Yb_{2.75}C₆₀价带光电子能谱*

李宏年 何少龙 李海洋

(浙江大学物理系 浙江大学中心实验室 杭州 310027) (2003年3月14日收到 2003年4月9日收到修改稿)

用角积分紫外光电子能谱技术测量了 $Y_{b_{2.75}}C_{60}$ 薄膜的价带电子态密度分布.相纯 $Y_{b_{2.75}}C_{60}$ 样品通过 C_{1s} 芯态 x 射线电子谱峰的位移表征.结果表明 $Y_{b_{2.75}}C_{60}$ 是半导体,在费米能级处几乎没有电子态分布. Yb 6s 电子态和 C_{60} LU-MO 能带的杂化效应不可忽略,有部分 Yb 6s 电子分布在 Yb-C₆₀杂化能带上.

关键词:Yb_{2.75}C₆₀,电子能谱,电子态密度 PACC:7360T,7120F

1.引 言

Yb275Cad是继Cad的碱金属和碱土金属化合物之 后发现的第一种稀土化合物超导体(转变温度约6 K)^{1]}.由于非整数化学配比(在碱金属及碱土金属 掺杂的 C_a中没有被发现),它的晶体结构和电子结 构得到了研究者的关注[1-4].费米能级附近的电子 态分布是理解超导机理及其他物理性质的基础,紫 外光电子能谱(UPS)技术是研究价带电子态密度分 布的最有效手段之一. 然而, Yb2.75 Coo的 UPS 结果还 未见报道(文献中一个相关工作^[2]是关于 Yb/Ca界 面的价带光电子能谱研究),另一方面,其他实验手 段得到的结果已使得对 Yb_{2.75} C₆₀的 UPS 研究成为可 能.芯态 x 射线电子能谱(XPS)^{3]}表明 C₆₀和 Yb 结合 只能产生一种相(这种相最先错误地被认为是 Yb₂C₆₀^[3],后来的 x 射线衍射研究精确地得到化学式 Yb_{2.75}C₆₀^[1]).相对于 C₆₀,Yb_{2.75}C₆₀ C 1s 芯态能级向低 结合能方向移动约 0.4 eV.因而 C 1s 的 XPS 位移可 用于样品的表征. 近边 x 射线吸收精细结构(NEX-AFS)测量^[4]揭示出 Yb 在样品中表现为二价,没有 出现稀土化合物通常存在的混价或三价,这给 UPS 结果分析带来了很大方便.

本文报道 Yb_{2.75} C₆₀多晶薄膜的角积分紫外光电 子能谱(AIUPS).根据测量数据对 Yb_{2.75} C₆₀晶体结 构、电子性质等作了初步讨论.

2.实验

样品制备及测量在超高真空 VT-SPM-PES 联合 系统 Omicron 公司表面科学仪器)中进行.基底真空 好于 2×10⁻¹⁰ Tor(1Torr = 133.322Pa).样品在制备 室制备,然后转移到分析室进行 XPS 和 UPS(两者都 是角积分模式)测量.UPS 测量所用光源为 He I (21.2 eV)辐射,样品偏压为 – 5.0 V.在 XPS 测量中 使用 Mg Ka射线(1253.6 eV).总的能量分辨率对于 UPS 和 XPS 分别为~0.1 eV 和~0.9 eV.

C₆₀和 Yb 蒸发源置于两个 Ta 舟内.Ta 舟距衬底 约 11 cm. 商用 C₆₀ 粉末先通过气相法生长成单 晶^[5] 然后用玛瑙研钵研成粉末.上述步骤是为了保 证所用 C₆₀蒸发源的纯度(在生长 C₆₀单晶的过程中 发现总有约 1/3 的原料难以升华,这表明原料中可 能存在有机溶剂).块状高纯 Yh(99.99%)购自北京 有色金属研究院.剪成细丝后放进 Ta 舟.本文所用 衬底为氢氟酸腐蚀的 Si 单晶(B 掺杂).衬底的清洁 有序用低能电子衍射(LEED)和 XPS 表征.LEED 测 量显示出清晰、明锐的 Si :H(111)表面衍射斑点. O 1s XPS信号相对于Si 2p可以忽略.几乎观察不到 C 1s信号.在样品制备之前,蒸发源、样品托和衬底 都经过了充分除气.

