电荷对 Cu₂^{*n* *(*n* = 0 ,1 ,2)分子离子的 势能函数和能级的影响 *}

毛华平12) 王红艳1; 唐永建3) 朱正和1) 郑少涛3)

1(四川大学原子与分子物理所,成都 610065)
 ²(重庆三峡学院化学系,万州 404000)
 ³(中国工程物理研究院,綿阳 621900)
 (2003年4月9日收到 2003年5月8日收到修改稿)

用密度泛函 B3LYP /LANL2DZ 方法对 Cu₂^{**}(n = 0, 1, 2)分子离子进行理论研究.结果表明:Cu₂,Cu₂⁺,Cu₂⁻, Cu₂²⁻能稳定存在 基电子状态分别是: $\Sigma_g^{*}(Cu_2)$, $\Sigma_g^{*}(Cu_2^{+})$, $\Sigma_u^{*}(Cu_2^{-})$, $\Sigma_g^{*}(Cu_2^{2-})$,Cu₂ 和 Cu₂²⁻的势能函数呈 明显的'火山态'型.导出了相应的分子离子的解析势能函数、光谱数据和力常数,而 Cu₂²⁺不能稳定存在;同时讨 论了电荷对势能函数和能级的影响.

关键词:分子离子,密度泛函,势能函数,能级 PACC:3110,3120D,3420

1.引 言

过渡金属团簇特别是 Cu ,Ag ,Au 团簇 ,由于其 独特的物理性质被广泛应用于催化反应和材料吸附 中.铜原子的电子组态为 3d¹⁰4s¹ 作为最简单的金属 团簇 Cu, 人们研究得很多. 早在 1956 年 Drowart 和 Honig 通过 Knudsen 质谱法估算出了 Cu, 的结合 能1] 后来有许多人都在重复做这一工作2-5] 其中 Hilpert 测量值最精确,作为文献值被多次引用^[6]. Delley 采用单电子的局域密度泛函方法研究了 Cu, 的键长和键能^[7],Calaminic 采用全电子方法计算和 比较了 Cu 小团簇和 Na Li 小团簇的极化率^[8]. 但是 对 Cu_{n}^{*} (n = 0, 1, 2)分子离子的结构和势能函数进 行系统的研究,特别是结合成键轨道能级,未见报 道.本文采用密度泛函 DFT 方法研究了电荷对 Cu2^{n±}(n = 0,1,2)分子离子结构,成键轨道能级的 影响,为进一步研究金属混合团簇的能带结构和制 备混合/掺合体系的团簇纳米材料提供参考.

2. Cu₂ⁿ[±](*n* = 0,1,2)分子离子的离解 极限

分子势能函数对应一定的电子状态,为了准确 地表达体系的势能函数,需首先确定正确的离解极 限和可能的电子状态,Cu原子的基电子状态为²Sg, 根据原子分子反应静力学原理⁹,由分离原子法可 构造出 Cu₂ 可能的电子状态.由两个相同核构成的 分子属于 $D \propto h$ 群,将原子群的表示分解为 $D \propto h$ 群 的表示,再直积和约化可得到 $D \propto h$ 群的不可约表 示,从而得到 Cu₂ 分子可能的电子状态.²Sg 分解为 $D \propto h$ 的表示为

$$^{2}Sg \rightarrow ^{2}\Sigma^{+}g$$
,
从而组合直积为

$$^{2}\Sigma^{+}g \otimes ^{2}\Sigma^{+}g = {}^{1}{}^{3}\Sigma^{+}g$$

一重态,三重态均为 Cu_2 分子可能的电子状态.用 B3LYP/LANL2DZ 密度泛函方法对 Cu_2 分子可能电 子状态进行优化,结果表明 Cu_2 分子的基电子状态 为 $X^{-1}\Sigma_g$.而在 Cu_2 分子可能的电子状态中含有 $^{-1}\Sigma_g$ 态 因此, Cu_2 ($X^{-1}\Sigma_g$)可按分离原子法指出的方式离 解 Q^2S_g 为 Cu 原子的基电子状态,符合能量最优

^{*} 国家自然科学基金(批准号:10276028)资助的课题.

