铀与水蒸气体系的热力学性质计算

熊必涛¹) 蒙大桥¹) 薛卫东²) 朱正和²) 蒋 刚²) 王红艳²)

¹(中国工程物理研究院 绵阳 621900) ²(四川大学原子分子物理研究所 成都 610065) (2002 年 6 月 12 日收到 2002 年 11 月 26 日收到修改稿)

应用 Gaussian 98 程序对 U-H₂ O 体系所有可能的构型进行优化计算.采用密度泛函理论的 B3LYP 方法和 MP2 方法 对铀原子采用相对论有效原子实势及(6s5p2d4f)[3s3p2d2f]收缩价基集合 ,氧、氢原子采用 $6-311G^{**}$ 全电子基集合.计算得到了 6 种五重态的相对稳定结构的电子状态、几何结构、能量、谐振频率、力学性质和电性质等.结果表明 ,H₂ O 蒸汽在金属铀表面的反应首先是铀和氧的相互作用.对 C_{2e} 相对稳定构型 UOH₂($^{5}A_{1}$)的热力学稳定性进行了计算 ,其分解反应的 Gibbs 自由能 ΔG° 随温度的升高不断减小 表明低温有利于该构型分子的稳定存在.

关键词:密度泛函理论,B3LYP,分子结构,热力学函数 PACC:3120E,3130,3420,3520

1.引 言

金属铀具有独特的核性质,在国防与和平利用 核能中起着重要作用.铀的化学性质非常活泼 极易 与空气中的氧气、水蒸气等发生反应而被腐蚀.因此 近年来研究铀的表面氧化反应及腐蚀机理一直是人 们感兴趣的课题.铀和 H₂O 蒸气反应的实验研究已 有大量文献报道,提出了一些反应机理.Winner 和 Colmenares 对铀水反应机理进行过实验研究^[1]; Ritchie^[2],Aller^[3]和 McGillivray^[4]等人提出了各自的 氧化反应机理,他们的观点解释了部分实验事实.至 于金属铀在 H₂O 蒸气中氧化机理的理论,尚未见系 统的研究.一般认为,H₂O 蒸气首先会在清洁的铀表 面吸附,然后解离,在表层形成氧化物.OH⁻ 会继续 扩散进入体相在氧化物-金属界面发生反应.因此, 研究 H₂O 蒸气与清洁铀表面的相互作用的可能分 子构型及能量等性质,显得十分重要.

钢系元素不仅存在 σ,π 和 δ 对称性,还出现了 φ 轨道,而且相对论效应十分明显,作用机理较复 杂,全电子计算的计算量极大,几乎不可能进行.即 使克服了计算困难,一般的 Hartree-Fock 方程和有关 的波函数,由于没有考虑相对论效应,也必将导致错 误结论.鉴于原子性质主要决定于价层电子,将固体 物理学中的有效原子实理论,推广到分子的量子力 学,形成了分子的有效原子实势(effective core potential ,ECP)及相对论有效原子实势(relativistic effective core potential ,RECP)理论.该理论采用 RECP 替代核 与原子之间的静电势能和核的正交效应,并考虑轨 道扩展和收缩的相对论效应,有效原子实势重新产 生价轨道的本征能量和形状.原子实和价轨道由 Cowan-Griffin Hartree-Fock 方程加相对论修正获得, 考虑了"mass velocity "和"Darwin"项以及自旋-轨道耦 合效应,这样,利用比全电子计算少得多的计算时 间,又能恰当地说明相对论效应的重要性.应用 RE-CP 计算含有重元素的分子(UO₂,PuO,Pu₃等)的结 构与性质已经取得满意的结果^[5],而应用于计算 U-H,O 体系尚未见报道.