^{*} 国家自然科学基金(批准号:10074053)和浙江省自然科学基金(批准号:100019)资助的课题.

相纯 Yb_{2.75} C₆₀多晶薄膜样品用 C 1s XPS 测量表 征.我们首先重复了 Ohno 等^[3]的数据.和文献 3 类 似 ,C 1s XPS 峰位随着 Yb 掺杂量的增加向低结合能 方向移动.当有多余的 Yb 在样品表面时,峰位向高 结合能方向略有移动.达到最小结合能时,样品即为 相纯的 Yb_{2.75} C₆₀^[3].测量到的 C 1s 最大位移量为 0.5 eV 略大于文献 3 中的 0.4 eV.

然后制备了另一块样品.C₆₀薄膜的厚度约为 20 nn(用石英晶振器测量).在暴露于 Yb 蒸气的过程 中 样品温度保持在 130 ± 5 ℃(这一温度值是 Ohno 等^[3]经仔细研究得到的,并得到了我们的验证)使 Yb 易于向薄膜内部扩散.Yb 原子沉积到样品表面 以及向薄膜内部的扩散过程是一步一步进行的.每 一次沉积和扩散后都用 XPS 监视样品的组分.通过 控制流经 Ta 舟的电流使 Yb 沉积到样品表面的通量 很小(每次的沉积时间一样 都是 20 min).共经过 11 次沉积和扩散(总沉积时间 220 min)C 1s 才达到最 大位移.因而所得样品应该是相均匀的 Yb_{2.75}C₆₀.当 C 1s 向低结合能方向的位移达到 0.5 eV 时,沉积过 程中止.谱仪从 XPS 模式转为 UPS 模式测量样品的 价带光电子能谱.

3. 实验结果及讨论

所制备的相纯样品的 XPS 和 UPS 结果分别如 图 1 和图 2 所示. 纯 C_{60} 薄膜的相应谱线也显示在图 中作为比较.图 1 中上面一条谱线的 C 1s XPS 峰位 相对于下面一条谱线(纯 C_{60})向低结合能方向移动 了 0.5 eV,峰形也和文献 3 读似,因而它对应的样 品为相纯 $Yb_{2.75}C_{60}$.图 2 显示的价带电子态密度分 布将为 $Yb_{2.75}C_{60}$ 的进一步研究工作提供基础.下面 根据图 2 对 $Yb_{2.75}C_{60}$ 的物理性质作初步讨论.

图 2 中掺杂前的 C_{00} 最高占据态分子轨道(HO-MO)导出的能带的峰位(~2.4 eV)与其他研究组报道的结果一致^[6,7].结合能约 0.6 eV 处的一个弱峰是 He I 的伴线(hv = 23.1 eV,强度小于主线的 2% 激发的 HOMO 能带的光发射.由于这个峰的强度很低,对图中最靠近费米能级的 UPS 谱峰的影响可忽略.

