Co 和稳定元素对 Nd₃(Fe ,Co ,M)₂(M = Ti ,V ,Cr) 化合物结构和磁性的影响*

郭鸿涌120 刘宝丹120 唐 宁10 罗鸿志20 李养贤20 杨伏明10 吴光恒10

¹(中国科学院物理研究所磁学国家重点实验室,北京 100080)
²(河北工业大学材料学院,天津 300130)
(2003年6月2日收到 2003年7月8日收到修改稿)

利用 x 射线衍射和磁测量研究了不同稳定元素 Co 以及 Ti, V 和 Cr 替代对 Nd₃ Fe_{29-x-y} Co_xM₃(M = Ti, V, Cr)化合物结构和磁性的影响.研究发现 :每一个稳定元素都有一替代量极限 ,在此极限以内所有化合物均为 Nd₃(Fe ,Ti)₂,型结构 ,*A2/m* 空间群.不同稳定元素的溶解极限不同.Co 的替代量与稳定元素有关 ,当以 Cr 作为稳定元素时 ,Cr 的替代量随着 Co 含量的提高而提高 ,直到得到纯 Co 基 3 29 相化合物.Ti 和 V 作为稳定元素时 ,Co 原子的最大替代量分别为 6.63 和 12. 所有 Nd₃(Fe ,Co ,M)₉(M = Ti ,V ,Cr)化合物在室温下均表现为平面各向异性.Nd₃ Fe_{26.8-x} Co_x V_{2.2}的居里温度 T_{c} 和饱和磁化强度 M_{s} 随着 Co 含量的增加而单调增加 ,自旋重取温度随 Co 含量增加而呈上升趋势 ,但在 x = 6处有一最小值 这可能与 Co 的择优占位有关 ;而 Nd₃ Fe_{29-x-y} Co_x Cr_y 的居里温度和饱和磁化强度随着 Co 含量的增加无增加后降低 ,只在 x = 0和 x = 6处观察到自旋重取向现象.

关键词:Nd₃(Fe,Co,M),,结构,磁性 PACC:6110,8230B,7530G,7530K

1.引 言

在探索新型稀土永磁材料的过程中,Collocott 等^[1]在 Nd-Fe-Ti 三元系富铁区内发现了 Nd₂(Fe, Ti)₉化合物,后来 Li 等^[2],Yelon 等^[3]和 Kalogirou 等^[4]把这种结构标定为 Nd₃(Fe,Ti)₉,具有单斜对称 性,属于 A2/m 空间群.1994年,Yang 等^[5]在国际上 首先成功地合成了 Sm₃(Fe,Ti)₉,及其氮化物,发现 Sm₃(Fe,Ti)₉N,化合物具有优良的内禀永磁性能, 如较强的室温单轴各向异性,较高的饱和磁化强度 和居里温度等,有可能作为一种新型的稀土永磁材 料.由于间隙化合物的高温稳定性不够理想,因此不 能在较高温度下应用.为了进一步探索具有室温单 轴磁晶各向异性的非间隙型金属间化合物永磁材 料,Yang 等^[6]首先在 Gd₃(Fe_{1-x}Co_x)₂,Cr₄化合物中用 Co 来替代 Fe,发现当 Co 替代到 x = 0.4 时,该化合 物室温各向异性由易面转变为易轴型,这一发现对 于探索新型稀土永磁材料具有重要意义. 后来, Wang 等^[7,8]通过改变稳定元素 Cr 的含量,又成功地 合成了纯 Co 基的 3:29 型化合物 Gd₃(Co,Cr)₂,和 Sm₃(Co,Cr)₂, 然而在这两种化合物中,由于非磁 性元素 Cr 的含量相当高,对磁性的提高起到一定的 限制作用,因此探索新的稳定元素就成为探索新型 永磁材料的首选.为了进一步研究不同稳定元素对 结构和磁性的影响,我们选择了 Ti,Cr 和 V 作为不 同的稳定元素,同时采用 Co 替代的方法系统研究了 Nd₃(Fe,Co,M)₂,化合物的结构和磁性,本文报道了 不同稳定元素对 Nd₃(Fe,Co,M)₂,(M = Ti,V,Cr)的 结构和磁性的影响.

2. 实验方法

首先将纯度为 99.9% 的组成元素按名义成分 Nd₃Fe_{29-x-y}Co_xM_y(*M* = Ti ,V ,Cr)配料,然后利用电 弧炉在高纯流动氩气保护下将组成元素熔炼成合

^{*}国家自然科学基金(批准号:G2000067106)资助的课题.