本文从量子力学角度出发,用密度泛函理论 (DFT)中的 B3LYP 方法,在 Gaussian 98 程序中,对铀 原子采用 RECP,及(6s5p2d4f){3s3p2d2f]收缩价基 集合^[6],氧、氢原子采用 6-311G**全电子基集合, 对 U-H₂O 体系可能构型进行 *ab initio* 优化计算.通 过计算,得到 6 种五重态的相对稳定结构的电子状 态、几何结构、能量、谐振频率、力学性质和电性质 等.作为比较,在相同的基集合水平上同时采用传统 的 MP2 方法进行了优化计算.由于 Colmenares 认为 铀水反应首先是铀和氧相互作用,因此对铀原子直 接与水分子中氧原子键合的 *C*_{2*x}</sub>构型 U-OH₂(⁵A₁)的 热力学性质进行了计算和分析,这将为进一步探讨 铀与 H₂O 蒸气的反应机理提供理论依据.</sub>*

2. 理论方法

密度泛函理论方法,就是通过构造电子密度的 泛函来模拟电子相关的一种近似方法,将电子能量 分成动能、电子 – 核吸引能、Coulomb 排斥能和交换-相关项几部分来计算,即 n 个电子体系的能量为

$$E_{\rm el} = E^{\rm XC} - \frac{1}{2} \sum_{i} \int \phi_{i}(r_{1}) \nabla^{2} \phi_{i}(r_{1}) dr_{1} + \sum_{A} \frac{Z_{A}}{|R_{A} - r_{1}|} \rho(r_{1}) dr_{1} + \frac{1}{2} \int \frac{\rho(r_{1})\rho(r_{2})}{|r_{1} - r_{2}|} dr_{1} dr_{2} , \qquad (1)$$

式中等号右端第一项交换 – 相关能可分为交换泛函 $E^{x}(\rho)$ 和相关泛函 $E^{c}(\rho)$ 两个独立部分,它们分别 对应于相同自旋和混合自旋相互作用.密度泛函理 论就是将交换泛函和相关泛函联合起来进行计算, 本文所用的 B3LYP 方法即是将包含梯度修正的 Becke 交换泛函和包含梯度修正的 Lee,Yang 和 Parr 相关泛函联系在一起,局域相关泛函广泛使用 Vosko,Wilk 和 Nusair(VWN)局域自旋密度处理得到 Becke 三参数泛函^[5-8]:

$$E_{\text{BJLYP}}^{\text{XC}} = E_{\text{LDA}}^{\text{X}} + c_0 (E_{\text{HF}}^{\text{X}} - E_{\text{LDA}}^{\text{X}}) + c_{\text{X}} \Delta E_{\text{B8}}^{\text{X}} + E_{\text{VWN3}}^{\text{C}} + c_0 (E_{\text{LVP}}^{\text{C}} - E_{\text{VWN3}}^{\text{C}}).$$
(2)

通过调节参数 c_0 , c_x 和 c_c 的值,可以优化控制 交换能和相关能修正, Becke 对第一周期原子的原 子化能、电离势、原子亲和能和原子能量进行拟合, 得到参数的值分别为 $c_0 = 0.20$, $c_x = 0.71$ 和 $c_c = 0.81$. 根据(2)式 B3LYP 的泛函形式,用类似于自洽 场(SCF)方法的迭代方式进行自洽的密度泛函理论 计算.

3. 结果与讨论

3.1. 分子结构与离解极限

计算得到 U-H₂O 体系的 6 种五重态的相对稳 定构型(见表 1 ,E1—E6 分别为计算得到的 6 种相对 平衡结构),通过对表 2 中不同异构体的能量对比可 知,铀和氧直接相互作用的异构体的能量都较低.在 B3LYP/6-311G**计算水平下,各异构体的能量顺序 是 E2 < E3 < E4 < E1 < E6 < E5 ;在 MP2/6-311G** 的 计算水平下各平衡异构体的能量顺序则为 E2 < E1 <E3 < E4 < E6.说明不同的计算水平对能量顺序有 一定的影响,但不同的方法能基本反映整个体系的 能量趋势.一般认为,MP2 方法在 Moller 和 Plesset 创 建的多体微扰理论基础之上,在 HF 方法中加上了 二阶相关能,能量值较为准确.E5 构型以 B3LYP 方 法计算能量最高;而在 MP2 方法计算中没有得到优 化结果.在所有的计算中,E2 构型的能量最低.因 此,具有 *C*_s构型⁵A'电子状态的异构体 E2(HUOH) 是 U-H₂O 体系中的最稳定构型.