[†]通讯联系人 :E-mail :Wanghyxx@163.net

原理 ,故确定出 Cu₂(X¹Σg)的离解极限为

 $Cu_2(X^{-1}\Sigma_g) \rightarrow Cu(^{-2}S_g) + Cu(^{-2}S_g).$ 同理,可以推出 Cu_2^{--} , Cu_2^{+-} , Cu_2^{-2-} 和 Cu_2^{-2+} 的离解极限分别为

$$Cu_{2}^{-}(X^{2}\Sigma u) \rightarrow Cu(^{2}Sg) + Cu^{-}(^{1}Sg),$$

$$Cu_{2}^{+}(X^{2}\Sigma g) \rightarrow Cu(^{2}Sg) + Cu^{+}(^{1}Dg),$$

$$Cu_{2}^{-}(X^{1}\Sigma g) \rightarrow Cu^{-}(^{1}Sg) + Cu^{-}(^{1}Sg),$$

$$Cu_{2}^{2+}(X^{1}\Sigma u) \rightarrow Cu^{+}(^{1}Dg) + Cu^{+}(^{1}Dg).$$

3. Cu₂ⁿ*(n = 0,1,2)的分析势能函数, 光谱数据和力常数

用 B3LYP/LANL2DZ 密度泛函方法对 Cu₂^{**} 分 子离子可能的电子状态分别进行优化,确定其基电 子状态,然后单点计算基态的不同核间距的能量,绘 出它们的势能曲线(图 1—图 5),采用最小二乘法, 将计算得到的 Cu₂^{**}的不同核间距的势能值拟合为 恰当的势能函数解析式.

图 2 Cu₂⁺ 的势能曲线

图中的点和线分别为单点计算值和拟合值,图 1 和图 2 中的势能曲线均具有对应于分子稳定平衡 结构的极小点,说明 Cu₂ 分子和 Cu₂ 分子离子能稳 定存在,其势能函数可以拟合为 Murrell-Sorbie^[10]函数形式

 $V = -D_{e}(1 + a_{1}\rho + a_{2}\rho^{2} + a_{3}\rho^{3})\exp(-a_{1}\rho),$ 式中 $\rho = R - R_{e}$, R 为核间距, R_{e} 为平衡核间距.图 3 和图 4 分别为 Cu_{2}^{-} 和 Cu_{2}^{2-} 的势能曲线, 该曲线呈现 "火山态",可以采用 Zhu-Wang^[11]势能函数形式拟合:

$$V = \frac{a_1}{\rho - a_2} - \frac{a_3}{(\rho + a_4)^2}$$

式中 $\rho = R - R_e$, *R* 为核间距, R_e 为平衡核间距. 图 5 中 Cu₂²⁺ 的势能曲线呈现完全排斥态.

根据力常数,光谱数据与势能函数各参数之间 的关系^[9,11]可以计算 Cu₂^{*±} 分子离子的力常数和光 谱数据(表1、表2),Cu₂ 的光谱数据与文献 12 **]**吻合 较好.

衣! Cuo 和 Cuo 的胜灯穷能凶敛参数、刀吊数和	↓尤谱釵捉
-----------------------------	-------

*	$R_{\rm e}$	$D_{\rm e}$	a_1	a_2	a_3	f_2	f_3	f_4	ω_{e}	α _e	$\omega_{\rm e} x_{\rm e}$	$B_{ m e}$
23	/nm	/eV	$/\mathrm{nm}^{-1}$	$/\mathrm{nm}^{-2}$	$/\mathrm{nm}^{-3}$	$/aJnm^{-2}$	$/aJnm^{-3}$	/aJnm ⁻⁴	$/\mathrm{cm}^{-1}$	$/\mathrm{cm}^{-1}$	$/\mathrm{cm}^{-1}$	$/\mathrm{cm}^{-1}$
Cu ₂ ($X^{1}\Sigma g^{+}$)	0.2260	2.883	16.65	15.89	583.9	142.7	- 6615	238665	276.1	0.00060	1.266	0.1048
文献 12]	0.2220	2.046	8.069	30.56	92.89				264.6	0.00061	1.025	0.1087
Cu ₂ +($X^2\Sigma g^+$)	0.2417	2.929	23.52	135.8	698.4	132.2	- 5184	192788	265.7	0.00048	0.7341	0.1048

