氦原子单激发和双激发态里德伯系列 的相对论能量计算*

吴晓丽† 秉聪 刘义东

(北京理工大学理学院物理系 北京 100081) (2003年4月9日收到 2003年5月8日收到修改稿)

采用 Rayleigh-Ritz 变分方法和组态相互作用方法,并进一步考虑相对论修正和质量极化效应,研究了氦原子单激发和双激发态里德伯系列的相对论能量,计算结果与其他理论和实验符合得很好.此外,还计算了该系统之间的振子强度、辐射跃迁率及跃迁波长,振子强度三个规范的计算结果显示出很好的一致性.

关键词:氦原子,变分计算,振子强度,辐射跃迁率 PACC:3150,3130J

1.引 言

氦原子作为最简单的多电子原子 ,是研究多体 问题的典型系统,但是即使是非相对论量子力学也 不能给出氦原子的精确解,因此氦原子为原子物理 和量子力学中的各种近似技术提供了一个理想的检 测平台,无论是实验光谱的测量还是理论研究,氦原 子的研究都是原子物理和量子力学中的基本问题. 20 年来 相关的实验和理论研究不断取得进展,一 方面 很多激光光谱实验对氦原子系统的辐射跃迁 波长的测量都达到了非常高的精度¹⁻⁶¹.另一方面, 两电子原子能级的理论计算一直是理论工作者的兴 趣所在[7-16] ,各种不同的理论方法在氦原子的研究 中得到了应用,比如变分方法^{7-10]},有限元方法^{11]}, 关联超球谐函数方法^{12]}以及超球密耦方法^{13,14]}等. 近来 Drake 等人^[17]使用含有双 Hylleraas 基的变分方 法 系统地研究了氦原子的单激发态结构和光谱 给 出了国际上公认的与实验符合得最好的结果,但是, 至今国际上对于氦原子高双激发态的报道仍然较 少,有待进一步的理论研究。

本文采用 Rayleigh-Ritz 变分法和组态相互作用 方法计算了氦原子单激发和双激发态里德伯系列的 非相对论能量,并考虑相对论修正和质量极化效应, 进一步获得了相对论能量值.我们还计算了该系统 之间的振子强度、辐射跃迁率和跃迁波长,通过与实验数据和 Drake 等人^[17]关于氦原子单激发态的精确结果对比,验证了本文所使用方法的有效性.本工作进一步研究了氦原子双激发态里德伯系列,我们的理论计算数据对其他的理论和实验工作将是有意义的.

2. 理论与方法

在 LS 耦合表象中,氦原子的非相对论 Hamiltonian 为

$$H_0 = \sum_{i=1}^{2} \left[-\frac{1}{2} \nabla_i^2 - \frac{2}{r_i} \right] + \frac{1}{r_{12}}.$$
 (1)

闭通道波函数为

 $\Psi_{b}(1\ 2) = A \sum_{i} C_{i}\phi_{i(i),k} (R) Y_{ki}^{M} (\Omega) \chi_{ss_{2}} (2)$ 其中 A 是反对称算符 径向波函数采用 Slater 型

$$\phi_{n(i),n(i)}(R) = \prod_{j=1}^{2} r_{j}^{n_{j}} \exp(-\alpha_{j}r_{j}), \quad (3)$$

轨道角动量部分为

$$Y_{\mathcal{K}_{i}}^{LM}(\Omega) = \sum_{m_{j}} l_{1} l_{2} m_{1} m_{2} + LM \prod_{j=1}^{2} Y_{l_{j}m_{j}}(\Omega_{j}),$$
(4)

其中

$$Y_{lm}(\theta,\varphi) = (-1)^{m} \left[\frac{(2l+1)(l-m)!}{4\pi(l+m)!} \right]^{1/2}$$

^{*} 国家自然科学基金(批准号:10074006)和教育部博士点基金(批准号:20020007036)资助的课题.

[†]E-mail :xlwu@bit.edu.cn

× P_l^m ($\cos\theta$)exp($im\varphi$). (5) 对每一个角度分波 l_1 , l_2]有一组不同的 α_j (j = 1, 2).非相对论能量 E_b 由 Rayleigh-Ritz 变分法,通过 对线性参数 C_i 和非线性参数 α_j 变分优化能量极小 确定.