表 1 U-H₂O 体系平衡异构体示意图(E1-E6)

从能量的比较上来看,铀倾向于与氧结合.以 B3LYP方法计算为例,E5和E6两种构型中,铀和氢 有直接的相互作用,而与氧作用较弱,能量相对偏 高,分别为 – 127.9072和 – 127.9091 a.u.铀与氧相 结合后,如E2的能量为 – 128.0350 a.u.,比E5和 E6能量低.这说明铀与氧的结合力要比铀与氢强. 由于氧原子有强的电负性,易于接受铀原子的价电 子.U-H₂O体系中有多种异构体存在,说明该物质可 能存在多个亚稳态.

U-H₂O 体系各种平衡异构体的正则振动频率如 表 2 所示.U-H₂O 体系共有 4 个原子,其分子为非线 性结构,因此共有 6 个力学振动自由度.E1 和 E4 属 C_{2v} 构型,其余均为 C_s 构型.以 C_{2v} 构型的 UOH₂ (E4,⁵ a_1)为例,在 MP2/6-311G^{**} 水平下,6 个振动 频率分别为 $\nu_1(a_1)$ 286.45cm⁻¹, $\nu_2(b_1)$ 337.91 cm⁻¹, $\nu_3(b_2)$ 363.77 cm⁻¹, $\nu_4(a_1)$ 1570.3 cm⁻¹, $\nu_5(a_1)$ 3788.3 cm⁻¹, $\nu_6(b_2)$ 3902.3cm⁻¹.其中 ν_4 — ν_6 分别对应 HO 的对称弯曲振动 ν_2 (1595 cm⁻¹) HO 对称伸缩振动 ν_1 (3657 cm⁻¹) HO 反对称伸缩振动 ν_3 (3756 cm⁻¹)⁹¹,而在 UO 的振动频率 819.8 表 2 U-H₂O体系分子结构

 cm^{-1} ¹⁰³附近没有相应值.H₂O分子内振动较强,0— H之间键长 0.09634nm,比文献值 0.09575nm^[9]略 长,而 U—O之间的结合较弱,U—O之间键长比 UO 键长 0.01833nm^[11]要长 0.00665nm,这表明 UOH₂ 属 弱结合.而 *C_s*构型的 E2(HUOH,⁵A'),在 MP2/6-311G^{**}水平下 δ 个振动频率分别为 $\nu_1(a')$ 343.52 cm⁻¹, $\nu_2(a'')$ 407.38 cm⁻¹, $\nu_3(a')$ 418.07 cm⁻¹, ν_4 (*a'*)604.63 cm⁻¹, $\nu_5(a')$ 1272.6 cm⁻¹, $\nu_6(a')$ 4017.4 cm^{-1} . UO, UH 和 OH 的振动频率 819.8, 1294.8和 3853.1 cm^{-1} (后两者本实验计算值)分别 与 ν_4 , ν_5 , ν_6 接近,这表明铀与氧和氢都有较强的相 互作用.从键长上看, E2 中的 U—O 键长比 E1 的 U—O 键长短 0.0356nm, U—H 键也只比 UH 分子的 键长略长.结合能量综合考虑, E2 是 U-H₂O 体系的 最稳定构型; E1, E2 和 E3 为正常分子,其余为范德 瓦耳斯分子.