金,为了保证合金成分均匀性,每个合金锭子至少 炼4次以上.考虑到Nd在熔炼和后续退火过程中的 挥发,Nd在配料时按其质量的4%过量加入.熔炼 好的合金锭子放在高纯氩气保护的石英管中在 1323K下退火三天,然后快速水淬.

采用 x 射线粉末衍射和热磁曲线测量(磁场强 度约为 0.05T)研究样品的相组成. 热磁曲线是用振 动样品磁强计(VSM)来测量的,所加磁场为0.05T. 作 M^2 -T 曲线并将 M^2 外推到零 ,得到居里温度 T_c . 利用超导量子磁强计(SOUID)测量 5K 时的磁化曲 线 磁场强度高达 5T. 饱和磁化强度 M. 可以从 M-B^{-1/2}曲线并将 B^{-1/2}外推到零而得到 为了测量样品 的室温磁晶各向异性场 对于室温下具有易面型磁 晶各向异性的化合物 将样品研磨成颗粒度为 30µm 的粉末与环氧树脂均匀混合置于 \$3 × 10 的聚四氟 乙烯管中 然后使聚四氟乙烯管绕着与取向外磁场 方向垂直的轴向旋转,这样聚四氟乙烯管的轴线方 向就是取向样品的难磁化方向,这种方法通常称为 "旋转取向法"为了获得取向样品的各向异性场作 $\triangle M-H$ 关系曲线($\triangle M = M_{\perp} - M_{\perp}$,其中 M_{\perp} 和 $M_{//}$ 分别表示易向和难向的磁化强度),并将 $\bigtriangleup M$ 外 推到零,所对应的磁场即为各向异性场,

3. 结果与讨论

x射线衍射和热磁分析表明:在所有制备的样 品中,当Ti含量为1.26—1.69,V含量为2.0—2.3, Cr含量为4-7.5时,适当改变 Co含量可以获得单 相 Nd₃Fe_{29-x-y}Co_xM_y化合物,具有 Nd₃(Fe,Ti)₂,型结 构 属单斜对称性和 A2/m 空间群.但是不同的稳定 元素对 Co 的替代量却有较大影响,试验结果表明: 当 V 作为稳定元素时,Co 的最大替代量为 12 个原 子(x = 12),当继续增加 Co 的含量时,无论通过改变 稳定元素 V 的含量,还是改变退火温度和退火时 间 都得不到单相的 3:29 型化合物.当增加 V 含量 的时候,很容易出现1:12相,当用 Ti 作为稳定元素 时 Co的最大替代量为 6.63 个原子(x = 6.63),这 可能跟 Ti 的原子半径比较大有关.同样,当用 Cr 作 为稳定元素时 随着 Co 含量的继续增加 稳定元素 Cr的含量也必须增加才能形成稳定的329相这一 变化规律同样也在 Gd₃Fe_{29-x-x}Co_xCr_x和 Sm₃Fe_{29-x-x} $Co_x Cr_y^{[78]}$ 中观察到. 各化合物的晶胞参数 a, b, c和晶胞体积 V 列于表 1 中, 可以看到: 晶胞参数随着

Co 含量的提高大致呈现一种下降的趋势,这是由于 Co 的原子半径比 Fe 的原子半径小的缘故.作为一 个例子,图1表示 Nd₃Fe_{20.8}Co₆V_{2.2}化合物的混乱取向 粉末样品(a),常规磁场取向样品(b)旋转磁场取向 样品(c)的x射线衍射谱.从图1(b)可以看到:经过 常规磁场取向后,只有($23\overline{1}$)($40\overline{2}$)(400)和($30\overline{4}$)等 峰保留下来,而其他衍射峰基本消失,这说明 Nd₃ Fe_{20.8}Co₆V_{2.2}化合物在室温是平面各向异性,其易磁 化方向在($23\overline{1}$)和(040]之间.从图1(c)可以进一步 判断 Nd₃Fe_{20.8}Co₆V_{2.2}的易磁化方向是在垂直于(204] 方向的平面内.而在 Nd₃Fe_{29-x-y}Co_xCr_y化合物中,它 的易磁化方向也是在垂直于(204)方向的平面内,但 是靠近(040)方向,如图1(d)所示,这可能是由于Cr 和 Co 含量增加导致 Fe 原子数目减少,Fe 次晶格对 各向异性的贡献减小的缘故.