从图中看出, Yb_{2.75} C₆₀的 HOMO 能带及其他更 深的一些能带基本保持了它们分子轨道的特征.这 和纯 C₆₀及碱金属或碱土金属掺杂的 C₆₀一样.处于

图 1 表征样品的 Cls XPS 谱峰

图 2 Yb_{2.75}C₆₀和纯 C₆₀薄膜的角积分光电子能谱.数据在室 温条件下采取 入射光子为 He I辐射.图中二条 UPS 谱线按 HOMO 峰的高度归一化

图 2 不存在费米边,费米能级处几乎没有光电 子发射(这一论断与 4f₇₂是否有贡献及贡献大小无

245

53 卷

关. $4f_{7/2}$ 为 Yb 的内层窄能带,其 UPS 峰半高宽~0.3 eV^[8],对图中结合能小于 1.0 eV 的那部分谱线无影 响). 这为 Yb_{2.75} C₆₀ 的超导转变温度(~ 6 K)低于 K₃C₆₀(~ 19 K^[10])或 Rb₃C₆₀(~ 28 K^[11])提供了一个 解释 因为转变温度正比于费米能级处的能态密度 (BCS 理论).这两种碱金属掺杂的 C₆₀显示出金属性 的光电子谱^[12-15].图 2 表明 Yb_{2.75} C₆₀是目前所知惟 一的正常态 UPS 具半导体特性的超导 C₆₀化合物.除 A_3 C₆₀(A = K,Rb)外,碱土金属掺杂的 C₆₀超导体 Ca₅C₆₀, Sr₆C₆₀(实际上可能为 Sr₄C₆₀^[16,17])以及 Ba₆C₆₀(实际上可能为 Ba₄C₆₀^[16,17])常态下都是金属 或半金属^[18-24].

 $Yb_{2.75}C_{60}$ 半导体导电特性已由 Xia 等²¹和 Ohno 等^[3]通过 10—400 K 温度范围内的电阻率测量确 定.然而,对于窄带 C_{60} 化合物,从半导体电输运性质 并不一定能得出 UPS 观察不到费米边的结论.比 如, Rb_1C_{60} 的电输运测量表现出半导体性质,而其 UPS 在费米能级处具有可观的电子分布^[25].与此相 反,从 UPS 中不存在费米边能得出半导体电输运性 质.因而本文结果为电阻率测量结果^[2,3]提供了物理 基础.

结合 Yb_{2.75} C₆₀ 的晶体结构¹¹及非整数电荷分 布^[4] 不存在费米边还可能帮助我们估计 LUMO 能 带中共价结合的贡献.Yb_{2.75} C₆₀内 Yb 和 C₆₀之间既不 是完全共价结合也不是纯粹的离子性结合.C 1s 的 XPS 位移^[3]表明了部分离子性贡献的存在.同样也 存在共价性成分的证据.比如,Yb-C 间距(~0.261 nm)比典型的离子性 Yb-C 化合物短,Yb 偏离 C₆₀ 晶 格填隙位置的中心,C₆₀负离子的畸变等等^[14].但共 价性成分(或离子性成分)所占比例,甚至共价成分 是否可忽略还存在争论^[2–4].

在 Yb_{2.75} C₆₀ 中存在三种不等价位置的 C₆₀ 分 子^[1].不同位置的 C₆₀ 分子上的电子分布不等.在一 个 fcc 子晶胞中(完整的晶胞由八个类似于纯 C₆₀ 的 fcc 晶胞构成^[1])C₆₀的价态可写为(Yb²⁺)₁(C₆₀^{5.5-})₈ (C₆₀⁴⁻)_{2.5}(C₆₀⁷⁻)_{2.5}^[4]. C₆₀⁷⁻的存在表明部分 C₆₀ 分 子的LUMO + 1能带被填充(因为 LUMO 能带最多只 能填充 6 个电子).根据上面的价态表达式,LUMO + 1 被部分填充的 C₆₀ 分子数目是分子总数的 12.5% (0.5/4),处在 LUMO + 1 带上的电子数占总的 6s 电