1619

八口光回	+	能量 /a.u.		几何参数 /nm 或 °)			振动频率 _ν /cm ⁻¹	
分于尖别	电子状态	B3LYP	MP2		B3LYP	MP2	B3LYP	MP2
E1(OUH ₂)	${}^{5}A_{1}(C_{2n})$	- 127.9209738	- 127.0252982	$R_{\rm UO}$	0.18973	0.22279	? a = 125.73	$b_1 = -223.17$
	1. 20.						? <i>a</i> = 217.47	$b_2 = 266.34$
				$R_{ m UH}$	0.22645	0.21423	$a_1 = 339.52$	$a_1 = 462.55$
				∠нон	139.21	122.36	$a_1 = 747.92$	$a_1 = 563.36$
							$a_1 = 998.56$	$b_2 = 1348.3$
				∠UOH	110.39	118.82	$b_2 = 998.97$	<i>a</i> ₁ = 1388.1
E2(HUOH)	⁵ A'(C _s)	- 128.0350076	- 127.0473034	$R_{\rm UO}$	0.21308	0.2142	a' = 315.73	a' = 343.52
							a' = 321.54	a'' = 407.38
				$R_{ m OH3}$	0.09565	0.0954	a' = 323.08	a' = 418.07
				$R_{ m UH4}$	0.21745	0.21569	a' = 599.82	a' = 604.63
				∠OUH ₄	113.00	96.985	a' = 1262.1	a' = 1272.6
							a' = 3945.2	a'=4017.4
E3(UOHH)	⁵ A'(C _s)	- 127.9721223	- 126.9819737	$R_{\rm UO}$	0.1884	0.19216	a' = 78.832	a' = -14.814
				$R_{ m OH3}$	0.25206	0.25211	a'=193.32	a'=197.00
				$R_{ m OH4}$	0.32628	0.32599	? <i>a</i> = 472.77	a' = 473.03
				$R_{ m HH}$	0.07488	0.07419	? a = 487.10	a'' = 474.83
				∠UOH ₃	108.03	113.06	a'=812.08	a' = 789.41
				∠UOH ₄	106.05	111.70	a' = 4331.7	a' = 4467.7
$E\!A\!(\mathrm{UOH}_2$)	${}^{5}\mathrm{A}_{\mathrm{l}}(\ C_{2v}\)$	- 127.9226322	- 126.9271225	$R_{ m UO}$	0.28005	0.24984	? $a = -163.46$	$a_1 = 286.45$
				$R_{ m UH}$	0.34720	0.31642	$a_1 = 153.94$	$b_1 = 337.91$
				$R_{ m OH}$	0.09717	0.09634	? <i>a</i> = 180.73	$b_2 = 363.77$
				∠нон	106.19	107.63	$a_1 = 1575.2$	$a_1 = 1570.3$
							$a_1 = 3598.9$	$a_1 = 3788.3$
				∠UOH	126.90	126.18	$b_2 = 3719.5$	$b_2 = 3902.2$
E5(UHOH)	5 A'(C_{s})	- 127.9072105	无优化结果	$R_{ m UH2}$	0.34025	-	a' = 81.487	-
							a'=252.06	
				$R_{ m OH2}$	0.09674		a' = 274.93	
				$R_{ m OH4}$	0.09624		a'=1641.0	
				∠HOH	103.62		a' = 3714.2	
							a' = 3865.9	
E6(UH ₂ O)	⁵ A'(<i>C_s</i>)	- 127.9091362	- 126.9245602	$R_{\rm UO}$	0.40305	0.44549	? <i>a</i> = - 269.97	a' = -125.41
				$R_{ m UH2}$	0.35119	0.40585	a' = 95.017	a' = 25.739
							? <i>a</i> = 173.33	a'' = 203.62
				$R_{ m UH4}$	0.3509	0.40716	a' = 1620.8	a' = 1643.9
				$R_{ m OH}$	0.0965	0.09582	a' = 3756.9	a' = 3987.8
				∕ нон	102.80	102.57	a' = 3838.1	a' = 4007.9

3.2. 偶极矩与布居数

偶极矩是表示分子中电荷分布情况的物理量, 其数值为正负电荷重心间的距离与电荷量的乘积. 多原子分子的偶极矩是由分子中全部原子和键的性 质以及它们的相对位置来决定.若不考虑键的相互 影响,则 U-H₂O 体系分子的偶极矩可近似地由键的 偶极矩按矢量相加而得^[12].

由表 3 可见,在总的原子电荷分布上,铀总是带 上正电荷,氧总是带上负电荷.氢原子和氧结合带正 电荷,而与铀结合则带负电荷.但氧带的负电荷总是 多于氢的负电荷,这是由于金属铀的金属性很强,氧 的电负性值较高,倾向于铀和氧形成离子性较强的 化学键.