为进一步获得高精度的能量计算值,还必须考虑相对论修正和质量极化效应.在 Breit-Pauli 近似下相对论能量微扰算符包括动能修正项 H_k ,Darwin 项 H_D 、电子与电子相互作用项 H_e 以及轨道与轨道相互作用项 H_{e} :

$$H_{\rm k} = -\frac{1}{8c^2} \sum_{i=1}^{2} \boldsymbol{p}_i^4 , \qquad (6)$$

$$H_{\rm D} = \frac{\pi}{c^2} \sum_{i=1}^{2} \delta(\mathbf{r}_i), \qquad (7)$$

$$H_{\rm ee} = -\frac{\pi}{c^2} \left(1 + \frac{8}{3} s_1 \cdot s_2 \right) \delta(r_{12}), \qquad (8)$$

$$H_{\infty} = -\frac{1}{2c^2} \frac{1}{r_{12}} \left[\boldsymbol{p}_1 \cdot \boldsymbol{p}_2 + \frac{\boldsymbol{r}_{12}(\boldsymbol{r}_{12} \cdot \boldsymbol{p}_1) \cdot \boldsymbol{p}_2}{r_{12}^2} \right].$$
(9)

质量极化算符为

$$H_{\rm mp} = -\frac{1}{M} \nabla_1 \cdot \nabla_2 \quad , \qquad (10)$$

其中 M 是核质量,常数 c = 137.0360, s_i 和 p_i 分别 是第i个电子的自旋角动量和动量.除质量极化算 符计算到无穷级外,其他的相对论微扰算符计算到 一级,则相对论能量修正为

 $E_{\rm rel} = \Psi_{\rm b} | H_{\rm k} + H_{\rm D} + H_{\rm ee} + H_{\rm oo} | \Psi_{\rm b} . (11)$ 质量极化效应为

$$E_{\rm mp} = \Psi_{\rm b} | H_{\rm mp} | \Psi_{\rm b} . \qquad (12)$$

为与 Duan^[18]和 Hesse^[19]等人的理论数据进行比较, 本文的非相对论能量包括了质量极化效应,即 E_{norrel} = E_b + E_{mp} .进一步考虑相对论效应后,总能量为 $E_{total} = E_{norrel} + E_{rel}$.

辐射跃迁率及振子强度运用以下公式计算

$$A_{\text{sptot}}(\gamma'L',\gamma L) = \frac{4\omega^3}{3c^3} \frac{1}{2L+1} | \gamma'L' \parallel \boldsymbol{D} \parallel \gamma L \mid^2,$$
(13)

$$f(\gamma L \rightarrow \gamma' L') = \frac{2}{3} \frac{\omega}{2J+1} | \gamma' L' \parallel \boldsymbol{D} \parallel \gamma L \mid^2,$$
(14)

其中振子强度运用三种规范来计算:

$$\gamma'L' \parallel \sum_{i} r_i \parallel \gamma L$$
 (长度规范), (15)

$$(E' - E)^{-1} \gamma'L' \parallel \sum_{i} \nabla_{i} \parallel \gamma L$$
 (速度规范),
(16)

(
$$E' - E$$
)² $\gamma'L' \parallel \sum_{i} \nabla_{i} V \parallel \gamma L$ (加速度规范),

(17)

振子强度三种规范的计算结果在理论上应该是一致 的,但如果波函数不够精确,它们会出现差别,因此 通过比较振子强度三种规范的计算结果的一致性程 度,可以判定波函数的精确程度.

3. 结果与讨论

本文采用多组态相互作用方法及 Rayleigh-Ritz 变分法对氦原子的十个里德伯系列的能量进行了计 算.它们是 $1sns^{13}S^{e}$, $1snp^{13}P^{e}$, $1snd^{13}D^{e}$, $2pnp^{13}P^{e}$ 和 $2pnd^{13}D^{e}$ ($n \le 6$).表 1 给出了这些态的非相对 论能量和相对论能量的计算值,并与其他理论和实 验数据进行了比较.由于两电子之间的关联效应较 大, 波函数中需要包括所有重要的角动量自旋耦合, 从而获得精确的能量值.在我们的计算中,能量贡献 大于 1.0×10^{-6} a.u.的角度自旋分波[l_1 , l_2 【 l_1 , l_2 ≤ 9)均被包含在波函数中.其他 l_1 , $l_2 > 9$ 的角度自 旋分波因为对能量的贡献均小于 1.0×10^{-6} a.u.而 被忽略.