注: $l_{aJ} = 1 \times 10^{-18} J.$

表 2 Cu₂ 和 Cu₂²⁻的解析势能函数参数、力常数和光谱数据

团簇	R _e /nm	a_1 /eV · nm	a_2 /nm ⁻¹	a_3 eVnm ⁻²	a_4 /nm	f_2 /aJnm ⁻²	f_3 aJnm ⁻³	f_4 /aJnm ⁻⁴	$\omega_{\rm e}$ /cm ⁻¹	α_e /cm ⁻¹	$\omega_{\rm e} x_{\rm e}$ /cm ⁻¹	$B_{\rm e}$ /cm ⁻¹
Cu $_2^-$ ($X^2\Sigma u$)	0.2400	11.36	- 1.155	54.10	2.323	0.5772	- 3.062	14.63	175.6	0.00094	1.430	0.092
$Cu_2^{2-}(X^{-1}\Sigma_g)$	0.2500	22.22	- 1.377	74.08	2.330	0.3117	- 1.794	8.358	129.0	0.00127	1.885	0.085

4. 分子离子的能级分布

金属原子形成的双原子分子或离子可以看成是 最简单的金属原子团簇,金属原子或离子的价电子 在凝聚态金属中将形成公有化电子,一般常视为自 由电子,它们的电子能谱为连续的能带,但如其大小 缩小到微米或纳米级的原子团簇时其电子不能视为 无限自由的,而是受边界约束其能谱不是连续能带, 而是具有分裂能级的特征,可吸收光子由低能级跃 迁到高能级,能级间隔随原子团簇所带电荷的多少 而变化,因此研究原子团簇的能级分布显得十分重 要.我们采用 B3LYP/LANL2DZ 方法,研究了 Cu₂*(*n* =0,1,2)的能级分布情况(表3和图6).

表 3 Cu2^{n±}(n=0,1,2)的能级参数

分子离子	F /a u	$E_{\rm LUMO}/{\rm eV}$	$E_{\rm MOMO}/{\rm eV}$	E /or	电荷分布		
	$E_t/a.u.$			$L_{\rm gap}/ev$	Cu(1)	Cu (2)	
Cu ₂ ²⁺	-	- 0.79016	- 0.66790	0.12226	1.00000	1.00000	
Cu_2^+	- 391.96874	- 0.45044	- 0.29307	0.15737	0.500000	0.500000	
Cu ₂	- 392.30768	- 0.20542	- 0.08583	0.11959	0.00000	0.00000	
Cu ₂	- 392.33241	0.03251	0.00293	0.08042	- 0.500000	- 0.500000	
Cu_2^-	- 392.21398	0.15808	0.21699	0.05894	- 1.00000	- 1.00000	

最高占据轨道的能量可近似作为原子团簇的费 米能级,最高占据轨道(HOMO)能量与最低空轨道 (LUMO)能量的差值作为能隙,从图6可看出,随着 负电荷数的增加,费米能级逐渐增大。

5.1. 电荷对分子离子稳定性的影响

原子离子的正价数可以很高,例如,Au原子可 电离为Au⁵²⁺,U原子甚至可以电离为裸核.然而,稳 定的三,四价以上正电荷分子离子很少存在,这与分 子内正电荷对之间的排斥有关.通常双原子分子或 分子离子的势能曲线有一个势能极小的稳定态(图 1和图2),而图3和图4势能曲线同时出现势能极 小与极大.势能极小是核排斥与化学键力平衡所致; 势能极大是化学键力和核的排斥力与负电荷之间的 库仑排斥力平衡所致.图5为Cu²⁺的势能曲线,该 曲线仅具有对应于不稳定排斥态的排斥支,无平衡 核间距和平衡能量.因为Cu²⁺的离解通道为Cu⁺ +Cu⁺,Cu⁺和Cu⁺除了化学键力和核排斥力外,还 存在正电荷对的库仑排斥力,该曲线说明了库仑 排斥力与核的排斥力之和总是大于 Cu^+ 与 Cu^+ 的化 学键力,故其势能曲线是完全排斥的,即 Cu_2^{2+} 分子 离子不能稳定存在.按以下顺序 $Cu_2^{2+} \rightarrow Cu_2^+ \rightarrow Cu_2^ \rightarrow Cu_2^- \rightarrow Cu_2^{2-}$,分子离子的总电子数逐渐增加,极 小点的平衡距离(Cu_2^{2+} 无平衡距离)逐渐增加,极小 点的能量也逐渐增加,分子离子中库仑排斥力逐渐 增大,因此分子或分子离子稳定顺序为 $Cu_2^+ > Cu_2^ > Cu_2^- > Cu_2^{2+}$.