子数的 2.3% (0.5/22), 尽管 LUMO + 1 带上的电子 数很少 JIPS 可能测不到它们的光电子发射 但样品 的费米能级将移至 LUMO + 1 带,从而使得 HOMO, HOMO-1等能带的 UPS 峰移向高结合能方向.然 而 图 2 没有任何证据表明 LUMO + 1 能带被填充 (图中 Yb_{2.75}C₆₀的 HOMO ,HOMO – 1 等谱峰的结合能 比纯 C_{α} 还小).这一矛盾正是存在共价性结合的结 果.Yb 6s 电子并没有像在 A₃C₆₀中碱金属的 s 电子 那样完全转移到 C_a分子上去 而是有一部分填充在 Yb-Con共价键上(由 NEXAFS 数据得出的所谓二价 Yb 指的是 Yb(Ⅱ)(4f¹⁴),以区别于 Yb(Ⅲ) (4fⁱ³)^{4]}.强调的是4f电子的数目,而不是指完全电 离的 Yb²⁺). 在有共价成分存在的情况下,Citrin 等^{4]}提出价态表达式应改为(Yb⁽²⁻⁸⁾⁺), $(C_{60}^{2.7!(2-\delta)-})_{0}(C_{60}^{3(2-\delta)-})_{0.5}(C_{60}^{3.5(2-\delta)-})_{0.5}$.式中 δ 是共价成分多少的一个量度。更精确的意义是指 Yb 原子的2个6s电子有多大比例分布在共价性的能 带上. 根据图 2 3.5(2-8)必须小于 6(LUMO 带所 能填充的最大电子数).这表明 δ 的数值大于 0.28. 即最少约 14% (0.28/2)的 6s 电子填充在 Yb - Con 共价能带上,需要指出,上面对δ数值的估计尚有不 确定之处.首先 ,Citrin 等提出的包含 δ 的价态表达 式实际上假设了不同价的 C_a离子与邻近的 Yb 离子 的共价电子数相同 ,这显然是一种粗略的近似 ;另 外,上面的估计也没有考虑电子从 C₀⁷⁻ 向 C₀⁴⁻ 转 移^[4]的可能性.尽管如此 将 14%视为填充在 Yb-C_a 共价能带上的 6s 电子的数目下限不失为今后工作 的一个参考,更精确的结果以及共价成分的上限 濡 要由其他实验方法或通过理论计算得出,这个方向 的工作正在进行中.

4.结 论

首次得到了 Yb_{2.75} C₆₀ 价带电子态密度分布.这 一结果将在超导机理及其它物理性质的研究中发挥 重要作用.UPS 不存在费米边表明 Yb_{2.75} C₆₀ 是半导 体 同时还表明 Yb 6s 电子和 C₆₀ 分子轨道杂化效应 不可忽略.

感谢浙江大学物理系张寒洁同学,吕斌同学,鲍世宁教 授和何丕模教授在实验工作中提供的帮助.

- [1] Özdas E, Kortan A R, Kopylov N, Ramirez A P, Siegrist T, Rabe
 K M, Bair H E, Schuppler S and Citrin P H 1995 Nature 375 126
- [2] Xia Bo, Ruckman M W and Strongin M 1993 Phys. Rev. B 48 14623
- [3] Ohno T R , Kroll G H , Weaver J H , Chibante L P F and Smalley R E 1992 Phys. Rev. B 46 10437
- [4] Citrin P H, Özdas E, Schuppler S, Kortan A R and Lyons K B 1997 Phys. Rev. B 56 5213
- [5] Li Hongnian , Xu Yabo , Zhang Jianhua , He Peimo , Li Haiyang , Wu Taiquan and Bao Shining 2001 Progress in Natural Science 11 427
- [6] Schedel-Niedrig Th, Böhm M C, Werner H, Schulte Schögl J R 1997 Phys. Rev. B 55 13542
- [7] Merkel M , Knupfer M , Golden M S , Fink J , Seemann R and Johnson R L 1993 Phys. Rev. B 47 11470
- [8] Weschke E, Kaindl G 1995 J. Electron Spectrosc. Relat. Phenom. 75 233
- [9] Yeh J J and Lindau I 1985 Atomic Subshell Photoionizatiom Cross Section and Asymmetry Parameters : 1 ≤ Z ≤ 103 (Academic Press. Inc.) p 7 - 11
- [10] Hebard A F, Rosseinsky M J, Haddon R C, Murphy D W, Glarum S H, Palstra T T M, Ramirez A P and Kortan A R 1991 Nature 350 600
- [11] Rosseinsky M J, Ramirez A P, Glarum S H, Murphy D W, Haddon R C, Hebard A F, Palstra T T M, Kortan A R, Zahurak S M and Makhija A V 1991 Phys. Rev. Lett. 66 2830
- [12] Goldoni A, Friedmann S L, Shen Z-X, Peloi M, Parmigiani F, Comelli G, Paolucci G 2000 J. Chem. Phys. 113 8266

