Mn⁴⁺ 的比例和可跳跃位的 电子数,这样就抑制了双交换作用,应该注意的是

Fe³⁺和 Mn⁴⁺之间并没有双交换作用,铁的渗入破坏 了电子的跳跃路径,导致了铁磁和金属电导的降低, 也就导致了电阻的增大和绝缘—金属态转变温度 $T_{\rm P}$ 的降低.另外 Sun^[12]等人在 La_{0.7} Ca_{0.3} MnO₃ 中 Fe 和 Ge 分别替代 Mn,研究发现锰位与氧位的掺杂之 间有密切的关系 $e_{\rm g}$ 电子倾向于畸变它的局域晶格 形成 J-T 极化子, J-T 效应使 $T_{\rm C}$ 降低和金属—绝缘 体转变完全消失.

值得注意的是,Mn 位掺杂使居里温度和绝缘— 金属态转变温度同时降低,但二者并非一致地降低, 发现金属—绝缘体转变温度下降的更快,其原因也 需进一步研究.

4.结 论

本文系统地研究了具有钙钛矿稀土锰氧化合物 $Nd_{0.5}Sr_{0.4}Pb_{0.1}MnO_3 中 Mn 位的 Fe^{3+} 替代效应 ,发现$ $Fe 替代直接降低了化合物中 <math>e_g$ 电子的浓度的同时 也降低了 Mn^{3+}/Mn^{4+} 的比例和可跳跃位的电子数 , 这样就强烈抑制了双交换作用 ,导致了铁磁和金属 电导的降低.

附 :本实验工作完成于中国科学院物理所磁学 国家重点实验室.

- [1] Kusters M , Singleton J et al 1989 Physic B 155 362
- [2] Jin S , Tiefel T H et al 1994 Science 264 413
- [3] Kuwahara , Tomioka Y et al 1995 Science 270 961
- [4] Zhao G M , Conder K et al 1996 Nature 276 676
- [5] Lu Q Y C , Chen C et al 1997 Science 276 2006
- [6] Zhu X R, Zhen H L, Shen Q W, Li Tie, Zou S C 1999 Acta. Phys. Sin. 48 S40 (in Chinese] 祝向荣、沈鸿烈等 1999 物理 学报 48 S40]
- [7] Cha Li-Mei, Zhang Peng-Xiang 2003 Acta. Phys. Sin. 52 498(in Chinese] 茶丽梅、张鹏翔 2003 物理学报 52 498]
- [8] Sahana M, Satyalakshmi K M et al 1997 Materials Research Bulletin

32 831

- [9] Rao C N R , Mahesh R et al 1998 J. Phys. Chem. Solids 59 487
- [10] Jia Y X , Lu Li et al 1995 Physical Review B 52 9147
- [11] Khazeni K , Jia Y X et al 1996 Physical Review Letters 76 295
- [12] Sun J R , Rao H K , Shen B G et al 1998 Appl . Phys . Lett . 73 2998
- [13] Li R W, Shen B G et al 2000 J. Appl. Phys. 87 5597
- [14] Bamabe A, Maigan A et al 1997 Appl. Phys. Lett. 71 3907
- [15] Li Run-Wei, Wang Zhi-Hong, Chen Xin, Shen Bao-Gen 1999 Acta. Phys. Sin. 48 S105 (in Chinese] 李润伟、王志宏、陈 新、 沈保根] 1999 物理学报 48 S105
- [16] Ahn K H , Wu X W et al 1996 Physical Review B 54 51 299

Doping effect from substituting Fe for Mn in $Nd_{0.5}Sr_{0.4}Pb_{0.1}Mn_{1-x}Fe_xO_3$ (x = 0.0-0.1) compounds *

Lu Yi¹) Li Qing-An²) Di Nai-Li²) Cheng Zhao-Hua²)

¹⁾ (Department of Physics , Baotou Teacher's College , Baotou 014030 , China)

² (Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China)

(Received 25 Septembr 2002; revised manuscript received 16 October 2002)

Abstract

Structure , magnetic and transport properties of polycrystalline $Nd_{0.5}Sr_{0.4}Pb_{0.1}Mn_{1-x}Fe_xO_3$ Compounds were experimentally studies. Single-phase samples were obtained in the range x = 0.0-0.1 of Fe Content. There are no appreciable structure changes for the introduction of Fe. Mn-site doping favous a reduction of magnetic/resistive transport, at a rate of ~ 16K for 6% Fe, and an elevated resistivity. Metal-insulator transition disappears when the content of Fe exceeds ~ 0.08. The enhanced doping effects in $Nd_{0.5}Sr_{0.4}Pb_{0.1}Mn_{1-x}Fe_xO_3$ can be ascribed to the presence of Fe , which influences the concentration of mobile electron e_g and restrain the double exchange interaction in the compounds.

Keywords : structure , magnetic properties , transition temperature T_P , double exchange interaction **PACC** : 7530E , 7220M , 7215G , 7570P

^{*} Project supported by the "Hundreds Talents Program " of Chinese Academy of Sciences.