从表1可以看出,本文计算的非相对论能量低 于 Duan^[18]和 Hesse^[19]的理论结果.相对于 Duan^[18]的 计算结果,本文的能量改进范围从20µa.u.到 2401µa.u. 相对于 Hesse^{19]}的计算结果 本文的能量 改进范围从 73µa.u.到 321µa.u..这是由于本工作 中波函数采用 Slater 型基函数,并考虑了总波函数 的正交、归一化要求 总波函数含有线性参数数目从 85 到 253 角度自旋分波数从 5 到 10 对应不同的角 度自旋分波有一组不同的非线性参数集 这些线性 和非线性参数由变分优化能量极小获得 而且质量 极化计算到无穷极 所以本工作在计算能量方面可 以达到很高的精度,从表1还可以看出,沿着每一个 1snl¹³S^e;¹³P^o和¹³D^e 里德伯系列,本文对 Duan^[18] 的计算结果的改进量随着 n 增加而增大. 例如 . 在 1sns 1Se 系列中,本文对 1s2 1Se 态的改进量是 321µa.u.,对1s4s¹S^e态的改进量是2353µa.u..这说 明我们的理论方法在计算高位激发态方面显示出优 越性.

表 1 氦原子里德伯系列 1_{sn} (n = 1-6)和 2_{pn} (n = 2-6)激发态的非相对论能量 E_{nonell} a.u.]相对论修正 E_{rell} μ a.u. 和相对论能量项值 eV]

		$- E_{\text{nonrel}}$		F	相对论能量项值			
n	本工作	Duan ^[18]	Hesse ^[19]	- <i>L</i> _{rel}	本工作	Drake ^[17]	实验值 ^[20 21]	
(1)lsns ¹ S ^e								
1	2.90362594	2.90330456	2.90330456	101.90				
2	2.14594631	2.14567858	2.14567859	108.05	20.6165	20.6158	20.616	
3	2.06125255	2.06095295	2.06098908	106.87	22.9208	22.9203	22.92	
4	2.03357076	2.031218		106.59	23.6740	23.6736	23.67	
5	2.02116590			106.50	24.0115	24.0112	24.01	
6	2.01455479	9		106.43	24.1914	24.1912	24.19	
(2) lsns ³ S ^e								
2	2.17522650	2.17493019	2.17493019	115.15	19.8196	19.8196	19.820	
3	2.06868760	2.0683993	2.06840524	108.82	22.7185	22.7185	22.72	
4	2.03651012	2.035420		107.40	23.5940	23.5940	23.59	
5	2.02261791				23.9720	23.9720	23.97	
6	2.01537442			106.68	24.1691	24.1690	24.17	
			(3)18	$snp^{-1}P^{o}$				
2	2.12383042	2.12354564	2.12354565	108.49	21.2182	21.2180	21.218	
3	2.05513864	2.05483507	2.05486266	107.13	23.0872	23.0870	23.09	
4	2.03106509	2.029143		106.76	23.7421	23.7421	23.74	
5	2.01990028			106.54	24.0459	24.0458	24.05	
6	2.01383010			106.50	24.2111	24.2110	24.21	
(4)lsnp ³ P ^o								
2	2.13317111 2.13288064 2.13288064		2.13288064	104.65	20.9641	20.9641	20.964	
3	2.05807565	2.05778447	2.05780149	105.98	23.0073	23.0071	23.01	
4	2.03231585	2.0307414		106.31	23.7081	23.7079	23.71	
5	2.02053403			106.31	24.0287	24.0282	24.03	
6	2.01414973			106.36	24.2024	24.2008	24.20	
(5)2pnp ¹ P ^e								
3	0.58024446	0.58016577	0.58016577	17.09	63.2180		63.219 ^a	
4	0.54004043	0.5399670	0.53996718	16.15	64.3119			
5	0.52417812			15.84	64.7435			
6	0.51620711			15.70	64.9604			
(6)2pnp ³ P ^e								
2	0.71049137	0.71039665	0.71039646	17.92	59.6743		59.674 ^a	
3	0.56780725	0.5677868	0.56773387	16.16	63.5564		63.555ª	
4	0.53586187			15.80	64.4256			
5	0.52224904			15.67	64.7960			
6	0.51515377			15.61	64.9890			