- [13] Hesper R, Tjeng L H, Heeres A and Sawatzky G A 2000 Phys. Rev. B 62 16046
- [14] Takahashi T , Morikawa T , Hasegawa S , Kamiya K , Fujimoto H , Hino S , Seki K , Katayama-Yoshida H , Inokuchi H , Kikuchi K , Suzuki S , Ikemoto K and Achiba Y 1992 *Physica* C 190 205
- [15] Gu Chun, Veal B W, Liu R, Paulikas A P, Kostic P, Ding H, Gofrom K, Campuzano J C, Schlueter J A, Wang H H, Geiser U and Williams J M 1994 Phys. Rev. B 50 16566
- [16] Baenitz M, Heinze M, Lüders K, Werner H, Schlög l R, Weiden M, Spam G and Steglich F 1995 Solid State Commun. 96 539
- [17] Gogia B , Kordatos K , Suematsu H , Tanigaki K and Prassides K 1998 Phys. Rev. B 58 1077
- [18] Wertheim G K, Buchanan D N E and Rowe J E 1992 Science 258 1638
- [19] Knupfer M, Stepniak F and Weaver J H 1994 Phys. Rev. B 49 7620
- [20] Saito S and Oshiyama A 1993 J. Phys. Chem. Solids 54 1759
- [21] Wertheim G K and Buchanan D N E 1995 J. Phys. Chem. Solids 56 745
- [22] Haddon R C , Kochanski G P , Hebard A F , Fiory A T and Morris R C 1992 Science 258 1636
- [23] Haddon R C, Kochanski G P, Hebard A F, Fiory A T, Morris R C and Perel A S 1993 Chem. Phys. Lett. 203 433
- [24] Chen Y, Porier D M, Jost M B, Gu C, Ohno T R, Matins J L, Weaver J H, Chibante L P F and Smalley R E 1992 Phys. Rev. B 46 7961
- [25] Benning P J, Stepniak F and Weaver J H 1993 Phys. Rev. B 48 9086

Valence band photoemission of Yb_{2.75}C₆₀ *

Li Hong-Nian He Shao-Long Li Hai-Yang

(Department of Physics and Central Laboratory, Zhejiang University, Hangzhou 310027, China)
 (Received 14 March 2003; revised manuscript received 9 April 2003)

Abstract

Valence-band electronic density of states of $Yb_{2.75} C_{60}$ thin films was measured by the ultraviolet photoemission spectrum technique. The phase-pure $Yb_{2.75} C_{60}$ sample was characterized by the C 1s XPS measurements. The result indicates $Yb_{2.75} C_{60}$ has no Fermi edge and thus is semiconductor. The hybridization between 6s state of Yb and the LUMO band of C_{60} cannot be considered to be negligible. Some Yb 6s electrons occupy the Yb- C_{60} covalent band in Yb_{2.75} C_{60} .

Keywords : $\mathrm{Yb}_{2.75}\,C_{60}$, photoemission spectra , electronic density of states PACC : 7360T , 7120F

^{*} Project supported by the National Natural Science Foundation of China Grant No. 10074053) the Natural Science Foundation of Zhejiang Province , China (Grant No. 100019).