表 3 U-H₂O体系分子的电性质

分子类别	计算方法	偶极矩/Debye		原子布居分析	原子总电荷	
E1(OUH ₂)	B3LYP	4.2325	U	12.575	1.1111	
_			0	8.4008	-0.56769	
			H^1	1.2027	-0.27168	
			H^2	1.2027	- 0.27168	
	MP2	0.5005	U	12.056	1.65411	
			0	8.5769	- 0.65064	
			H^{1}	1.3962	- 0.50173	
			H^2	1.3692	- 0.50173	
E2 (HUOH)	B3LYP	3.1471	U	12.929	0.91952	
			0	8.4915	-0.72018	
			H^{1}	0.5993	0.24933	
			H^2	1.3663	- 0.44866	
	MP2	4.8116	U	12.707	1.18362	
			0	8.7207	- 0.9046	
			H^{1}	0.5701	0.26613	
			H^2	1.4565	- 0.54512	
E3(UOHH)	B3LYP	4.9572	U	13.214	0.61128	
			0	8.3931	-0.57303	
			H^{1}	0.7609	0.02687	
			H^2	0.8829	- 0.06512	
	MP2	8.2628	U	12.984	0.87639	
			0	8.7025	-0.84849	
			H^1	0.7286	0.05622	
			H^2	0.8891	-0.08411	
E4(UOH ₂)	B3LYP	3.3593	U	13.878	0.08471	
			0	8.2276	-0.46472	
			H^{1}	0.6669	0.19000	
			H^2	0.6669	0.19000	
	MP2	6.8385	U	14.160	- 0.09611	
			0	8.2948	- 0.56591	
			H^1	0.5188	0.33101	
			H^2	0.5188	0.33101	
E5(UHOH)	B3LYP	2.2271	U	13.871	0.09663	
			0	8.1898	-0.46831	
			H^{1}	0.7142	0.13846	
			H^2	0.6319	0.23322	
	MP2 无优化值	-		-	-	
E6(UH ₂ O)	B3LYP	3.0037	U	13.880	0.08368	
			0	8.1600	-0.44818	
			H^{1}	0.6668	0.18047	
			H^2	0.6634	-0.18402	
	MP2	2.8394	U	13.982	0.01041	
			0	8.1573	-0.47632	
			H^{1}	0.6196	0.23264	
			H^2	0.6189	0.23328	

此外,由 U-H₂O体系中各构型成键原子布居数 分析表明,铀和氧及铀和氢都能形成稳定的化学键. 以用 B3LYP方法计算结果为例,E4构型中铀的原子 布居数为13.878,比铀的外层电荷数14要少0.122, 铀带的电荷较少,仅为0.08471;但是氧的原子布居 数为8.2269,氧和氢所带电荷分别为-0.46472和 0.19000.可以看出在E4构型中,氧和氢仍然保持部 分水分子的性质,这从另一个角度说明了E4构型 为一个弱结合分子构型.同样从MP2方法的计算结 果可得出相似结论.

E2 构型中, 铀的原子布居数 12.929 比 E4 构型 中的 13.878 更小, 氧的原子布居数 8.4915 比 E4 构 型中的 8.2276 要大, 而氢的原子布居数分别比 1.00 大和比 1.00 小两种情况都有.铀、氧所带电荷 0.91952 和 – 0.72018 较接近, 这意味着 UO 键逐渐 加强, OH 键逐渐减弱, 甚至于其中的一个 OH 键断 裂, 而趋向一种相对稳定的构型.