图 1 Nd₃Fe_{29-x-y}Co_xM_y化合物混乱取向粉末样品(a),常规 磁场取向样品(b)(d),旋转磁场取向样品(c)的x射线衍 射谱

图 2 所示为在 0.05T 外场下测得的 Nd₃ Fe_{26.8-x} Co_xV_{2.2}化合物的热磁曲线.可以看出,随着 Co 含量 的提高,居里温度显著增加,其增加速率大约 29K/ Co 图 3 (a)中画出了 T_c 随 Co 含量的变化关系.在 稀土-过渡族金属间化合物中对居里温度有贡献的 有三种磁交换作用 即过渡族金属原子磁矩之间的 T-T 直接交换作用 稀十原子磁矩间的 R-R 间接交 换作用以及稀土原子磁矩与过渡族金属原子磁矩之 间的 R-T 间接交换作用.其中 T-T 交换作用最强, 居里温度主要由其决定.对 Y(Fe,Co)₀Si₂^[9],Ho₂ Co₁₇和 Ho₂Fe₁₇^[10]的研究表明 :Co-Co 和 Co-Fe 间的交 换作用强于 Fe-Fe 之间的交换作用 .Co-Co 间的交换 作用大约是 Fe-Fe 间的交换作用的两倍.因此,在 Nd₃Fe_{76 8-x}Co_xV₂,化合物中,当V含量保持不变时, 随着 Co 含量的增加 .Co-Co 和 Co-Fe 之间交换作用 明显增强而导致居里温度迅速增加,从表1可以看 出_{Nd}₃Fe_{29-x-x}Co_xCr_x化合物的居里温度与 Co 含量 的关系呈现复杂的情形,在 Cr 含量不变时,居里温 度随着 Co 含量的增加而增加 但是随着 Co 和 Cr 含 量的继续增加,居里温度显著下降,这是因为 Cr 含 量的增加不仅导致了过渡族金属原子数目的减少, 而且削弱了它们之间的交换作用.

图 2 Nd₃Fe_{26.8-x}Co_xV_{2.2}化合物的热磁曲线

.

行步

从图 2 可以看到在每一条热磁曲线上都出现一 个峰,该峰对应着自旋重取向转变.该峰所对应的温 度即为自旋重取温度 T_{sr} ,其与 Co 含量的关系亦示 于图 $\mathfrak{X}(a)$ 中.自旋重取现象一般认为是具有不同磁 晶各向异性的次晶格相互竞争的结果.从图 3 (a)可 以看到,自旋重取向温度随 Co 含量的增加而呈现增 大趋势,但在 x = 6处出现一个极小值.Co 含量的增 加导致 Fe 次晶格对各向异性的贡献减小,自旋重取 向温度因此升高.极小值的出现可能与 Co 替代 Fe 时的择优占位有关.

饱和磁化强度的值列于表1中.作为一个例子, 图 3(b)给出了 Nd₃Fe_{26 8-x}Co_xV₂,2化合物的饱和磁化 强度 M, 随 Co 含量的变化关系, 可以看出 Nd, $Fe_{76,8-x}Co_{x}V_{2,2}$ 化合物的饱和磁化强度 M_{s} 随着 Co 含 量的增加而增加,至到 x = 12;而在 Nd₃ Fe_{29-x-x} Co_x Cr_a 化合物中, 饱和磁化强度 M_a 随着 Co 含量的增 加先增加,而后迅速下降,这些变化关系可以用刚带 模型^[11]解释 随着 Co 含量的增加 Fe 的自旋向上带 逐渐地被填满 结果导致 3d 次晶格的平均原子磁矩 随着 Co 含量的增加而增加;但是随着 Co 含量的继 续增加, Fe 的自旋向下带开始被填充, 导致了 3d 次 晶格平均原子磁矩随着 Co 含量的继续增加而减少. 应当指出的是,在 $Nd_3 Fe_{2n-x-x}Co_x Cr_x$ 化合物中,由 于 Co 含量的增加要求更多的稳定元素 Cr 而 Cr 原 子数目的增加又导致 3d 次晶格平均原子磁矩的进 一步降低.

图 3(c)所示的是 Nd₃ Fe_{26.8-x} Co_x V_{2.2} 化合物的各向异性场随 Co 含量的变化关系.可以看到 ,随着 Co 含量的增加 ,各向异性场显示一个减小的趋势.根据 单电子理论模型 ,化合物总的磁晶各向异性不仅与

145K (

16 ...)