5.2. 电荷对能级的影响

用 B3LYP/LANL2DZ 方法优化得到 Cu⁺ Cu₂ Cu⁺ 和 Cu₂²⁻ 分子离子的平衡间距分别为 0.2222nm, 0.2260nm, 0.2389nm和 0.2508nm, 其分子或分子离子 的体积分别为 34.33cm³/mol,46.42cm³/mol,53.75cm³/ mol 和 66.23cm³/mol ,表 3 列出了 Cu,^{* ±} 分子离子的最 高占据轨道(HOMO)和最低空轨道(LUMO)的能级以 及两者之间的能隙差(E_{sm})最高占据轨道的能级反 映了分子和分子离子失去电子能力的强弱 HOMO 能 级越高,该物质越易失去电子,而 LUMO 能级在数值 上与分子的电子亲和势相当 LUMO 能级越低 该物 质越易得到电子.从表 3 可看出,Cu,的 HOMO 能级 为负值,说明 Cu, 不易失去电子形成 Cu⁺ 或 Cu,²⁺, 而 LUMO 为负值 ,Cu₂ 比较易得到电子形成 Cu₇ 和 Cu,²⁻.HOMO 与 LUMO 能隙差的大小反映了电子占 据轨道向空轨道发生跃迁的能力 在一定程度上代表 了分子参与化学反应的能力 ,从表 3 中可得出 Cu,、 Cu⁺ 相对稳定 Cu⁻ 和 Cu²⁻ 具有较强的化学反应活 性 此结果与前面的势能曲线分析一致,

- [1] Drowart J and Honig R E 1956 Chem. Phys. 25 581
- [2] Drowart J and Honig R E 1957 Phys. Chem. 61 980
- [3] Schissel P 1957 Chem. Phys. 26 1276
- [4] Ackerman M , Stafford F E and Drowart J 1960 Chem. Phys. 133 1784
- [5] Hilpert K 1979 Phys. Chem. 83 161
- [6] Gingerich K A ,Shim I , Gupta S K and Kingcade J E 1985 Jr. Surf. Sci. 156 495
- [7] Delley B , Ellis D E and Freeman A J 1983 Phys. Rev. B 27 2132
- [8] Calaminic P , Köster A M and Vela A of 2000 Chem. Phys. 113 2199

- [9] Zhu Z H 1996 Atomic and Molecular Reaction Statics(Beijing :Science press) p30 78 (in Chinese)[朱正和 1996 原子分子反应 静力学(北京 科学出版社)第 30 – 78 页]
- [10] Li Q et al 2001 Chin. Phys. 10 501
- [11] Wang H Y and Zhu Z H 2003 Chin. Phys. 12 154
- [12] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV Constants of Diatomic Molecules (New York Van Nostrand Reinhold Company) p198

40

The effects of charge on the potential energy function and energy levels for $Cu_2^{n\pm}(n=0, 1, 2)^*$

Mao Hua-Ping¹⁾²⁾ Wang Hong-Yan^{1)†} Tang Yong-Jian³⁾ Zhu Zheng-He¹⁾ Zheng Sao-Tao³⁾

¹ (Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China)

²) (Department of Chemistry, Chongqing Three – georges College, Wanzhuo 404000, China)

³ (China Academy of Engineering Physics, Mianyang 621900, China)

(Received 9 April 2003; revised manuscript received 8 May 2003)

Abstract

A theoretical study on $Cu_2^{n\pm}$ (n = 0, 1, 2) using density functional method (B3LYP/LANL2DZ) shows that Cu_2, Cu_2^+ , Cu_2^-, Cu_2^{2-} are stable. Electronic ground states are ${}^{1}\Sigma g^{+}$ (Cu_2) ${}^{2}\Sigma g^{-}$ (Cu_2^+) ${}^{2}\Sigma u^{-}$ (Cu_2^-) and ${}^{1}\Sigma g^{-}$ (Cu_2^{2-}) and their force constants and spectroscopic data have been worked out. The potential energy curves of Cu_2^- and Cu_2^{2-} have both minimum and maximum, which are the so-called energy trapped "molecules while Cu_2^{2+} is unstable. At the same time, the effect of charge on the potential energy function and energy levels for $Cu_2^{n\pm}$ (n = 0, 1, 2) are discussed.

Keywords : molecular ions , potentional energy function , density functiony theorey , energy level PACC : 3110 , 3120D , 3420

 $^{^{*}}$ Project supported by the National Natural Science Foundation of China (Grant No. 10276028).

[†] Corresponding author E-mail Wanghyxx@163.net