			表	1(续)				
		– E _{nonrel}			相对论能量项值			
n	本工作	Duar ^[18]	Hesse ^[19]	$- L_{\rm rel}$	本工作	Drake ^[17]	<u>实验值^[20 21]</u>	
			(7)1	$\mathrm{s}n\mathrm{d}^{-1}\mathrm{D}^{\mathrm{e}}$				
3	2.05562014	2.05530605		106.53	23.0741	23.0741	23.07	
4	2.03127813	2.0288772		106.48	23.7364	23.7363	23.74	
5	2.02001482			106.45	24.0428	24.0428	24.04	
6	2.01389762			106.43	24.2092	24.2093	24.21	
			(8)1	snd ³ D ^e				
3	2.05563523	2.0553229		106.52	23.0737	23.0737	23.07	
4	2.03128719	2.0289701		106.48	23.7361	23.7361	23.74	
5	2.02001993			106.45	24.0427	24.0427	24.04	
6	2.01390066			106.43	24.2092	24.2092	24.21	
			(9)2 ₁	$pnd^{-1}D^{o}$				
3	0.56380137	0.5637256		14.73	63.6655		63.673ª	
4	0.53457577	0.5345003		15.31	64.4606			
5	0.52164782			15.44	64.8124			
6	0.51481196			15.49	64.9983			
			(10)2	$pnd^{3}D^{0}$				
3	0.55932398	0.5592482		15.51	63.7873		63.787 ^a	
4	0.53267143	0.5325974		15.55	64.5124		64.514 ^a	
5	0.52070117			15.56	64.8381		64.834 ^a	
6	0.51428288			15.55	65.0127		65.019 ^a	

a.文献 21].

为进一步改进能量值 本文还采用一级微扰理 论计算了相对论效应,相对论微扰算符包括动能修 正项、Darwin 项、电子与电子相互作用项、轨道与轨 道相互作用项.为便于与 Drake^[17]的计算结果以及 实验数据²⁰²¹进行比较 表 1 将本工作计算所得的 以 a.u. 为单位的能量值按照 1a.u. = 27.20767eV 换 算为以eV为单位的能量项值,该能量项值是相对 于 $1s^{21}S^{e}$ 基态的能量,其中氦原子 $1s^{21}S^{e}$ 基态的能 量取 79.0056eV^[20]. Drake^[17]的工作中包含了 QED 修 正和高阶相对论修正且引入了双 Hylleraas 基 ,因此 Drake^[17]的单激发态计算结果是目前国际上公认的 最为精确的结果,由于对于核电荷数相对小的氦原 子 这些高阶相对论修正项对能量的改进很小 表 1 显示出我们的计算结果与 Drake^[17]的理论结果和实 验数据^{2021]}均符合得很好,也表明本工作所采用的 方法在两电子体系的理论计算中可获得足够高的精 度.尽管 Drake^[17]采用的 Hylleraas 基的波函数可以 获得更精确的能量值,但因为其包含了两电子的关 联项 所以很难推广应用到更多电子的复杂原子 而

我们的变分方法可以很容易地应用于三电子和四电 子系统^[2-25].对于双激发态里德伯系列,由于在 Drake^[17]的文献中未查出相关的理论计算值,我们仅 与少量已有的实验数据进行了比较.从表1中可以 看出,我们的记算结果与实验值符合得很好,这些理 论数据对其他的理论和实验工作将是有意义的.

表 2 给出了利用波函数 Ψ_b 所计算的部分单激 发和双激发态里德伯系列之间的辐射跃迁率和振子 强度.从表 2 中可以看出 本文计算所得的振子强度 与 Drake^[17]的理论数据符合得很好.文献[17]中只 给出了一种规范的振子强度的计算结果,而我们同 时给出了用三种规范计算的振子强度的理论值.尽 管振子强度的加速度规范对于波函数的变化很敏 感,但我们用三种规范计算的振子强度仍显示出令 人满意的合理的一致性.这表明本工作采用的非相 对论波函数相当精确.本文进一步计算了这些激发 态之间的辐射跃迁波长并与实验数据^[20,21]进行了比 较,所有的误差均在 2%之内,这些计算结果对今后 的实验工作是有意义的.