115K /m

口小小	a/\min	07 mm	<i>c /</i> mm	V/nm	$I_{\rm C}/{\rm K}$	$I_{\rm sr}/K$	$M_{\rm s} \ \Lambda \ \mu_{\rm B}/1.0$	$\mu_0 n_A / 1$	
$Nd_{3}Fe_{26.8}V_{2.2}$	1.0594	0.8563	0.9734	0.87669	467	284	44.8	13.5	
$\rm Nd_3Fe_{23.8}Co_3V_{2.2}$	1.0607	0.8569	0.9737	0.87907	590	303	45.4	13.3	
$\rm Nd_3Fe_{20.8}Co_6V_{2.2}$	1.0556	0.8539	0.9707	0.86916	705	266	46.4	12.8	
$\rm Nd_3Fe_{17.8}Co_9V_{2.2}$	1.0567	0.8542	0.9718	0.87139	752	377	40.84	12.7	
$Nd_{3}Fe_{14.8}Co_{12}V_{2.2}$	1.0558	0.8525	0.9700	0.86704	836	382	50.5	12.5	
$\rm Nd_3Fe_{24}Cr_5$	1.0600	0.8549	0.9695	0.87172	428	153	36.5		
$\mathrm{Nd}_3\mathrm{Fe}_{18}\mathrm{Co}_6\mathrm{Cr}_5$	1.0587	0.8527	0.9691	0.86876	554	147	39.5		
$\rm Nd_{3}Fe_{14}Co_{10}Cr_{5}$	1.0539	0.8508	0.9678	0.86178	595		34.8		
$\rm Nd_3Fe_{10}Co_{13.5}Cr_{5.5}$	1.051	0.8481	0.9622	0.85149	587		27.2		
$\rm Nd_3Fe_5Co_{17.5}Cr_{6.5}$	1.0448	0.8443	0.9615	0.84195	411		17.3		
Nd ₃ Co _{21.5} Cr _{7.5}	1.0493	0.8423	0.9554	0.8383	179		16.8		

 $\mathbb{E} 1$ Nd₃ Fe_{29-x-y} Co_x M_y (M = V, Cr)化合物结构和磁性参数

图 3 $Nd_3 Fe_{29-x-y}Co_x M_y$ 化合物居里温度 T_c ,自选重取向温度 T_{st} (a),饱和磁化强度 M_s (b)和各向异性场 B_a (c) 随 Co 含量的变化关系

每个磁性离子的磁晶各向异性有关,而且还与单个 磁性离子的自旋轨道耦合作用以及磁性离子与晶体 场的相互作用有关.在稀土-过渡族金属间化合物 中,由于 3d 电子的轨道角动量在晶场的作用下发生 "冻结",轨道磁矩与自旋磁矩之间的耦合作用(*L-S*) 很弱,因此 3d 次晶格对各向异性的贡献比较小.而 在稀土次晶格中,由于 4f 电子较强的局域性,导致 它的轨道磁矩与自旋磁矩之间的耦合作用很强.因此稀土-过渡族金属间化合物的磁晶各向异性主要来源于稀土次晶格的贡献.已经清楚知到在 Nd。 (Fe ,Co ,M)。化合物中, Nd 次晶格对各向异性的贡 献沿 040 方向,Fe 次晶格沿 402 方向,而 Co 次晶 格的沿 204 了方向.随 Co 含量的增加,Fe 次晶格对 各向异性的贡献逐渐减小.因此导致化合物的总的 磁晶各向异性场随 Co 含量的增加而呈现减小的 趋势.

4. 结 论

通过 x 射线衍射和磁性测量等手段研究了 Nda (Fe ,Co ,M)。(M = Ti ,V ,Cr)化合物的结构与磁性, 当 Ti 含量为 1.26—1.69 V 含量为 2.0—2.3 Cr 含 量为 4.0-7.5 时,通过改变 Co 含量可以得到 Nda (Fe,Co,M)。单相化合物.这些化合物保持 Nda(Fe Ti)。型结构 "A2/m 空间群.不同的稳定元素有不同 的替代量极限.Co在该化合物中的替代量与稳定元 素有关.在 Nd₃ Fe_{26.8-x} Co_x V_{2.2} 中, Co 最多能替代 12 个 Fe 原子 在 Ti 作为稳定元素时 Co 的最大替代量 为 6.63; 而在 Nd₃ Fe_{29-x-y} Co_x Cr_y中, Co 可以全部替 代 Fe 原子. 在 Nd, Fe_{76 8-x} Co, V₂, 化合物中, 居里温 度 T_c 和 5K 时的饱和磁化强度 M_c 随着 Co 含量的增 加而增加,而各向异性场却轻微下降;在 Nd, Fe_{20-x-x}Co_xCr_x化合物中,居里温度随着 Co 含量的 增大先增加后降低 5K 时的饱和磁化强度 M_{a} 在 x = 6 出现最大值,饱和磁化强度与 Co 含量的关系可 以用刚带模型解释.