3.3. UOH₂ 热力学稳定性的计算

前已表明铀倾向于与氧结合形成较强的化学 键,得到 UOH₂ 构型的复合物.要计算 UOH₂ 的热力 学稳定性,可从 UOH₂ 的生成反应的难易角度考虑:

 $U(s) + H_2(g) \longrightarrow UOH_2(s)$, (3) 需要先计算上述化学反应的各个分子的焓和熵.根 据 Born-Oppenheimer 近似分子运动可分离为核运动 和电子运动.通过 Gaussian 98 程序计算而直接得到 的分子能量 E 和熵 S .被认为是气态分子的热力学 性质,由焓与能量的关系及定压热容与定容热容的 关系,可以得到气体的焓H,比热容 C_{n} 和熵S.在固 体中,分子被固定于晶格,可以忽略分子的平动与转 动 因此气体分子的振动能 E, 可以近似代替固态 分子的能量 E : 固态分子的熵 S 可以由气体分子的 电子与振动熵 Sau代替.而且,固态分子反应过程中 pV 项变化很小,可以近似地认为焓与内能相等,H_T = E_T.这样就可以给出不同温度下核部分的熵和 焓.而电子运动对固态物质焓的贡献 ΔH_{0} 可通过下 列近似方法计算得到:

$$H_{2}(g) + \frac{1}{2O_{2}(g)} + U(s) \xrightarrow{\Delta H_{e}} UOH_{2}(s)$$

$$\downarrow \Delta D_{e} \qquad \downarrow \frac{1}{2\Delta D'_{e}} \qquad \downarrow \Delta H_{a} \qquad \uparrow -\Delta H_{v}$$

$$2H(g) + O(g) + U(g) \xrightarrow{-\Delta D_{0}} UOH_{2}(g),$$

其中 ΔD_0 为 UOH₂ 的离解能 ΔD_e 和 $\Delta D'_e$ 为 H₂ 和 O₂ 的 离 解 能⁹¹, ΔH_a 为 铀 的 原 子 化 能, ΔH_v 为

UOH₂(s)的汽化焓. ΔH_e 的近似值与物质的状态无 关 因此 $\Delta H_e \approx -\Delta D_0 + \Delta D_e + 1/2 \Delta D'_e$. UOH₂ 的离 解能 ΔD_0 即将气态 UOH₂ 分解成自由的气态铀,氧和 氢原 子 所 需 的 能 量,经 计 算 近 似 值 为 : $\Delta D_0 = E(UOH_2) - E(U) - E(O) - 2E(H) = 0.3297365$ a.u. = 865.7232 kJ·mol⁻¹.电子运动对固态物质生成焓的 贡献 $\Delta H^o_e = -\Delta D_0 + \Delta D_e + 1/2\Delta D'_e = - 865.7232 + 431.8682 + 1/2 × 502.9779$ kJ = - 182.3649 kJ·mol⁻¹.

对固体 U(α),熵的绝对值可以测定,而焓的绝 对值无法确定.根据运动能态的形式,晶体中晶格在 作热运动,由 Debye 固体热容量子理论模型^[13],可以 计算晶体铀的振动能量:

$$E = 3N \frac{h\nu}{e^{h\nu/kT} - 1} + \frac{3}{2}Nh\nu , \qquad (4)$$

其中 *N* 为阿伏伽德罗常数 ,*h* 为普朗克常数 ,*k* 为 玻尔兹曼常数 ,,(s⁻¹)为谐振频率.又由 Debye 温度 定义 : $\Theta = h_v/k$,已知铀的 Debye^[14]温度为 207K ,则 固体铀的振动频率为 4.313 × 10¹² s⁻¹ ,于是 298.15K 时核部分内能 $E_n(U_s)$ 为 7.733kJ·mol⁻¹.由热力学 公式很容易导出 *H* 和*S* 与温度的关系:

$$H_{\rm T} - H_{298} = \int_{298.15}^{T} (a + bT \times 10^{-3} + cT^{-2} \times 10^{5} + dT^{2} \times 10^{-6}) dT , \quad (5)$$
$$S_{\rm T} - S_{298} = \int_{298.15}^{T} (\frac{a}{T} + b \times 10^{-3} + cT^{-3} \times 10^{5} + dT \times 10^{-6}) dT , \quad (6)$$