表 2 氦原子里德伯系列的振子强度(f_1 , v_y , f_a)、辐射跃迁率 A(10^{10} s⁻¹)及跃迁波长(nm)

DT \ T	振子强度					辐射跃迁率	跃迁波长		
跃迁	f_1	$f_{\rm v}$	$f_{\rm a}$	∫ ^{[17}]	A_1	$A_{ m v}$	A _a	本工作	实验值 ^[20,21]
(1)1s ² ¹ S ^e →									
$1s2p \ ^{1}P^{o}$	0.2748893	0.2759139	0.2762388	0.2761647	0.5370870	0.5390889	0.5397237	58.439	58.433
1s3p ¹ P ^o	0.0736798	0.0732931	0.0705766	0.0734349	0.1704383	0.1695438	0.1632601	53.708	53.703
1s4p ¹ P ^o	0.0299965	0.0298003	0.0287355	0.0298629	0.0733821	0.0729022	0.0702974	52.226	52.221
1s5p ¹ P ^o	0.0151554	0.0151810	0.0149991	0.0150393	0.0380304	0.0380947	0.0376382	51.566	51.56 ^a
1s6p ¹ P ^o	0.0087183	0.0087606	0.0087185	0.0086277	0.0221789	0.0222865	0.0221795	51.214	
(2)1s2s ³ S ^e →									
$1s2p$ $^{3}P^{o}$	0.5390754	0.5390909	0.5386372	0.5390861	0.0030648	0.0030649	0.0030623	1083.302	1083.034
1s3p ³ P ^o	0.0638686	0.0643345	0.0708142	0.0644612	0.0028165	0.0028371	0.0031228	388.956	388.865
1s4p ³ P ^o	0.0261899	0.0256637	0.0223278	0.0257689	0.0017186	0.0016841	0.0014652	318.851	318.774
1s5p ³ P°	0.0125332	0.0120889	0.0043997	0.0124906	0.0009636	0.0009295	0.0003383	294.568	294.511
1s6p ³ P ^o	0.0063641	0.0050942	0.0023474	0.0069822	0.0005305	0.0004247	0.0001957	282.893	
(3)1s2p ⁻¹ P ^o →									
$1 \mathrm{s}3d^{-1} \mathrm{D}^{\mathrm{e}}$	0.7092479	0.7094355	0.7353923	0.7101641	0.0106031	0.0106059	0.0109939	668.062	667.815
$1 \mathrm{s4d}^{-1} \mathrm{D^e}$	0.1223166	0.1202277	0.1196907	0.1202704	0.0033666	0.0033091	0.0032943	492.360	492.193
$1 \mathrm{s5d}^{-1} \mathrm{D}^{\mathrm{e}}$	0.0433581	0.0431816	0.0426090	0.0432576	0.0015015	0.0014954	0.0014755	438.943	438.793
$1 \mathrm{s6d}^{-1} \mathrm{D^e}$	0.0208464	0.0209049	0.0202651	0.0209485	0.0008095	0.0008118	0.0007869	414.519	
(4)1s2p ³ P ^o →									
$1 \mathrm{s}3\mathrm{d}\ ^3\mathrm{D^e}$	0.6075318	0.6096440	0.6151899	0.6102252	0.0117306	0.0117714	0.0118785	587.743	587.562
$1 \mathrm{s4d}^3 \mathrm{D^e}$	0.1262883	0.1229637	0.1204582	0.1228469	0.0042107	0.0040999	0.0040164	447.282	447.148
$1 \mathrm{s5d} \ ^3 \mathrm{D^e}$	0.0478115	0.0469421	0.0453338	0.0432576	0.0019663	0.0019305	.0.0018644	402.742	402.619
$1 \mathrm{s6d}^3 \mathrm{D^e}$	0.0237038	0.0233876	0.0225335	0.0234692	0.0010831	0.0010687	0.0010297	382.079	381.961
(5)2p3p ¹ P ^e →									
$2p3d\ ^1D^o$	0.3881357	0.3882015	0.3824691		0.0003373	0.0003374	0.0003324	2770.980	
$2p4d\ ^1D^o$	0.0935542	0.0937164	0.0972129		0.0006270	0.0006281	0.0006515	997.801	
$2p5d\ ^1D^o$	0.0407756	0.0402503	0.0337517		0.0004499	0.0004441	0.0003724	777.668	
$2p6d\ ^1D^o$	0.0205797	0.0200226	0.0128168		0.0002831	0.0002754	0.0001763	696.426	
(6)2p ²³ P ^e →									
$2p3d\ ^3D^o$	0.4533521	0.4534068	0.4533637		0.0332872	0.0332912	0.0332881	301.449	301.37 ^a
$2p4d\ ^3D^o$	0.1391582	0.1387615	0.1359700		0.0141385	0.0140982	0.0138145	256.267	256. 1ª
$2p5d\ ^3D^o$	0.0621569	0.0620848	0.0614431		0.0071940	0.0071857	0.0071114	240.104	240.2ª
$2p6d\ ^3D^o$	0.0333749	0.0330892	0.0315845		0.0041285	0.0040931	0.0039070	232.250	231.9ª

a.文献 21].