- [1] Collocott S J , Day R K , Dunlop J B , Davis R L 1992 Proceedings 7th International Symposium on Magnetic Anisotropy and Coercivity in Rare Earth-Transition Metal Alloys , Canberra , July 1992 unpublished p437
- [2] Li H S , Cadogan J M , Davis kR L , Magariau A and Dunlop J B 1994 Solid State Commun. 90 487
- [3] Hu Z and Yelon W B 1994 J. Appl. Phys. 76 6147
- [4] Kalogirou O, Psycharis V, Saettas L and Niarchos K N 1994 J. Magn. Magn. Mater. 146 325
- [5] Yang D , Wang J L , Tang N , Shen Y P and Yang F M 1999 Appl. Phys. Lett 74 4020
- [6] Yang F M , Nasunjilegal B , Wang J L , Pan H Y , Qin W , Tang N , Zhao R W , Hu B P , Wang Y Z , Liu G C , Li H S and Cadogan J M 1994 J. Appl. Phys. 76 1971
- [7] Wang W Q, Wang J L, Tang N, Wu G H, Yang F M and Jin H M 2001 J. Appl. Phys. 90 1920
- [8] Wang Wenquan 2001 Doctor thesis (Physics Department, Jilin University)

[10]

[9] Wang J L , Tang N , Zhao R W , Yang F M and de Boer R 1997 J. Magn. Magn. Mater. 166 355

Sinnema S , Franse J J M , Radwanski R J , Menovsky A and de Boer

F R 1987 J. Phys. F 17 223

[11] Matsuura Y, Hirosawa S, Yamamoto H, Fujimura S and Sagawa M 1985 Appl. Phys. Lett 46 308

The effect of Co substitution and stabilizing element on the structure and magnetic properties of Nd₃(Fe ,Co ,M)₂₉(M = Ti ,V ,Cr) compounds *

Guo Hong-Yong^{1,2}) Liu Bao-Dan¹) Tang Ning¹) Luo Hong-Zhi²)

Li Yang-Xian²) Yang Fu-Ming¹) Wu Guang-Heng¹)

¹⁾ (State Key Laboratory for Magnetism , Institute of Physics , Chinese Academy of Sciences , Beijing 100080 , China)

²⁾ (School of Material Sciences and Engineering, Hebei University of Technology, Tianjin 300130, China)

(Received 2 June 2003 ; revised manuscript received 8 July 2003)

Abstract

The effect of Co substitution and stabilizing elements on the structure and magnetic properties of Nd₃Fe_{29-x-y} Co_x M_y (M = Ti ,V ,Cr) compounds was investigated by means of x-ray diffraction and magnetic measurements. The results show that all the synthesized compounds have been crystallized in Nd₃(Fe ,Ti)₂₉ type structure with monoclinic symmetry and space group A2/m. The solution of Co element in the compounds is different for the different stabilizing elements. For Cr as the stabilizing element , the pure Co-based 3 29 phase could be obtained and the higher Cr content is required to stabilize the phase with increasing Co content. For Ti and V , the solution of Co in the compounds could be only 6.63 and 12 atoms , respectively. All the Nd₃(Fe , Co , M)₂₉ compounds show easy-planar type anisotropy at room temperature. For the Nd₃(Fe ,Co ,V)₂₉ compounds , the Curie temperature and saturation magnetization increase first and then decrease with further increasing Co content. The spin reorientation temperature shows and increasing tendency except the minimum for x = 6 due to the preferential occupation of Co atoms. For the Nd₃(Fe , Co , Cr)₂₉ compounds , the Curie temperature increases first and then decreases with increasing Co content , but the magnetization is difficult to be saturated and only shows a decreasing tendency. The spin reorientation transition was only observed for the samples with x = 0 and 6.

Keywords : Nd₃(Fe , Co , *M*)₂₉ , structure , magnetic **PACC** : 6110 , 8230B , 7530G , 7530K

^{*} Project supported by the National Natural Science Foundation of China Grnat No. G2000067106).