其中 a, b, c 和 d 为铀的热容温度系数,分别为 27.393J·K⁻¹·mol⁻¹, -3.640 J·K⁻²·mol⁻¹, -0.958 J ·K·mol⁻¹和 27.271 J·K⁻³·mol⁻¹, S_{298} 为 50.29 J·K⁻¹ ·mol^{-1[15]}.从而可计算出不同温度下铀的 H和 S.以 下计算 298.15K 温度下 $\Delta H^{\circ} \Delta S^{\circ}$ 和 ΔG° .

$$\begin{split} \Delta H^{\circ} &\approx E_{\langle \text{UOH}_2 \rangle} - H^{\circ}_{(\text{U})} - H^{\circ}_{(\text{H}_2 \text{O})} + \Delta H^{\circ}_{\text{e}} \\ &= 58. \ 4296 - 7.733 - 65.8833 \\ &- 182.3649 (\text{ kJ} \cdot \text{mol}^{-1}) \\ &= -197.5516 \text{ kJ} \cdot \text{mol}^{-1} \text{,} \\ \Delta S^{\circ} &\approx S^{\circ}_{\text{e}(\text{UOH}_2)} - S^{\circ}_{(\text{U})} - S^{\circ}_{(\text{H}_2 \text{O})} \\ &= 34.0996 - 50.290 - 188.6817 (\text{ J} \cdot \text{mol}^{-1}) \\ &= -204.8721 \text{ J} \cdot \text{mol}^{-1} \text{,} \\ \Delta G^{\circ} &= \Delta H^{\circ} - T\Delta S^{\circ} \\ &= -197.5516 + 298.15 \times 204.8721 \\ &\times 10^{-3} (\text{ kJ} \cdot \text{mol}^{-1}) \\ &= -136.4690 \text{ kJ} \cdot \text{mol}^{-1} \end{split}$$

表 4 列出不同温度下, UOH2, U 和 H2O 的 H°,

 S° 及相应的 △ G° 的计算结果.

T/K	UOH ₂		1	U		H ₂ O	
	$H(=E_v)$	$S(=S_{ev})$	Н	S	Н	S	ΔG°
298.15	58.4296	34.0996	7.733	50.290	65.8833	188.6817	- 136.4690
348.15	59.2454	36.6184	9.043	54.211	67.1426	193.8866	- 125.6786
398.15	60.1032	39.0911	10.345	57.612	68.4230	198.4304	- 114.6506
448.15	60.9483	40.9195	11.638	60.607	69.7200	202.4805	- 103.2100
498.15	61.8479	42.8149	12.921	63.277	71.0380	206.1540	- 91.5872
548.15	62.7726	44.5847	14.196	65.682	72.3810	209.5222	- 79.7553
598.15	63.7265	46.2541	15.461	67.865	73.7534	212.6392	- 67.7361
648.15	64.7139	47.8357	16.717	69.862	75.1508	215.5513	- 55.5328
698.15	65.7306	49.3503	17.964	71.700	76.5776	218.2876	- 43.1749
748.15	66.7808	50.7979	19.202	73.400	78.0294	220.8734	- 30.6593
798.15	67.8603	52.1954	20.431	74.980	79.5106	223.3294	- 18.0103
848.15	68.9732	53.5468	21.651	76.454	81.0210	225.6682	- 5.2344
898.15	70.1155	54.9276	22.862	77.834	82.5607	227.9067	+ 7.5956

表4 不同温度下 H° , S° 及相应的 $\Delta G^{\circ a}$

a) *H* △ *G*^o的单位为 kJ·mol⁻¹, *S* 的单位为 J·mol⁻¹·K⁻¹, △ *H*^o_e = -182.3649 kJ·mol⁻¹.

表 4 结果表明,随体系温度升高,UOH₂(s)生成 反应的自由能 Δ*G*[∞]逐渐增大,从热力学角度来看,温 度降低有利于铀水反应向右进行,温度升到 898K 左 右时,*E4*(UOH₂)的生成反应不能自发进行,相反其 逆过程将使得 UOH₂分解.