- [1] Shiner D ,Dixson R and Zhao P 1994 Phys. Rev. Lett. 72 1802
- [2] Adams C S ,Riis E ,Ferguson A I and Rowley W R C 1992 Phys. Rev. A 45 R2667
- [3] Sansonetti C J and Gillaspy J D 1992 Phys. Rev. A 45 R1
- [4] Lichten W Shiner D and Zhou Z X 1991 Phys. Rev. A 43 1663
- [5] Sansonetti C J Gillaspy J D and Cromer C L 1990 Phys. Rev. Lett. 65 2539
- [6] Hlousek L ,Lee S A and Fairbank W M Jr 1983 Phys. Rev. Lett. 50 328
- [7] Korobov V I 2000 Phys. Rev. A 61 064503

1期

- [8] Cann N M and Thakkar A J 1992 Phys. Rev. A 46 5397
- [9] Kono A and Hattori S 1984 Phys. Rev. A 29 2981
- [10] Bhatia A K 1970 Phys. Rev. A 2 1667
- [11] Ackermann J 1995 Phys. Rev. A 52 1968
- [12] Haftel M I and Mandelzweig V B 1994 Phys. Rev. A 49 3338
- [13] Zhou B JLin C D , Tang J Z , Watanabe S , and Matsuzawa M 1993 J. Phys. B 26 2555
- [14] Zhou B and Lin C D 1993 J. Phys. B 26 2575
- [15] Gou B C , Chen Z and Lin C D 1991 Phys . Rev . A 43 3260
- [16] Gou B C ,Chen X Y and Chen Z 1995 Science in China A 38 52
- [17] Drake G W F 1996 Atomic Molecular and Optical Physics Handbook
 (New York :American Institute of Physics)Chaps.11
- [18] Duan B ,Gu X Y and Ma Z Q 2002 Eur . Phys . J . D 19 9
- [19] Hesse M and Baye D 2001 J. Phys. B 34 1425

- [20] Radzig A A and Smirnov B M 1985 Reference Data on Atoms ,Molecules ,and Ions (Springer-Verlag Berlin 'Springer Series in Chemical Physics 31)Chaps. 5 and 7
- [21] Bashkin S and Stoner J O Jr 1975 Atomic Energy Levels and Grotrian Diagrams (Amsterdam North-Holland Publishing Company)Vol. 1
- [22] Han L H ,Gou B C and Wang F 2000 Acta Phys. Sin. 49 2139 in Chinese J 韩利红、 秉聪、王 菲 2000 物理学报 49 2139]
- [23] Wang F Gou B C and Han L H 2001 Acta Phys. Sin. 50 1685(in Chinese J 王 菲、 秉聪、韩利红 2001 物理学报 50 1685]
- [24] Han L H ,Gou B C and Wang F 2001 Acta Phys. Sin. 50 1681(in Chinese] 韩利红、 秉聪、王 菲 2001 物理学报 50 1681]
- [25] Gou B C 1998 Acta Phys. Sin. 47 403(in Chinese 】 東聪 1998 物理学报 47 403]

Relativistic energies of the singly excited and doubly excited Rydberg series in helium *

Wu Xiao-Li Gou Bing-Cong Liu Yi-Dong

(Department of Physics ,Beijing Institute of Technology ,Beijing 100081 ,China)
 (Received 9 April 2003 ; revised manuscript received 8 May 2003)

Abstract

The Rayleigh-Ritz variational method is used with a multiconfiguration-interaction function to study the energies of singly excited and doubly excited Rydberg series in helium atom , including the mass polarization and relativistic corrections. The oscillator strengths , the transition rates , and the wavelengths are also calculated. The results are compared with other theoretical and experimental data in the literatures.

Keywords: helium atom, variational calculation, oscillator strength, transition rate PACC: 3150, 3130J

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10074006) and the Doctorate Foundation of the Ministry of Education of China (Grant No. 20020007036).