4.结 论

用 B3LYP 和 MP2 方法计算得到 U-H₂O 体系的 6 种相对稳定异构体的能量、几何参数、振动频率和 电性质等.两种方法的计算结果基本一致,表明在不 同的计算水平得到的结果可信.由能量、频率分析和 总原子电荷分析得知,铀总是倾向于与氧结合而形 成相对稳定构型.我们对铀原子直接与水分子中氧 原子键合的 C₂,构型 UOH₂(⁵A₁)的热力学性质进行 了理论计算.研究结果表明,低温有利于铀和水蒸汽 的反应产物的稳定存在.本文中铀原子直接与水分 子中氧原子键合形成 C₂,构型 UOH₂(⁵A₁)的结果与 文献观点符合,较为合理地反映实验事实,因此这种 近似处理方法是合理的.该结果为进一步实验研究 提供了理论基础.

- [1] Winner K , Colmenares C A and Smith R L 1987 J. Surf. Sci. 183
 67
- [2] Ritchie A G 1984 J. Nucl. Mater. 120 143
- [3] Allen G C et al 1984 J. Chem. Soc. Faraday Trans. II 80 991
- [4] McGillivray G W 1994 J. Nucl. Mater. 208 81
- [5] Meng D Q et al 2001 Acta Phys. Sin. 50 1268(in Chinese)[蒙大桥等 2001 物理学报 50 1268]
- [6] Hay P J et al 1998 J. Chem. Phys. 109 3875
- [7] Gouder T et al 1992 J. Surf. Sci. 264 354
- [8] Jiang G , Xie H P , Tan M L and Zhu Z H 2000 Acta Phys. Sin . 49

665(in Chinese] 蒋 刚、谢洪平、谭明亮、朱正和 2000 物理学报 49 665]

- [9] Japan. Chem. Soc. 1984 Chem. Rev. [] 608 (in Japanese)
- [10] Rodney D 1993 J. Chem. Phys. 98 3690
- [11] Wang H Y 1999 PhD Thesis Sichuan University p39 (in Chinese)
 [王红艳 1999 博士学位论文 四川大学 第 39页]
- [12] Xue W D *et al* 2002 *Acta Phys*. *Sin*. **51** 2480(in Chinese] 薛卫 东等 2002 物理学报 **51** 2480]
- [13] Zhu Z H et al 1998 J. Atomic Molecular Phys. 15 435(in Chinese) [朱正和等 1998 原子分子物理学报 15 435]

- [14] Liang Y J and Che Y C 1993 Handbook of Thermodynamic Data of Inorganic Substance(Shenyang: Northeast University Press)p33& in Chinese J 梁英教、车荫昌 1993 无机物热力学数据手册(沈 阳 :东北大学出版社)第 338页]
- [15] Angus S, Armstrong B and Reuck K M 1976 International Thermodynamic Tables of the Fluid State Carbon Dioxide(Oxford : Pergamon)p108

The thermodynamical calculations of uranium-water vapor system

Xiong Bi-Tao¹) Meng Da-Qiao¹) Xue Wei-Dong²) Zhu Zheng-He²) Jiang Gang²) Wang Hong-Yan²)

¹) (China Academy of Engineering Physics, Mianyang 621900, China)

²⁾(Institute of Atomic and Molecule Physics, Sichuan University, Chengdu 610065, China)

(Received 12 June 2002 ; revised manuscript received 26 November 2002)

Abstract

In this paper, we study the relative stable molecular structures of uranium-water vapor system. For the uranium atom were used the relativistic effective core potential and contracted valued basis sets (6s5p2d4f)[3s3p2d2f], and for oxygen and hydrogen atoms were used $6-311G^{**}$ basis sets. We obtain the electronic state, geometric structure, energy, harmonic frequency, mechanical property, etc. of these six quintuple relative stable structures. It indicated that the first step of uranium-water vapor reaction is the interaction of uranium and oxygen atoms. The thermodynamical stability of $UOH_2({}^5A_1)$ was calculated and its disassociation Gibbs free energy ΔG° decreased with increasing temperature. The result showed that low temperature favoured its existence.

Keywords : density functional theory , B3LYP , molecule structure , thermodynamical function PACC : 3120E , 3130 , 3420 , 3520